Jitter-Trace: a low-overhead OS noise
tracing tool based on Linux Perf

Nelson Mimura, Alessandro Morari, Fabio Checconi

IBM T. J. Watson Research Center — Yorktown Heights, NY

June 27, 2017

© 2017 IBM Corporation

Outline

e Jitter

* Scheduling and Linux Tracing

Tracepoints and Events

Implementation and Experiments
Overhead

Conclusions

Jitter

 Activities can interfere with a running
application by stealing CPU time from it

* Noise can come from other sources
(e.g., network, other applications)

* This work focuses on noise caused by
explicitly scheduling another activity on the
(V)CPU of a running application

» System activity that stole processor time
from application is called offender

 Jitter (runtime variability) increases amount
of time to complete a task
e Reduces system efficiency and throughput

» Effects even more pronounced when
application relies on communication
collectives (typical of parallel distributed
workloads)

© 2017 IBM Corporation

——

Barrier

(e)

Neighbor Exchange

Scheduler and Linux Tracing

* Linux kernel exposes several Tracepoints that can
be used for debugging purposes

. provide a higher level API on top of
tracepoints to simplify their utilization

. such as Perf provide a user-friendly
interface to these events

» User space event-driven tool

* Widely available in many distributions

* Based on Linux Performance Events Susbsystem

* Low-overhead measurements (at least an order of
magnitude faster than instrumenting profilers)

 Jitter-Trace is designed to use the Perf tracing
infrastructure to perform a quantitative analysis
of OS noise

* No kernel patching/recompilation required

© 2017 IBM Corporation

Tracer Tools (Perf)

Trace Events

Kernel Code (Scheduler)

Tracepoints and Events

Tracepoint

Description

sched_wakeup
sched_switch

sched_migrate_task

sched_process_free

sched_stat_runtime

Wake up and resume a task

Context switch from one process to another
Migrate task to another CPU

Free a task (end process)

Account for process run time on a CPU

Process PID
1 0
2 0
3 psnap 3
4 psnap 3

© 2017 IBM Corporation

CPU

[080]
[080]
[080]
[080]

Timestamp

451.405645:
451.405648:
451.405651:
451.405651:

Function

sched_wakeup: psnap

sched switch: R ==> psnap
sched _stat_runtime: runtime=5802 [ns]
sched_switch: psnap D ==>

Track current status of
each process in execution

—p Track how long each process

has been running on a (V)CPU

* Scheduler manages CPU
utilization by switching
processes in and out

* Example of trace showing
(line 2, context is
switched to a process) and
switch out (line 4, context is
switched to something else)

5

Example of Noise and Process State

Process PID

psnap 2
psnap 2
kworker 9
kworker 9

W N

Process PID

psnap
psnap
kworker
kworker

pshap
psnap

LN U B WN PR
w w oo wwww

© 2017 IBM Corporation

CPU

[080]
[080]
[080]
[080]

CPU

[080]
[080]
[080]
[080]
[080]
[080]
[080]
[080]

Timestamp

368.440339:
368.440340:
368.440355:
368.440356:

Timestamp

451.
451.
451.
451.
451.
451.
451.
451.

572976:
573010:
573039:
573040:
573066:
573069:
573072:
573073:

Function

sched_stat_runtime: runtime=4220 [ns]

sched_switch: psnap R ==> kworker
sched_stat_runtime: runtime=15946
sched _switch: kworker S z=> psnap

states

Function

sched_stat_runtime: ruptime=24750
sched_switch: psnap D ==> kworker
sched_stat_runtime: runtime=29938
sched_switch: kworker S ==>
sched_wakeup: psnap

sched_switch: R ==> psnap

[ns]

[ns]
[ns]

sched _stat_runtime: runtime=6172 [ns]

sched switch: psnap D ==>

psnap is the application and
kworker the OS process that
generates noise

kworker is switched in (line 2)
and executes for around 16 us
(line 3)

Not every switch out leads to
noise; at line 2, psnap is
switched out in

(flag D);

Different from example above
where psnap is switched out
while in (flag R)

More Examples (1)

* Example of noise using microbenchmarks

Process PID

konstant
periodik
periodik

2
3
3
periodik 3

A W N

© 2017 IBM Corporation

CPU

[028]
[028]
[028]
[028]

Timestamp

407.930085:
407 .940083:
407.950083:
407.950085:

Function

sched_switch: konstant R ==> periodik
sched_stat_runtime: runtime=9998058 [ns]
sched_stat_runtime: runtime=9999818 [ns]
sched_switch: periodik R ==> konstant

More Examples (2)

 Composite noise (two sources in sequence: periodik, then kworker)

Process PID

konstant
konstant
periodik
periodik
periodik
periodik
kworker

kworker

OO B WN B

© 2017 IBM Corporation

2
2
3
3
3
3
2
2

CPU

[028]
[028]
[028]
[028]
[028]
[028]
[028]
[028]

Timestamp

397.
397.
397.
397.
397.
397.
397.
397.

