
A Quest for Unified, Global View Parallel

Programming Models for Our Future

Kenjiro Taura

University of Tokyo
T0

T1 T161

T2 T40

T3 T31

T4 T29

T5 T11

T6 T7

T8 T9

T10

T12 T24

T13 T14

T15 T23

T16 T20

T17

T18

T19

T21

T22

T25 T26

T27

T28

T30

T32 T38

T33 T37

T34 T35

T36

T39

T41 T77

T42 T66

T43 T62

T44

T45 T61

T46 T60

T47 T56

T48

T49 T55

T50 T54

T51 T53

T52

T57

T58

T59

T63 T65

T64

T67 T74

T68 T72

T69 T71

T70

T73

T75 T76

T78 T102

T79 T82

T80 T81 T83 T101

T84 T93

T85

T86 T87

T88 T92

T89 T90

T91

T94

T95 T96

T97

T98 T100

T99

T103 T153

T104 T122

T105 T120

T106 T111

T107 T110

T108 T109

T112 T114

T113 T115 T117

T116 T118

T119

T121

T123 T137

T124 T128

T125

T126

T127

T129 T135

T130

T131

T132 T134

T133

T136

T138 T152

T139 T143

T140

T141

T142

T144 T146

T145 T147 T150

T148 T149 T151

T154 T155

T156 T158

T157 T159 T160

T162 T184

T163 T172

T164 T166

T165 T167 T171

T168 T169

T170

T173 T175

T174 T176 T181

T177 T179

T178 T180

T182

T183

T185 T187

T186 T188 T190

T189 T191

T192

T193 T195

T194 T196 T198

T197 T199

1 / 52

Acknowledgements

▶ Jun Nakashima (MassiveThreads)

▶ Shigeki Akiyama, Wataru Endo (MassiveThreads/DM)

▶ An Huynh (DAGViz)

▶ Shintaro Iwasaki (Vectorization)

2 / 52

3 / 52

What is task parallelism?

▶ like most CS terms, the definition is vague

▶ I don’t consider contraposition “data parallelism vs.
task parallelism” useful

▶ imagine lots of tasks each working on a piece of data
▶ is it data parallel or task parallel?

▶ let’s instead ask:
▶ what’s useful from programmer’s view point
▶ what are useful distinctions to make from

implementer’s view point

4 / 52

What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . .)

4. and cheaply context-switched

create task

create task

5 / 52

What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . .)

4. and cheaply context-switched

create task

create task

5 / 52

What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . .)

4. and cheaply context-switched

create task

create task

5 / 52

What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . .)

4. and cheaply context-switched

create task

create task

5 / 52

What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . .)

4. and cheaply context-switched

create task

create task

5 / 52

What are they good for?

▶ generality: “creating tasks at arbitrary points” unifies
many superficially different patterns

▶ parallel nested loop, parallel recursions
▶ they trivially compose

▶ programmability: cheap task creation + automatic
load balancing allow straightforward,
processor-oblivious decomposition of the work
(divide-and-conquer-until-trivial)

▶ performance: dynamic scheduling is a basis for hiding
latencies and tolerating noises

6 / 52

Our goal

▶ programmers use tasks (+
higher-level syntax on top) as
the unified means to express
parallelism

▶ the system maps tasks to
hardware parallelism

▶ cores within a node
▶ nodes
▶ SIMD lanes within a core!

7 / 52

Rest of the talk

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

8 / 52

9 / 52

Agenda

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

10 / 52

Taxonomy

▶ library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

▶ tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

▶ synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

▶ tasks untied or tied: can tasks migrate after they
started?

11 / 52

Taxonomy

▶ library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

▶ tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

▶ synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

▶ tasks untied or tied: can tasks migrate after they
started?

11 / 52

Taxonomy

▶ library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

▶ tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

▶ synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

▶ tasks untied or tied: can tasks migrate after they
started?

11 / 52

Taxonomy

▶ library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

▶ tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

▶ synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

▶ tasks untied or tied: can tasks migrate after they
started?

