
Toward Full Specialization of the HPC System
Software Stack: Reconciling Application
Containers and Lightweight Multi-kernels

Balazs Gerofi†, Yutaka Ishikawa†, Rolf Riesen‡, Robert W. Wisniewski‡
bgerofi@riken.jp

†RIKEN Advanced Institute for Computational Science, JAPAN
‡Intel Corporation, USA

2017/Jun/27 -- ROSS’17 Washington, D.C.

		

2	

Agenda

§  Motivation
§  Full system software stack specialization
§  Overview of container concepts
§  conexec: integration with lightweight multi-kernels
§  Results
§  Conclusion

		

3	

Motivation – system software/OS challenges for high-
end HPC (and for converged BD + HPC stack?)
§  Node architecture: increasing complexity and heterogeneity

§  Large number of (heterogeneous) CPU cores, deep memory hierarchy,
complex cache/NUMA topology

§  Applications: increasing diversity
§  Traditional/regular HPC + in-situ data analytics + Big Data processing +

Machine Learning + Workflows, etc.

§  What do we need from the system software/OS?
§  Performance and scalability for large scale parallel apps
§  Support for Linux APIs – tools, productivity, monitoring, etc.
§  Full control over HW resources
§  Ability to adapt to HW changes

§  Emerging memory technologies, power constrains

§  Performance isolation and dynamic reconfiguration
§  According to workload characteristics, support for co-location

		

4	

Approach: embrace diversity and complexity

§  Enable dynamic specialization of the system software stack
to meet application requirements
§  User-space: Full provision of libraries/dependencies for all applications

will likely not be feasible:
§  Containers (i.e., namespaces) – specialized user-space stack

§  Kernel-space: Single monolithic OS kernel that fits all workloads will likely
not be feasible:
§  Specialized kernels that suit the specific workload
§  Lightweight multi-kernels for HPC

		
Linux Container Concepts

5	

		

6	

Are containers the new narrow waist?

§  BDEC community’s view of how the future of the system software
stack may look like

§  Based on: the hourglass model
§  The narrow waist “used to be” the POSIX API

[1]	Silvery	Fu,	Jiangchuan	Liu,	Xiaowen	Chu,	and	Yueming	Hu.	Toward	a	standard	interface	for	cloud		
						providers:	The	container	as	the	narrow	waist.	IEEE	Internet	Compu-ng,	20(2):66–71,	2016.	

		

Linux Namespaces
§  A namespace is a “scoped” view of kernel resources

§  mnt (mount points, filesystems)
§  pid (processes)
§  net (network stack)
§  ipc (System V IPC, shared mems, message queues)
§  uts (hostname)
§  user (UIDs)

§  Namespaces can be created in two ways:
§  During process creation

§  clone() syscall
§  By “unsharing” the current namespace

§  unshare() syscall

7	

		

Linux Namespaces
§  The kernel identifies namespaces by special symbolic links (every

process belongs to exactly one namespace for each namespace
type)
§  /proc/PID/ns/*
§  The content of the link is a string: namespace_type:[inode_nr]

§  A namespace remains alive until:
§  There are any processes in it, or
§  There are any references to the NS file representing it

 bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self/ns	
total	0	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	ipc	->	ipc:[4026531839]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	mnt	->	mnt:[4026532128]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	net	->	net:[4026531957]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	pid	->	pid:[4026531836]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	user	->	user:[4026531837]	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	17:52	uts	->	uts:[4026531838]	

8	

		

Mount Namespace
§  Provides a new scope of the mounted filesystems
§  Note:
§  Does not remount the /proc and accessing /proc/mounts won’t reflect

the current state unless remounted
§  mount proc –t proc /proc –o remount

§  /etc/mtab is only updated by the command line tool “mount” and not
by the mount() system call

§  It has nothing to do with chroot() or pivot_root()

§  There are various options on how mount points under a given
namespace propagate to other namespaces
§  Private
§  Shared
§  Slave
§  Unbindable

9	

		

