
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A tale of two schedulers
Noah Evans, Richard Barrett, Stephen Olivier, George Stelle

nevans@sandia.gov
6/26/17

Outline

▪ Making Parallel Programming Easier
▪ Qthreads Chapel Support
▪ The two Qthreads schedulers (plus the old one)
▪ Sherwood
▪ Nemesis
▪ Distrib

▪ Performance evaluation
▪ Future work
▪ Conclusions

2

Making Parallel programming
easier

▪ Typical Parallel Programming: MPI and BSP
▪ Downside: fiddly, lots of application programming

effort
▪ Another Strategy: Push complexity of parallel programs

into the runtime
▪ Programmer specifies data dependencies and smallest

units of work.
▪ This is the approach taken by the HPCS language Chapel

3

Solution: Multiresolution

▪ Ability to change underlying aspects of language
▪ Write one program, compile in different ways based on

environment variables
▪ Choose abstraction at compile time rather than in the

code.
▪ Goal: enable performance portability, reduce

programmer effort

4

Chapel structure

5

The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)

Tasks

C
o
m
m
u
n
icatio

n

M
em
o
ry

T
im
ers

L
au
n
ch
ers

S
tan

d
ardT
h
read

s
Wednesday, May 18, 2011

Qthreads Chapel Support

▪ Qthreads
▪ user level tasking model
▪ low level, anonymous threads, no signal handling

cooperative.
▪ lighter than pthreads

▪ Distinguishing feature Full Empty Bits (FEBs)
▪ models the Cray XMT FEB, primitives can be in

hardware or software
▪ Default for Chapel
▪ Qthreads tasking model is also multiresolution, can

choose schedulers at configure time

6

Objective: Qthreads scheduler for
many-core chapel

▪ Our old default scheduler built for NUMA multicore
machines using mutexes. Our mutex based schedulers
don’t scale for many-core.

▪ We’ve been working on schedulers to use lock-free
methods and different scheduling strategies for many-
core.

▪ Evaluating two schedulers, Nemesis and a new scheduler
distrib. Nemesis good for simple streaming tasks. Distrib
is good for irregular jobs using work stealing.

7

Sherwood

▪ Original work stealing scheduler for Qthreads
▪ Idea was queue to optimize for NUMA multicore
▪ Front: LIFO scheduling for cache locality
▪ Back: Bulk transfer of stolen jobs between NUMA

domains
▪ Design: Mutex lock at both ends of double ended

queue
▪ However, Looking at both ends of queue prevents lock

free approaches
▪ So good for older multicore, poor performance on

manycore.

8

Nemesis

▪ Alternative to Sherwood
▪ Took an idea from MPICH2, the “Nemesis” lock free

queue [Buntinas et al, 2006]
▪ Scheduling is simple FIFO, no load balancing
▪ Optimized for performance of streaming jobs
▪ No concept of work stealing or load balancing
▪ spin based backoff mechanism

9

Newest Distrib

▪ Take advantage of lessons learned from Nemesis, but
take advantage of work stealing

▪ Minimize cache contention by spreading queues across
cache lines

▪ LIFO scheduling
▪ At the same time lightweight work stealing, steal one at

a time using a predefined “steal ratio” of how many
times to check the local queue, before attempting to
steal from other queues

▪ If nothing to steal backoff after a certain number of
iterations

10

Summary

11

Table 1: Qthreads schedulers
Scheduler Queue Workstealing Performance

Sherwood One per NUMA domain
OR one per worker thread

Yes Good for multicore with
big caches

Nemesis Only one per worker
thread

No Good for streaming and
contended workloads

Distrib Only one per worker
thread

Yes Good for contended work-
loads with imbalance

1

Performance Evaluation

▪ Want to see how much overhead using LIFO scheduling
and our minimal work stealing contributes vs Nemesis

▪ Also use Sherwood as a baseline
▪ Questions to answer:
▪ What is the overhead of work stealing?
▪ How much does backoff matter?
▪ When should we use Nemesis and when should we

use Distrib?

12

Experimental Design

▪ Knights Landing Processor 7250
▪ 68 cores, 272 hardware threads, 1.6 GHz.
▪ 16GB of high bandwidth memory (MC-DRAM) on

package
▪ operate in cache mode.

▪ Chapel 1.14, GCC version 4.8.3 using -O3 and -
march=native

▪ Performance comparisons using Linux’s perftools suite
for full system profiling

13

Benchmark overview

▪ Quicksort: simple distributed quick sort
▪ HPCS Scalable Synthetic Compact Applications graph

analysis (SSCA#2)
▪ Stream: memory streaming benchmark
▪ Tree: constructs and sums a binary tree in parallel
▪ Graph500: two benchmarks, breadth first search (BFS)

and shortest path, chapel only does BFS

14

Quicksort: distrib load balancing
better (lower is better)

15

Same amount of actual
work done, just better distributed

16

Distrib better for SSCA2 (lower is better)

17

Nemesis FIFO better for Stream
(higher is better)

18

Tree: Distrib better at scale

19

Distrib better for graph500
(lower is better)

20

Experimental conclusions

▪ Distrib is better for most cases at scale
▪ Lightweight workstealing major reason
▪ Overhead makes it slower for small problems
▪ Nemesis is still better for streaming jobs with simple

workflows

21

Future work

▪ All application progress threads in Qthreads
▪ (eg. MPI and Openfabrics asynchronous network

threads)
▪ Right now nemesis and distrib have a backoff to make

time for progress threads
▪ If all components of app use runtime, no need to

backoff
▪ Is it possible to make distrib perform better than Nemesis

in all cases?
▪ Make work stealing zero cost (turn off w/ no overhead)
▪ Switch LIFO/FIFO

▪ Dynamic schedulers?

22

Conclusions

▪ For most HPC use cases distrib is better
▪ For heavy streaming nemesis is more performant
▪ Can choose best tool for best job, fitting into Chapel’s

multi resolution approach
▪ Helps solving a wide variety of HPC problems

23

Thank You

24