11 / 52

Instantiations

library suspendable untied sync
/frontend task tasks topology

OpenMP tasks frontend yes yes fork/join
TBB library yes no fork/join
Cilk frontend yes yes fork/join
Quark library no no arbitrary
Nanos++ library yes yes arbitrary
Qthreads library yes yes arbitrary
Argobots library yes yes? arbitrary
MassiveThreads library yes yes arbitrary

12 / 52

MassiveThreads

▶ https://github.com/massivethreads/massivethreads

▶ design philosophy: user-level threads (ULT) in an
ordinary thread API as you know it

▶ tid = myth create(f, arg)
▶ tid = myth join(arg)
▶ myth yield to switch among threads (useful for

latency hiding)
▶ mutex and condition variables to build arbitrary

synchronization patterns

▶ efficient work stealing scheduler (locally LIFO and
child-first; steal oldest task first)

▶ an (experimental) customizable work stealing
[Nakashima and Taura; ROSS 2013]

13 / 52

https://github.com/massivethreads/massivethreads

User-facing APIs on MassiveThreads

▶ TBB’s task group and
parallel for (but with untied
work stealing scheduler)

▶ Chapel tasks on top of
MassiveThreads (currently
broken orz)

▶ SML# (Ueno @ Tohoku
University) ongoing

▶ Tapas (Fukuda @ RIKEN), a
domain specific language for
particle simulation

�
quicksort(a, p, q) {

if (q - p < th) {

...

} else {

mtbb::task group tg;

r = partition(a, p, q);

tg.run([=]{ quicksort(a, p, r-1); });

quicksort(a, r, q);

tg.wait();

}

}

TBB interface on
MassiveThreads

14 / 52

Important performance metrics

▶ low local creation/sync overhead
▶ low local context switches
▶ reasonably low load balancing (migration) overhead
▶ somewhat sequential scheduling order

π0

γ π1

�
1 parent() {

2 π0:

3 spawn { γ: ... };

4 π1:

5 }

op measure what time (cycles)
local create π0 → γ ≈ 140
work steal π0 → π1 ≈ 900
context switch myth yield ≈ 80

(Haswell i7-4500U (1.80GHz), GCC 4.9)

15 / 52

Comparison to other systems

0

500

1000

1500

2000

2500

3000

Cilk
CilkPlus

M
assiveThreads

OpenM
P

Qthreads

TBB

≈ 7000

73 72 138 167

c
lo
c
k
s

child

parent �
1 parent() {

2 π0:

3 spawn { γ: ... };

4 π1:

5 }

Summary:

▶ Cilk(Plus), known for its superb local creation
performance, sacrifices work stealing performance

▶ TBB’s local creation overhead is equally good, but it is
“parent-first” and tasks are tied to a worker once
started

16 / 52

Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?

17 / 52

Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?

17 / 52

Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?

17 / 52

Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?

17 / 52

Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?

17 / 52

Further research agenda (2)

▶ quantify the gap between hand-optimized
decomposition vs. automatic decomposition (by work
stealing); e.g.

▶ Space-filling decomposition vs. work stealing
▶ 2.5D matrix-multiply vs. work stealing

▶ both experimentally and theoretically

18 / 52

19 / 52

Agenda

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

20 / 52

Two facets of task parallelism in distributed

memory settings

▶ a means to hide latency, for which we merely need a
local user-level thread library supporting
suspend/resume at arbitrary points

▶ a means to globally balance loads, for which we need a
system specifically designed to migrate tasks across
address spaces

MassiveThreads/DM is a system supporting

▶ distributed load balancing and latency hiding

▶ + global address space supporting migration and
replication

21 / 52

Tasks to hide latencies

The goal:

▶ individual tasks look like
ordinary blocking access
(programmer-friendly)

▶ hide latencies by creating lots
of tasks

Ingredients for implementation:

▶ local tasking layer with good
context switch performance

▶ message/RDMA layer with
good multithreaded performance

�
scan(global_array<T> a) {

for (i = 0; i < n; i++) {

.. = .. a[i] ..;

}

}�
scan(global_array<T> a) {

pfor (i = 0; i < n; i++) {

.. = .. a[i] ..;

}

}

22 / 52

Preliminary results

▶ context switch: we used MassiveThreads’s myth yield

function to switch context upon blocking

▶ message/RDMA: we rolled our own thread-safe comm
layer (on MPI, on IB verbs, and on Fujitsu Tofu
RMA), partly because Fujitsu MPI lacks
multithreading support

�
/* a[i] */

T get(address<T>) {

issue non-blocking get(address);
while (!the result available) {

myth_yield();

}

return result;
} 0

200000

400000

600000

800000

1 × 106

1.2 × 106

1.4 × 106

1 2 3 4 5 6 7 8 9 10

g
e
ts
/
n
o
d
e
/
se

c

tasks

workers=1

workers=2

workers=3

workers=4

workers=5

23 / 52

Taxonomy

▶ library or frontend

▶ tasks suspendable or atomic

▶ synchronization patterns arbitrary or pre-defined

▶ tasks untied or tied

▶ the main issue:
implementation complexity raises on
distributed memory especially for untied tasks

▶ that is, how to move tasks across address spaces?