740341:
740341:
750149:
750151:
750340:
750346:
750361:
750362:

Function

sched_stat_runtime: runtime=2204 [ns]
sched_switch: konstant R ==> periodik
sched_stat_runtime: runtime=9806684 [ns]
sched_wakeup: kworker

sched stat_runtime: runtime=192446 [ns]
sched_switch: periodik R ==> kworker
sched_stat_runtime: runtime=16090 [ns]
sched_switch: kworker S ==> konstant

More Examples (3)

* Example of sleep — wake up (periodik)

Process PID CPU Timestamp

periodik 3
konstant 2
(...)

konstant
konstant
konstant
konstant
periodik

oYU B WN PR
W N NN

© 2017 IBM Corporation

[028]
[028]

[028]
[028]
[028]
[028]
[028]

398.
398.

407.
407.
407.
407.
407.

760328:
770312

769103:
770086:
770088:
770088:
780087:

Function

sched_switch: periodik S ==> konstant
sched_stat_runtime: runtime=9984846 [ns]

sched_wakeup: periodik
sched_stat_runtime: runtime=984164 [ns]
sched_stat_runtime: runtime=1502 [ns]
sched_switch: konstant R ==> periodik
sched_stat_runtime: runtime=9999280 [ns]

Implementation

« Python and Bash EXPERIMENT UTILITIES ANALYSIS
* Three main modules to run experiments perf_start ~ perfexec | perf_analyze
and perform analysis . perf_stop perf_args perf_timelines
. and perf_stop R . |
perf_options | | perf_events

e perf_analyze

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* Analysis process perf_functions

1. Perfis used to collect scheduling information while

. perf_utils
application is run

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2. Perf writes its outputs in binary format

3. perf_timelines uses Perf to convert binary format
into textual timelines

4. perf _events converts timelines into lists of events

5. perf_analyze concentrates the required logic to
identify sources of jitter and quantify the noise they
generate

© 2017 IBM Corporation 10

Experimental Platform

Property Value

OS Red Hat Enterprise Linux Server 7.3
CPU POWERS 3.5 GHz

Number of sockets 2

Cores per socket 10

Threads per core 8

Total cores 160 (per node, SMTS)

Memory 512 GiB DDR3 1333 MHz

* IBM Spectrum MPI 10.1

 Job submission/management: IBM Spectrum LSF 10.1

© 2017 IBM Corporation

11

Experiments using PSNAP (1)

* PAL System N0|§e Activity Programf Global List Global Histo
bepchmark typl.caIIY used to qugntlfy | | .
noise from application perspective automoun
mmfsd 10
* Global List of Offenders kworker
usb-storage 8
* Global Histogram of Noise Events mpirun
ksoftirqd 6
master
rpcbind 4
pickup 5
crond
rcuos/83 0 1]
o O 0 O 00 000
0% 25% 50% T M s e e
Contribution Noise duration (ms)

© 2017 IBM Corporation 12

100 =—

Experiments with PSNAP (2)

* Local List of Offenders
(list per application PID)

© 2017 IBM Corporation

51801

kworker me————
mmfsd |

51804

mmfsd ———

kworker mm

master
rcuos/83

0% 50% 100%

51802

kworker m————
mmfsd

0% 50% 100%

51805

mmfsd
kworker
usb-storage
mpirun
rpcbind
ksoftirqd
pickup

0% 50% 100%

51803

automount EeEE————————

mmfsd
kworker

0%

50%

51806

mmfsd
usb-storage
kworker
ksoftirqd

crond

0%

100%

50% 100%

13

Experiments with PSNAP (3)

e Histograms per Offender

70
60
50
40
30
20
10

0

© 2017 IBM Corporation

Histo: kworker

IIIII « AN n
TNt ONOWNO
= MO OO N — =

- OO

Noise duration (ps)

200
180
160
140
120
100
80
60
40
20

Histo: mmfsd

23

ST NN WO WO WY M~
VO=r0oNn OO < 0

— 0NN MMM
Noise duration (ps)

14

Experiments on Idle System

» System-wide analysis (identify all processes

; . Idle Noise
running on an idle system)

elim.gpu.topolo
lim

irgbalance
kworker
usb-storage
pim
elim.gpu.ext
sshd

updatedb
ksoftirqd

0% 10% 20% 30% 40% 50%
Contribution

© 2017 IBM Corporation

15

Jitter-Trace Overhead

* The processing of noise data is done after the execution of the application
* Only potential source of overhead: Perf
* Overhead quantification: execution of benchmark (konstant)

* One instance per CPU hardware thread (total of 160 processes)

* CPU affinity set for Perf (one VCPU)
* Internal application counters used to evaluate noise

* Total of 3.2 billion iterations (1.6 million less than case without tracing)

* Overhead of 0.05%
* This is also consistent to the overhead computed using Jitter-Trace itself
(analyzing the statistics about Perf)

© 2017 IBM Corporation

16

Conclusions

* Jitter-Trace
* Built on top of Linux Perf

 |dentifies sources of jitter (noise) and
guantifies them

* Analyzes switching activity from kernel
scheduler

* Limitations
* Perf requires administrative privileges or
the configuration of a kernel parameter
to allow unprivileged tracing
 Jitter-Trace does not account for jitter
sources that are not processes

* Newer implementation (after submitting
this paper) provides support to other
events

© 2017 IBM Corporation

 Future Work

* Work queue events (kworker detailed

information) — done
* Interrupts (hardware and software)

—in progress

—in progress

17

Thank youl!

© 2017 IBM Corporation

18

