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Motivation – system software/OS challenges for high-
end HPC (and for converged BD + HPC stack?) 
§  Node architecture: increasing complexity and heterogeneity  

§  Large number of (heterogeneous) CPU cores, deep memory hierarchy, 
complex cache/NUMA topology 

§  Applications: increasing diversity 
§  Traditional/regular HPC + in-situ data analytics + Big Data processing + 

Machine Learning + Workflows, etc. 

§  What do we need from the system software/OS? 
§  Performance and scalability for large scale parallel apps 
§  Support for Linux APIs – tools, productivity, monitoring, etc. 
§  Full control over HW resources 
§  Ability to adapt to HW changes  

§  Emerging memory technologies, power constrains  

§  Performance isolation and dynamic reconfiguration 
§  According to workload characteristics, support for co-location 
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Approach: embrace diversity and complexity 

§  Enable dynamic specialization of the system software stack 
to meet application requirements 
§  User-space: Full provision of libraries/dependencies for all applications 

will likely not be feasible: 
§  Containers (i.e., namespaces) – specialized user-space stack 

§  Kernel-space: Single monolithic OS kernel that fits all workloads will likely 
not be feasible: 
§  Specialized kernels that suit the specific workload 
§  Lightweight multi-kernels for HPC 



		
Linux Container Concepts 
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Are containers the new narrow waist? 

§  BDEC community’s view of how the future of the system software 
stack may look like 

§  Based on: the hourglass model 
§  The narrow waist “used to be” the POSIX API  

[1]	Silvery	Fu,	Jiangchuan	Liu,	Xiaowen	Chu,	and	Yueming	Hu.	Toward	a	standard	interface	for	cloud		
						providers:	The	container	as	the	narrow	waist.	IEEE	Internet	Compu-ng,	20(2):66–71,	2016.	



		

Linux Namespaces 
§  A namespace is a “scoped” view of kernel resources 

§  mnt (mount points, filesystems)  
§  pid (processes) 
§  net (network stack) 
§  ipc (System V IPC, shared mems, message queues)  
§  uts (hostname)  
§  user (UIDs)  

§  Namespaces can be created in two ways: 
§  During process creation  

§  clone() syscall 
§  By “unsharing” the current namespace 

§  unshare() syscall 
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Linux Namespaces 
§  The kernel identifies namespaces by special symbolic links (every 

process belongs to exactly one namespace for each namespace 
type) 
§  /proc/PID/ns/*  
§  The content of the link is a string: namespace_type:[inode_nr] 

§  A namespace remains alive until:  
§  There are any processes in it, or 
§  There are any references to the NS file representing it 

 bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self/ns	
total	0	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	ipc	->	ipc:[4026531839]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	mnt	->	mnt:[4026532128]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	net	->	net:[4026531957]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	pid	->	pid:[4026531836]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	user	->	user:[4026531837]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	uts	->	uts:[4026531838]	
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Mount Namespace 
§  Provides a new scope of the mounted filesystems 
§  Note: 
§  Does not remount the /proc and accessing /proc/mounts won’t reflect 

the current state unless remounted  
§  mount proc –t proc /proc –o remount 

§  /etc/mtab is only updated by the command line tool “mount” and not 
by the mount() system call 

 
§  It has nothing to do with chroot() or pivot_root()  

§  There are various options on how mount points under a given 
namespace propagate to other namespaces 
§  Private 
§  Shared 
§  Slave 
§  Unbindable  
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PID Namespace 
§  Provides a new PID space with the 

first process assigned PID 1 
§  Note: 
§  “ps x” won’t show the correct results 

unless /proc is remounted 
§  Usually combined with mount NS 

bgerofi@vm:~/containers/namespaces$	sudo	./mount+pid_ns	/bin/bash	
bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27		2016	/proc/self	->	3186	
bgerofi@vm:~/containers/namespaces#	umount	/proc;	mount	proc	-t	proc	/proc/	
bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	18:39	/proc/self	->	56	
bgerofi@vm:~/containers/namespaces#	ps	x	
		PID	TTY						STAT			TIME	COMMAND	
				1	pts/0				S						0:00	/bin/bash	
			57	pts/0				R+					0:00	ps	x	

10	



		

cgroups (Control groups) 
§  The cgroup (control groups) subsystem does:  
§  Resource management  

§  It handles resources such as memory, cpu, network, and more 
§  Resource accounting/tracking  
§  Provides a generic process-grouping framework 

§  Groups processes together 
§  Organized in trees, applying limits to groups 

§  Development was started at Google in 2006  
§  Under the name "process containers” 

§  v1 was merged into mainline Linux kernel 2.6.24 (2008) 
§  cgroup v2 was merged into kernel 4.6.0 (2016) 

