
1

TOWARDS A UNIFIED TELEMETRY SERVICE
FRAMEWORK FOR HPC ENVIRONMENTS

Ole Weidner
School of Informatics

University of Edinburgh

Adam Barker
School of Computer Science

University of St Andrews

Malcolm Atkinson
School of Informatics

University of Edinburgh
ole.weidner@ed.ac.uk adam.barker@st-andrews.ac.uk malcolm.atkinson@ed.ac.uk

INTERNATIONAL WORKSHOP ON RUNTIME AND OPERATING SYSTEMS FOR SUPERCOMPUTERS

WASHINGTON, D.C., USA, JUNE 27, 2017

mailto:ole.weidner@ed.ac.uk
mailto:adam.barker@st-andrews.ac.uk
mailto:malcolm.atkinson@ed.ac.uk

2

OUTLINE
1. Application Challenges and Motivation
2. Telemetry as HPC Platform Service
3. Context Graph Model
4. Interaction and Interface
5. Prototype
6. Discussion

3

DEFINITION
HPC Telemetry Data

Any data that describes the state of an HPC platform and the
state of the process-based representation of the applications

running on it.

4 . 1

1
APPLICATION CHALLENGES & MOTIVATION

4 . 2

A NORMAL DAY AT THE OFFICE
Strange runtime distribution of homogeneous tasks

4 . 3

FINDING THE CULPRINT
Added logging to the application to understand where time
is spent

Some tasks spent 10x longer downloading input dataset
A faulty edge switch caused external connectivity issues
on some nodes

Introduced helper tasks that collect process-level metrics
Some tasks spent a hughe amount of time in IO Wait
A strange problem with Lustre caused slow �lesystem
I/O on a small set of nodes

4 . 4

ANOTHER INTRESTING CASE
Again, an unexpected runtime distribution of supposedly

homogeneous simulation tasks

4 . 5

FINDING THE CULPRINT
Used the same instrumentation strategy

Outlier tasks run out of memory and stall
Speci�c structural properties of the input data would
cause the algorithm to take a different trajectory

4 . 6

CONSEQUENCES
We encountered unexpected "dynamic behavior", both on
the system as well as on the application side
Knowing that these are no edge cases, we started making
our "debugging" approach a more vital part of the
application framework:

Collecting process- and OS-level information during all
runs

Applying simple adaptive strategies to mitigate issues at
runtime:

Blacklist 'weird' nodes
Reducing the task-packing (preempt other tasks on the
node) when memory usage exceeds threshold

4 . 7

EXPERIENCE & LESSONS LEARNED
Instrumetation requires a lot of effort
Collecting and analysing data (at scale) is non-trivial
Interpreting and feeding the data to the application is
dif�cult
Existing tooling is sparse and mostly geard toward post-
mortem, parallel code debugging
Without knowing and understanding the platform
"anatomy" and context, data can be dif�cult to interpret,
e.g., what is considered "poor" I/O, what is the spatial
layout of processes across nodes?

4 . 8

EXPERIENCE & LESSONS LEARNED CONT.
Application-speci�c instrumentation is wide spread
technique to mitigate heterogeneity, dynamic behavior,
etc.
Adressing the issue is expensive, but ignoring it can be
expensive, too:

5 . 1

2
TELEMETRY AS HPC PLATFORM SERVICE

5 . 2

STATUS QUO: APPLICATION-DRIVEN
Application-level collection and processing of telemtry data

can cause a lot of overhead.

5 . 3

PLATFORM SERVICE APPROACH
Telemetry service takes over data collection and provides

data access and higher-level functions to applications

5 . 4

REQUIREMENTS
Captures the time-variant physicla anatomy and properties
of applications
Captures the time-variant anatomy and properties of the
HPC platform
Describes the mapping between the two (contex!)
Allows for arbitrary levels of detail
Provides programmatic access to the data
Allows of�oading data analytics, e.g. extracting trends from
streams of raw data
Has noti�cations capabilities

5 . 5

REQUIREMENTS CONT.
Keeps historic data (possibly in condensed form)
Is deployable at scale (think exascale!)
Consistent across platforms

6 . 1

3
CONTEXT GRAPH MODEL

6 . 2

6 . 3

GRAPH-BASED MODEL
Provides the context in which time-series can be
embedded
We use attributed graphs to describe entities and their
relationships
Graphs provide a intuitive way to model arbitrary levels of
complexity
A single context graph (CG) captures the connections
between the platform anatomy (sub-)graph (PAG) and the
application anatomy (sub-)graphs (AAG)

6 . 4

SPATIAL-TEMPORAL DYNAMICS
Anatomy and structure of platform and applications is not
static:

Application process start and stop
Nodes appear and disappear
Hardware (e.g., GPUs or FPGAs) is added
...

All nodes and edges have timestamps that qualify their
existence
To get a snapshot of the platform and applications at a
speci�c point in time, the graph can be queried for a
speci�c time or time range

7 . 1

4
INTERACTION AND INTERFACE

7 . 2

USER- / APPLICATION-FACING API
Language-Agnostic HTTP/REST API allows to:

Explore / traverse the context graph
Register simple "server-side" "derived metrics"
functions
De�ne and register call-backs (Websockets)
GraphQL for complex graph queries

{
 process(id: 1) {
 siblings {
 processes {
 cpu_iowait
 memory_uses
 }
 }
 }
}

8 . 1

5
PROTOTYPE

8 . 2

SYSTEM COMPONENTS

9 . 1

6
DISCUSSION

This is how we envision an ideal system from the application
developer's / user's perspective

10

THANK YOU
Slides available online:
https://oweidner.github.io/ross-2017-talk

https://oweidner.github.io/ross-2017-talk