PID Namespace
§  Provides a new PID space with the

first process assigned PID 1
§  Note:
§  “ps x” won’t show the correct results

unless /proc is remounted
§  Usually combined with mount NS

bgerofi@vm:~/containers/namespaces$	sudo	./mount+pid_ns	/bin/bash	
bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27		2016	/proc/self	->	3186	
bgerofi@vm:~/containers/namespaces#	umount	/proc;	mount	proc	-t	proc	/proc/	
bgerofi@vm:~/containers/namespaces#	ls	-ls	/proc/self	
0	lrwxrwxrwx	1	bgerofi	bgerofi	0	May	27	18:39	/proc/self	->	56	
bgerofi@vm:~/containers/namespaces#	ps	x	
		PID	TTY						STAT			TIME	COMMAND	
				1	pts/0				S						0:00	/bin/bash	
			57	pts/0				R+					0:00	ps	x	

10	

		

cgroups (Control groups)
§  The cgroup (control groups) subsystem does:
§  Resource management

§  It handles resources such as memory, cpu, network, and more
§  Resource accounting/tracking
§  Provides a generic process-grouping framework

§  Groups processes together
§  Organized in trees, applying limits to groups

§  Development was started at Google in 2006
§  Under the name "process containers”

§  v1 was merged into mainline Linux kernel 2.6.24 (2008)
§  cgroup v2 was merged into kernel 4.6.0 (2016)

§  cgroups I/F is implemented as a filesystem (cgroupfs)
§  e.g.: mount -t cgroup -o cpuset none /sys/fs/cgroup/cpuset

§  Configuration is done via cgroup controllers (files)
§  12 cgroup v1 controllers and 3 cgroup v2 controllers

11	

		

Some cgroup v1 controllers

§  bla

Controller/subsystem	 Kernel	object	name	 DescripHon	

blkio	 io_cgrp_subsys	 sets	limits	on	input/output	access	to	and	from	block	devices	such	
as	physical	drives	(disk,	solid	state,	USB,	etc.)	

cpuacct	 cpuacct_cgrp_subsys	 generates	automaHc	reports	on	CPU	resources	used	by	tasks	in	a	
cgroup	

cpu	 cpu_cgrp_subsys	 sets	limits	on	the	available	CPU	Hme	

cpuset	 cpuset_cgrp_subsys	 assigns	individual	CPUs	(on	a	mulHcore	system)	and	memory	nodes	
to	tasks	in	a	cgroup	

devices	 devices_cgrp_subsys	 allows	or	denies	access	to	devices	by	tasks	in	a	cgroup	

freezer	 freezer_cgrp_subsys	 suspends	or	resumes	tasks	in	a	cgroup	

hugetlb	 hugetlb_cgrp_subsys	 controls	access	to	hugeTLBfs	

memory	 memory_cgrp_subsys	 sets	limits	on	memory	use	by	tasks	in	a	cgroup	and	generates	
automaHc	reports	on	memory	resources	used	by	those	tasks	

12	

		

Docker Architecture

§  Docker client talks to daemon (http)
§  Docker daemon prepares root file system

and creates config.json descriptor file
§  Calls runc with the config.json
§  runc does the following steps:
§  Clones a new process creating new

namespaces
§  Sets up cgroups and adds the new process

§  New process:
§  Re-mounts pseudo file systems
§  pivot_root() into root file system
§  execve() container entry point

13	

		

Singularity Container
§  Very simple HPC oriented container
§  Uses primarily the mount namespace and chroot
§  Other namespaces are optionally supported

§  No privileged daemon, but sexec is setuid root

§  http://singularity.lbl.gov/

§  Advantage:
§  Very simple package creation

§  v1: Follows dynamic libraries and automatically packages them
§  v2: Uses bootstrap files and pulls OS distributions

§  No longer does dynamic libraries automatically

§  Example: mini applications:
§  59M May 20 09:04 /home/bgerofi/containers/singularity/miniapps.sapp

§  Uses Intel’s OpenMP and MPI from the OpenHPC repository
§  Installing all packages needed for the miniapps requires 7GB disk space

14	

		

Shifter Container Management
§  NERSC’s approach to HPC with Docker
§  https://bitbucket.org/berkeleylab/shifter/