§  cgroups I/F is implemented as a filesystem (cgroupfs) 
§  e.g.: mount -t cgroup -o cpuset none /sys/fs/cgroup/cpuset 

§  Configuration is done via cgroup controllers (files)  
§  12 cgroup v1 controllers and 3 cgroup v2 controllers 
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Some cgroup v1 controllers 

§  bla 

Controller/subsystem	 Kernel	object	name	 DescripHon	

blkio	 io_cgrp_subsys	 sets	limits	on	input/output	access	to	and	from	block	devices	such	
as	physical	drives	(disk,	solid	state,	USB,	etc.)	

cpuacct	 cpuacct_cgrp_subsys	 generates	automaHc	reports	on	CPU	resources	used	by	tasks	in	a	
cgroup	

cpu	 cpu_cgrp_subsys	 sets	limits	on	the	available	CPU	Hme	

cpuset	 cpuset_cgrp_subsys	 assigns	individual	CPUs	(on	a	mulHcore	system)	and	memory	nodes	
to	tasks	in	a	cgroup	

devices	 devices_cgrp_subsys	 allows	or	denies	access	to	devices	by	tasks	in	a	cgroup	

freezer	 freezer_cgrp_subsys	 suspends	or	resumes	tasks	in	a	cgroup	

hugetlb	 hugetlb_cgrp_subsys	 controls	access	to	hugeTLBfs	

memory	 memory_cgrp_subsys	 sets	limits	on	memory	use	by	tasks	in	a	cgroup	and	generates	
automaHc	reports	on	memory	resources	used	by	those	tasks	
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Docker Architecture 

§  Docker client talks to daemon (http) 
§  Docker daemon prepares root file system 

and creates config.json descriptor file 
§  Calls runc with the config.json 
§  runc does the following steps: 
§  Clones a new process creating new 

namespaces 
§  Sets up cgroups and adds the new process 

§  New process:  
§  Re-mounts pseudo file systems 
§  pivot_root() into root file system 
§  execve() container entry point 
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Singularity Container 
§  Very simple HPC oriented container 
§  Uses primarily the mount namespace and chroot 
§  Other namespaces are optionally supported 

§  No privileged daemon, but sexec is setuid root 

§  http://singularity.lbl.gov/ 

§  Advantage: 
§  Very simple package creation  

§  v1: Follows dynamic libraries and automatically packages them 
§  v2: Uses bootstrap files and pulls OS distributions 

§  No longer does dynamic libraries automatically 

§  Example: mini applications: 
§  59M May 20 09:04 /home/bgerofi/containers/singularity/miniapps.sapp 

§  Uses Intel’s OpenMP and MPI from the OpenHPC repository 
§  Installing all packages needed for the miniapps requires 7GB disk space 
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Shifter Container Management   
§  NERSC’s approach to HPC with Docker 
§  https://bitbucket.org/berkeleylab/shifter/ 

§  Infrastructure for using and distributing Docker images in HPC 
environments 

§  Converts Docker images to UDIs (user defined images) 
§  Doesn’t run actual Docker container directly 

§  Eliminates the Docker daemon 
§  Relies only on mount namespace and chroot 
§  Same as Singularity 
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Comparison of container technologies 

Project/	
AVribute	

Docker	 rkt	 Singularity	 ShiWer	

Supports/uses	
namespaces	

yes	 yes	 mainly	mount	(PID	
opHonally)	

only	mount	

Supports	cgroups	 yes	 yes	 no	 no	

Image	format	 OCI	 appc	 sapp	(in-house)	 UDI	(in-house)	

Industry	standard	
image	

yes	 yes	 yes	(converHble)	 no	

Daemon	process	
required	

yes	 no	 no	 no	

Network	isolaHon	 yes	 yes	 no	 no	

Direct	device	
access	

yes	 yes	 yes	 yes	

Root	FS		 pivot_root()	 chroot()	 chroot()	 chroot()	

ImplementaHon	
language	

Go	 Go	 C,	python,	sh	 C,	sh	
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Integration of containers and lightweight 
multi-kernels 
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IHK/McKernel Architectural Overview 
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§  Interface for Heterogeneous Kernels (IHK): 

§  Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.) 
§  Enables management of multi-kernels (assign resources, load, boot, destroy, etc..) 
§  Provides inter-kernel communication (IKC), messaging and notification  

§  McKernel: 
§  A lightweight kernel developed from scratch, boots from IHK 

§  Designed for HPC, noiseless, simple, implements only performance sensitive system calls (roughly 
process and memory management) and the rest are offloaded to Linux  



		

IHK/McKernel with Containers  -- Architecture 
§  Proxy runs in Linux container’s namespace(s) 
§  Some modifications were necessary to IHK to properly handle 

namespace scoping inside the Linux kernel 
§  IHK device files need to be exposed in the container 
§  Bind mounting /dev/mcdX and /dev/mcosX 

