
1

Quantitative Evaluation of Intel PEBS
Overhead for Online System-Noise Analysis

June 27, 2017, ROSS @ Washington, DC

Soramichi Akiyama, Takahiro Hirofuchi
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{s.akiyama, t.hirofuchi}@aist.go.jp

2

High throughput systems
Spark, RDBMS (Millions of transactions/s), ...

Each data/message lives for a transient period

Performance fluctuation in the message-level

Traditional performance analysis (e.g. gprof, vTune)
Function or code-block based (func_A takes most of the time)

Averaged profile across a whole run → Cannot catch fluctuations

Message-level performance analysis needed
Profilers must distinguish each message (message_X takes longer
time than other ones)

Perf Analysis of High Throughput Systems
Latency
Fluctuation

3

System Noise
A factor of performance fluctuation stemming from the
underlying system (HW, OS)

cache/TLB miss cost, context switching cost, scheduler, ...

Our focus:

Examples
TCP packets with rare routes → extra cache/TLB misses (because
the corresponding flow table rarely loaded)

Memory allocation from heap sometimes takes longer time than
usual (because of fragmentation)

Online analysis of system noise caused to high-throughput systems

4

Existing Work for Message-level Profiling

lprof [Zhao et al., OSDI’14]
Non-intrusive message level profiler from logs

For each message, outputs lists of timestamps of the message’s
arrival/retirement to/from methods

Cannot capture hardware events / kernel space activity

Blocked time analysis [Ousterhout et al., NSDI’15]
Instrumentation-based perf analysis for Spark

For each query, analyze how long time the query is blocked

Cannot capture hardware events / kernel space activity

Need help of perf counters to capture HW events and
kernel activities in the message-level

5

PEBS: How it works
Precise Event-Based Sampling (PEBS): An extension of
performance counters by Intel

3) The CPU triggers a PEBS assist
(micro-code, no interruption is invoked)

PEBS buffer
(Memory region)

PEBS
threshold

Counter registers

1) The CPU counts specified
PEBS events (e.g. cache misses)

2) A counter register overflows

PEBS
index

PEBS
record

PEBS
record

addr

12345678

PEBS
base

A PEBS record includes:
{ General purpose registers (eax, ebx, …, r14, r15), Instruction Pointer (IP),
HW timestamp (tsc), Data LA, Load Latency, TX abort reason flag }

6

PEBS vs. Normal Perf Counters

PEBS (Precise Event Based Sampling)Normal Counters

Count by hardware, sample by software
(Ex. # of cache misses reaches to 100K → OS
receives an interruption to collect a sample)

- Frequent sampling → many interruptions

- Non-negligible time gap between an event
occurrence and the corresponding sample
(sampled IP may be biased)

Count and sample by hardware
(Ex. # of cache misses reaches to 100K → CPU
automatically saves a sample)

- Orders of magnitude smaller # of interrupt-
ions → smaller overhead

- Much more precise than normal performa-
nce counters

PEBS (small overhead, precise timing) is promising
for message-level system noise analysis

7

System Noise Analysis w/ PEBS (1/2)
Example for a DPDK-based network latency injector (*)

Reserve one general purpose register (e.g. r13)
gcc -ffixed-r13 → the code compiles without using r13

Store packet ID to r13 and sample general purpose regs,
instruction pointer, tsc w/ PEBS

time

Sample 1

Packet 1 Packet 2 Packet 3

eax: …
R13: 1
IP: 0xf43a
tsc: 123456

Sample 5

eax: …
R13: 2
IP: 0x2ae1
tsc: 138201

Sample 11

eax: …
R13: 3
IP: 0x55b2
tsc: 154289

(*) Aketa et al., “DEMU: A DPDK-based Network Latency Emulator”, LANMAN 2017

samples

8

System Noise Analysis w/ PEBS (2/2)

Base
Latency

Latency
Fluctuation
(140 μs)

9

System Noise Analysis w/ PEBS (2/2)

Base
Latency

Packet ID (r13) vs. tsc (converted to wallclock) sampled by PEBS

140 μs

Samples here show IPs during
the fluctuation! (no matter
whether in userland or kernel)