§  Infrastructure for using and distributing Docker images in HPC
environments

§  Converts Docker images to UDIs (user defined images)
§  Doesn’t run actual Docker container directly

§  Eliminates the Docker daemon
§  Relies only on mount namespace and chroot
§  Same as Singularity

15	

		

Comparison of container technologies

Project/	
AVribute	

Docker	 rkt	 Singularity	 ShiWer	

Supports/uses	
namespaces	

yes	 yes	 mainly	mount	(PID	
opHonally)	

only	mount	

Supports	cgroups	 yes	 yes	 no	 no	

Image	format	 OCI	 appc	 sapp	(in-house)	 UDI	(in-house)	

Industry	standard	
image	

yes	 yes	 yes	(converHble)	 no	

Daemon	process	
required	

yes	 no	 no	 no	

Network	isolaHon	 yes	 yes	 no	 no	

Direct	device	
access	

yes	 yes	 yes	 yes	

Root	FS		 pivot_root()	 chroot()	 chroot()	 chroot()	

ImplementaHon	
language	

Go	 Go	 C,	python,	sh	 C,	sh	

16	

		
Integration of containers and lightweight
multi-kernels

17	

		

18	

IHK/McKernel Architectural Overview

Memory	

	
	
	
	
	
	

	
	
	
	
	 IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	
Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaUon	

Interrupt	

System	
call	

System	
call	

ParUUon	 ParUUon	

O
S

jit
te

r
co

nt
ai

ne
d

in
 L

in
ux

, L
W

K
is

 is
ol

at
ed

�
§  Interface for Heterogeneous Kernels (IHK):

§  Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.)
§  Enables management of multi-kernels (assign resources, load, boot, destroy, etc..)
§  Provides inter-kernel communication (IKC), messaging and notification

§  McKernel:
§  A lightweight kernel developed from scratch, boots from IHK

§  Designed for HPC, noiseless, simple, implements only performance sensitive system calls (roughly
process and memory management) and the rest are offloaded to Linux

		

IHK/McKernel with Containers -- Architecture
§  Proxy runs in Linux container’s namespace(s)
§  Some modifications were necessary to IHK to properly handle

namespace scoping inside the Linux kernel
§  IHK device files need to be exposed in the container
§  Bind mounting /dev/mcdX and /dev/mcosX

§  McKernel specific tools (e.g., mcexec) also need to be accessible
in the container
§  Similar to IB driver, GPU driver issues (more on this later)

19	

	
	
	
	
	

	
	
	
	
	

Applica'on	Container	
	
	

Memory	

	
	
	
	
	
	

IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	
Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaAon	

Interrupt	

System	
call	

System	
call	

ParAAon	 ParAAon	�
�
��

�
��
��

�
�
�	

�
�
��

�
��

�
�
��
��
�
�
�

��

�
�
�	
��
��

		

conexec/conenter: a tool based on setns() syscall

§  Container format agnostic
§  Naturally works with mpirun
§  User needs no privileged operations (almost)
§  McKernel booting currently requires insmod

Boot	LWK	

Spawn	container	
in	background	

and	obtain	NS	info	 	
docker	/	

singularity	/	
rkt	(not	yet)	

	Spawn	app	into			
container	namespace	

using	conenter	

•  set	up	namespaces	
•  cgroups	
•  expose	LWK	informaUon	

•  enter	NS	
•  drop	priviledges	
•  set	RLIMITs		
•  fork	and	exec	app	(over	LWK)	

McKernel	/	
mOS	

Tear	down		
container	

Shut	down	
LWK	

20	

		

conexec/conenter: a tool based on setns() syscall
§  conexec (options) [container] [command] (arguments)

§  options:
§  --lwk: LWK type (mckernel|mos)
§  --lwk-cores: LWK CPU list
§  --lwk-mem: LWK memory (e.g.: 2G@0,2G@1)
§  --lwk-syscall-cores: System call CPUs

§  container: protocol://container_id
§  e.g.:

§  docker://ubuntu:tag
§  singularity:///path/to/file.img

§  Running with MPI:
§  mpirun -genv I_MPI_FABRICS=dapl -f hostfile -n 16 -ppn 1 /home/

bgerofi/Code/conexec/conexec --lwk mckernel --lwk-cores 10-19 --
lwk-mem 2G@0 singularity:///home/bgerofi/containers/singularity2/
miniapps.img /opt/IMB_4.1/IMB-MPI1 Allreduce