§  McKernel specific tools (e.g., mcexec) also need to be accessible 
in the container 
§  Similar to IB driver, GPU driver issues (more on this later) 
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conexec/conenter: a tool based on setns() syscall 

§  Container format agnostic  
§  Naturally works with mpirun  
§  User needs no privileged operations (almost) 
§  McKernel booting currently requires insmod 

Boot	LWK	

Spawn	container	
in	background	

and	obtain	NS	info	 	
docker	/	

singularity	/	
rkt	(not	yet)	

	Spawn	app	into			
container	namespace	

using	conenter	

•  set	up	namespaces	
•  cgroups	
•  expose	LWK	informaUon	

•  enter	NS	
•  drop	priviledges	
•  set	RLIMITs		
•  fork	and	exec	app	(over	LWK)	

McKernel	/	
mOS	

Tear	down		
container	

Shut	down	
LWK	
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conexec/conenter: a tool based on setns() syscall 
§  conexec (options) [container] [command] (arguments) 

§  options: 
§  --lwk: LWK type (mckernel|mos) 
§  --lwk-cores: LWK CPU list 
§  --lwk-mem: LWK memory (e.g.: 2G@0,2G@1) 
§  --lwk-syscall-cores: System call CPUs 

§  container: protocol://container_id 
§  e.g.:  

§  docker://ubuntu:tag 
§  singularity:///path/to/file.img 

§  Running with MPI: 
§  mpirun -genv I_MPI_FABRICS=dapl -f hostfile -n 16 -ppn 1 /home/

bgerofi/Code/conexec/conexec --lwk mckernel --lwk-cores 10-19 --
lwk-mem 2G@0 singularity:///home/bgerofi/containers/singularity2/
miniapps.img /opt/IMB_4.1/IMB-MPI1 Allreduce 
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Preliminary Evaluation 
§  Platform1: Xeon cluster with Mellanox IB ConnectX2 

§  32 nodes, 2 NUMA / node, 10 cores / NUMA 
§  Platform2: Oakforest PACS 

§  8k Intel KNL nodes  
§  Intel OmniPath interconnect 
§  ~25 PF (6th on 2016 Nov Top500 list) 

§  Intel Xeon Phi CPU 7250 model: 
§  68 CPU cores @ 1.40GHz 
§  4 HW thread / core 

§  272 logical OS CPUs altogether 
§  64 CPU cores used for McKernel, 4 for Linux 
§  16 GB MCDRAM high-bandwidth memory 
§  96 GB DRAM 
§  SNC-4 flat mode: 

§  8 NUMA nodes (4 DRAM and 4 MCDRAM) 

§  Linux 3.10 XPPSL 
§  nohz_full on all application CPU cores 

§  Containers 
§  Ubuntu 14.04 in Docker and Singularity 
§  Infiniband and OmniPath drivers contained  



		

IMB PingPong – Containers impose ~zero overhead 
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§  Xeon E5-2670 v2 @ 2.50GHz + MLNX Infiniband MT27600 [Connect-IB] + CentOS 7.2 
§  Intel Compiler 2016.2.181, Intel MPI 5.1.3.181 
§  Note: IB communication entirely in user-space! 
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GeoFEM (University of Tokyo) in container 
§  Stencil code – weak scaling 
§  Up to 18% improvement 
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CCS-QCD (Hiroshima University) in container 
§  Lattice quantum chromodynamics code - weak scaling 
§  Up to 38% improvement 
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miniFE (CORAL benchmark suite) in container 
§  Conjugate gradient - strong scaling 
§  Up to 3.5X improvement (Linux falls over.. ) 
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Containers’ limitations (or challenges) in HPC 
§  User-space components need to match kernel driver’s version 
§  E.g.: libmlx5-rdmav2.so needs to match IB kernel module 
§  Workaround: dynamically inject libraries into container.. ? 

§  Intel MPI and OpenMPI do dlopen() based on the driver env. variable 
§  MPICH links directly to the shared library 
§  Is it still a “container” if it accesses host specific files? Reproducibility? 

§  E.g.: NVIDIA GPU drivers, same story.. 

§  mpirun on the spawning host needs to match MPI libraries in the 
container 
§  Workaround: spawn job from a container? 
§  MPI ABI standard/compatibility with PMI implementations?  

§  Application binary needs to match CPU architecture 

§  Not exactly “create once, run everywhere” … 
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Conclusions 
§  Increasingly diverse workloads will benefit from the full specialization 

of the system software stack 
 
§  Containers in HPC are promising for software packaging  
§  Specialized user-space 

§  Lightweight multi-kernels are beneficial for HPC workloads 
§  Specialized kernel-space 

§  Combining the two brings both of the benefits 

 

28	



		

29	

Thank you for your attention! 
Questions? 