Latency
Fluctuation
(140 μs)

10

Overhead of PEBS: Why we care
Sampling rate should be very higher than normal usage

To distinguish each data/packet/message

No study has never been done for this high sampling rate

Performance anomalies are difficult to reproduce offline
We need to apply PEBS to real running systems

Need to predict how much overhead PEBS incurs

We thoroughly investigate PEBS overhead in this paper

11

Overhead of PEBS: Overview
A wide-spread myth:

The reality:
Non-negligible CPU overhead and cache pollution

Because PEBS is a micro-code, executed on the same resources
(e.g. retirement ports) as normal operations

This paper answers two question:
How much is the overhead?

How to configure PEBS to cope with the overhead?

“PEBS incurs no overhead because it is hardware-based”

12

PEBS Configuration vs. Overhead
Reset Value (R, a.k.a. Sample After Value)

A PEBS record is taken every R events → Decides the sampling rate

Ex. {R == 100, event == cache_misses} → A PEBS record is taken
every 100 cache misses

PEBS buffer size
 Larger buffer incurs smaller number of interruptions

 Larger buffer incurs more sever cache pollution
PEBS records written via CPU cache, not directly to the memory

→ Trade-off between # of interruptions and cache pollution

13

Evaluation Setup
A simple kernel module

Configures PEBS (event, reset value, PEBS buffer size)

Counts # of PEBS records at every interruption and discards them

Why build a new module?
Existing tools (e.g. perf): too rich → non-negligible overhead (*)

Evaluation Environment

(*) Weaver, “Self-monitoring Overhead of the Linux perf_event performance counter interface”, ISPASS’15

14

CPU Overhead per PEBS Assist
[Q1] How much overhead does one PEBS assist have?

Compare elapsed time of pre-defined number of busy loops

For R = {2K, 4K, 8K, …, 128K}, plot # of PEBS assists vs. elapsed time

PEBS event: UOPS_RETIRED.ALL (“All micro ops”), PEBS buffer: 4MB

Results

Elapsed time grows linearly w.r.t # of PEBS asists
Overhead per PEBS assits: 286ns, 238ns, 232ns (slopes of the blue lines)

15

Memory IO by PEBS
[Q2] How much memory IO does PEBS have?

Measure memory IO when PEBS is applied to busy loops

Memory IO measured from the memory controllers

Plot PEBS buffer size per core vs. Measured memory IO

Results (Note: The counter available only in Xeon processors)

Prominent memory IO when PEBS buffer > 3MB/core (Recall: CPU cache of
our machines is 2.5MB per core) → Reason: cache spill

PEBS data written via cache, which may degrade app performance

16

CPU Overhead on Real Workloads
[Q3] Overhead per PEBS assist applicable to real workloads?

Predict the overhead caused to SPEC CPU 2006 benchmarks

Compare expected elapsed time and measured elapsed time

Results (more on the paper)

Expected time match measured time in 11 benchmarks (out of 12)

→ Overhead / PEBS assist applicable to predict elapsed time of real
workloads with PEBS enabled (except some special cases)

17

PEBS buffer size vs. Cache pollution
[Q4] How much the cache pollution affect the application
performance?

Measure the effect of PEBS buffer size for omnetpp (cache-
sensitive) and hmmer (cache-oblivious)

Larger PEBS buffer → Less interruptions, severer cache pollution

Results
omnetpp: Faster as PEBS buffer gets
smaller (thanks to less cache pollution)

hmmer: Slower as PEBS buffer gets
smaller (due to more interruptions)

→ PEBS buffer size should be decided
based on the workload characteristics

18

Lessons Learned and Future Work
Overhead per sampling: 230~280ns (hopefully suffices for
our ongoing analysis work)

Works well even for complex workloads

PEBS buffer size must be carefully decided
Should always be less than the CPU cache size

Large PEBS buffer may degrade workload performance due to
cache conflicts (e.g. omnetpp from SPEC CPU 2006)

Future Work
Further investigation of the cache pollution

Real system noise analysis using PEBS

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18