21	

		

22	

Preliminary Evaluation
§  Platform1: Xeon cluster with Mellanox IB ConnectX2

§  32 nodes, 2 NUMA / node, 10 cores / NUMA
§  Platform2: Oakforest PACS

§  8k Intel KNL nodes
§  Intel OmniPath interconnect
§  ~25 PF (6th on 2016 Nov Top500 list)

§  Intel Xeon Phi CPU 7250 model:
§  68 CPU cores @ 1.40GHz
§  4 HW thread / core

§  272 logical OS CPUs altogether
§  64 CPU cores used for McKernel, 4 for Linux
§  16 GB MCDRAM high-bandwidth memory
§  96 GB DRAM
§  SNC-4 flat mode:

§  8 NUMA nodes (4 DRAM and 4 MCDRAM)

§  Linux 3.10 XPPSL
§  nohz_full on all application CPU cores

§  Containers
§  Ubuntu 14.04 in Docker and Singularity
§  Infiniband and OmniPath drivers contained

		

IMB PingPong – Containers impose ~zero overhead

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	
La
te
nc
y	
(u
s)
	

Message	size	

Na*ve	(Linux)	 Na*ve	(McKernel)	 Docker	on	Linux	
Docker	on	McKernel	 Singularity	on	Linux	 Singularity	on	McKernel	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

§  Xeon E5-2670 v2 @ 2.50GHz + MLNX Infiniband MT27600 [Connect-IB] + CentOS 7.2
§  Intel Compiler 2016.2.181, Intel MPI 5.1.3.181
§  Note: IB communication entirely in user-space!

23	

		

24	

GeoFEM (University of Tokyo) in container
§  Stencil code – weak scaling
§  Up to 18% improvement

0	

2	

4	

6	

8	

10	

12	

14	

16	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

Fi
gu
re
	o
f	m

er
it	
(s
ol
ve
d	
pr
ob

le
m
	si
ze
	

no
rm

al
iz
ed

	to
	e
xe
cu
Ho

n	
Hm

e)
	

Number	of	CPU	cores	

Linux	 IHK/McKernel	 IHK/McKernel	+	Singularity	

		

25	

CCS-QCD (Hiroshima University) in container
§  Lattice quantum chromodynamics code - weak scaling
§  Up to 38% improvement

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

M
Fl
op

/s
ec
/n
od

e	

Number	of	CPU	cores	

Linux	 IHK/McKernel	 IHK/McKernel	+	Singularity	

		

26	

miniFE (CORAL benchmark suite) in container
§  Conjugate gradient - strong scaling
§  Up to 3.5X improvement (Linux falls over..)

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

To
ta
l	C
G
	M

Fl
op

s	

Number	of	CPU	cores	

Linux	

IHK/McKernel	

IHK/McKernel	+	Singularity	

3.5X	

		

Containers’ limitations (or challenges) in HPC
§  User-space components need to match kernel driver’s version
§  E.g.: libmlx5-rdmav2.so needs to match IB kernel module
§  Workaround: dynamically inject libraries into container.. ?

§  Intel MPI and OpenMPI do dlopen() based on the driver env. variable
§  MPICH links directly to the shared library
§  Is it still a “container” if it accesses host specific files? Reproducibility?

§  E.g.: NVIDIA GPU drivers, same story..

§  mpirun on the spawning host needs to match MPI libraries in the
container
§  Workaround: spawn job from a container?
§  MPI ABI standard/compatibility with PMI implementations?

§  Application binary needs to match CPU architecture

§  Not exactly “create once, run everywhere” …

27	

		

Conclusions
§  Increasingly diverse workloads will benefit from the full specialization

of the system software stack

§  Containers in HPC are promising for software packaging
§  Specialized user-space

§  Lightweight multi-kernels are beneficial for HPC workloads
§  Specialized kernel-space

§  Combining the two brings both of the benefits

28	

		

29	

Thank you for your attention!
Questions?

