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DEFINITION
HPC Telemetry Data

Any data that describes the state of an HPC platform and the
state of the process-based representation of the applications

running on it.
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APPLICATION CHALLENGES & MOTIVATION
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A NORMAL DAY AT THE OFFICE
Strange runtime distribution of homogeneous tasks
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FINDING THE CULPRINT
Added logging to the application to understand where time
is spent

Some tasks spent 10x longer downloading input dataset
A faulty edge switch caused external connectivity issues
on some nodes

Introduced helper tasks that collect process-level metrics
Some tasks spent a hughe amount of time in IO Wait
A strange problem with Lustre caused slow �lesystem
I/O on a small set of nodes
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ANOTHER INTRESTING CASE
Again, an unexpected runtime distribution of supposedly

homogeneous simulation tasks
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FINDING THE CULPRINT
Used the same instrumentation strategy

Outlier tasks run out of memory and stall
Speci�c structural properties of the input data would
cause the algorithm to take a different trajectory
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CONSEQUENCES
We encountered unexpected "dynamic behavior", both on
the system as well as on the application side
Knowing that these are no edge cases, we started making
our "debugging" approach a more vital part of the
application framework:

Collecting process- and OS-level information during all
runs

Applying simple adaptive strategies to mitigate issues at
runtime:

Blacklist 'weird' nodes
Reducing the task-packing (preempt other tasks on the
node) when memory usage exceeds threshold
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EXPERIENCE & LESSONS LEARNED
Instrumetation requires a lot of effort
Collecting and analysing data (at scale) is non-trivial
Interpreting and feeding the data to the application is
dif�cult
Existing tooling is sparse and mostly geard toward post-
mortem, parallel code debugging
Without knowing and understanding the platform
"anatomy" and context, data can be dif�cult to interpret,
e.g., what is considered "poor" I/O, what is the spatial
layout of processes across nodes?
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EXPERIENCE & LESSONS LEARNED CONT.
Application-speci�c instrumentation is wide spread
technique to mitigate heterogeneity, dynamic behavior,
etc.
Adressing the issue is expensive, but ignoring it can be
expensive, too:
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TELEMETRY AS HPC PLATFORM SERVICE
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STATUS QUO: APPLICATION-DRIVEN
Application-level collection and processing of telemtry data

can cause a lot of overhead.
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PLATFORM SERVICE APPROACH
Telemetry service takes over data collection and provides

data access and higher-level functions to applications
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REQUIREMENTS
Captures the time-variant physicla anatomy and properties
of applications
Captures the time-variant anatomy and properties of the
HPC platform
Describes the mapping between the two (contex!)
Allows for arbitrary levels of detail
Provides programmatic access to the data
Allows of�oading data analytics, e.g. extracting trends from
streams of raw data
Has noti�cations capabilities
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REQUIREMENTS CONT.
Keeps historic data (possibly in condensed form)
Is deployable at scale (think exascale!)
Consistent across platforms
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CONTEXT GRAPH MODEL
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GRAPH-BASED MODEL
Provides the context in which time-series can be
embedded
We use attributed graphs to describe entities and their
relationships
Graphs provide a intuitive way to model arbitrary levels of
complexity
A single context graph (CG) captures the connections
between the platform anatomy (sub-)graph (PAG) and the
application anatomy (sub-)graphs (AAG)
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SPATIAL-TEMPORAL DYNAMICS
Anatomy and structure of platform and applications is not
static:

Application process start and stop
Nodes appear and disappear
Hardware (e.g., GPUs or FPGAs) is added
...

All nodes and edges have timestamps that qualify their
existence
To get a snapshot of the platform and applications at a
speci�c point in time, the graph can be queried for a
speci�c time or time range



7 . 1

4
INTERACTION AND INTERFACE
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USER- / APPLICATION-FACING API
Language-Agnostic HTTP/REST API allows to:

Explore / traverse the context graph
Register simple "server-side" "derived metrics"
functions
De�ne and register call-backs (Websockets)
GraphQL for complex graph queries

{ 
 process(id: 1) { 
   siblings { 
     processes {
       cpu_iowait 
       memory_uses 
     } 
   } 
 } 
}
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PROTOTYPE
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SYSTEM COMPONENTS
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6
DISCUSSION

This is how we envision an ideal system from the application
developer's / user's perspective
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THANK YOU
Slides available online:  
https://oweidner.github.io/ross-2017-talk

https://oweidner.github.io/ross-2017-talk