24 / 52

Instantiations

library suspendable untied sync scale
/frontend task tasks topology

Distributed Cilk frontend yes yes fork/join 16
[Blumofe et al. 96]

Satin frontend yes no fork/join 256
[Neuwpoort et al. 01]

Tascell frontend yes yes fork/join 128
[Hiraishi et al. 09]

Scioto library no no BoT 8192
[Dinan et al. 09]

HotSLAW library yes no fork/join 256
[Min et al. 11]

X10/GLB library no no BoT 16384
[Zhang et al. 13]

Grappa library yes no fork/join 4096
[Nelson et al. 15]

MassiveThreads/DM library yes yes fork/join 4096
[Akiyama et al. 15]

25 / 52

MassiveThreads/DM

▶ global (inter-node) work stealing library

▶ usable with ordinary C/C++ compilers
▶ supports fork-join with untied tasks

▶ ⇒ moves native threads across nodes

26 / 52

Migrating native threads

▶ problem: the stack of native threads has pointers
pointing to the inside

▶ migrating a thread to an arbitrary address breaks
these pointers

▶ ⇒ upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])

@a

27 / 52

Migrating native threads

▶ problem: the stack of native threads has pointers
pointing to the inside

▶ migrating a thread to an arbitrary address breaks
these pointers

▶ ⇒ upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])

!@a

@a'

27 / 52

Migrating native threads

▶ problem: the stack of native threads has pointers
pointing to the inside

▶ migrating a thread to an arbitrary address breaks
these pointers

▶ ⇒ upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])

!

iso address

@a

@a'

@a @a

27 / 52

Iso-address limits scalability

▶ for each thread, all nodes must reserve its address

▶ ⇒ a huge waste of virtual memory

vi
rt

u
a

l
a

d
d

re
ss

 s
p

a
c

e

28 / 52

Is consuming a huge virtual memory really a

problem?

▶ with high concurrency, it may indeed overflow virtual
address space

stack size × tasks depth × cores/node × nodes
214 × 213 × 28 × 213 = 248

▶ more important, the luxury use of virtual memory
prohibits using RDMA for work stealing (as RDMA
memory must be pinned)

▶ ⇒ proposed UniAddress scheme [Akiyama et al. 2015]

29 / 52

Further research agenda

▶ demonstrate global distributed load balancing with
practical workloads with lots of shared data

▶ “locality-/hierarchy-. . . ”awareness are even more
important in this setting

▶ latency-hiding opportunity adds an extra dimension

▶ steal or not, switch or not

30 / 52

31 / 52

Agenda

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

32 / 52

Analyzing task parallel programs

▶ task parallel systems are more
“opaque” from users

▶ task management, load
balancing, scheduling

▶ they show performance differences
and researchers want to precisely
understand where they come from

T0

T1 T161

T2 T40

T3 T31

T4 T29

T5 T11

T6 T7

T8 T9

T10

T12 T24

T13 T14

T15 T23

T16 T20

T17

T18

T19

T21

T22

T25 T26

T27

T28

T30

T32 T38

T33 T37

T34 T35

T36

T39

T41 T77

T42 T66

T43 T62

T44

T45 T61

T46 T60

T47 T56

T48

T49 T55

T50 T54

T51 T53

T52

T57

T58

T59

T63 T65

T64

T67 T74

T68 T72

T69 T71

T70

T73

T75 T76

T78 T102

T79 T82

T80 T81 T83 T101

T84 T93

T85

T86 T87

T88 T92

T89 T90

T91

T94

T95 T96

T97

T98 T100

T99

T103 T153

T104 T122

T105 T120

T106 T111

T107 T110

T108 T109

T112 T114

T113 T115 T117

T116 T118

T119

T121

T123 T137

T124 T128

T125

T126

T127

T129 T135

T130

T131

T132 T134

T133

T136

T138 T152

T139 T143

T140

T141

T142

T144 T146

T145 T147 T150

T148 T149 T151

T154 T155

T156 T158

T157 T159 T160

T162 T184

T163 T172

T164 T166

T165 T167 T171

T168 T169

T170

T173 T175

T174 T176 T181

T177 T179

T178 T180

T182

T183

T185 T187

T186 T188 T190

T189 T191

T192

T193 T195

T194 T196 T198

T197 T199

physical resource

runtime system

create/wait task

33 / 52

DAG Recorder and DAGViz

▶ DAG Recorder runs a task
parallel program and extracts
its DAG, augmented with
timestamps, CPUs, etc.

▶ DAGViz is its visualizer

A() {
 for(i=0;i<2;i++) {
 mk_task_group;
 create_task(B());
 create_task(C());
 D();
 wait_tasks();
 }
}
D() {
 mk_task_group;
 create_task(E());
 F();
 wait_tasks();
}

E

B
C

E

B
C

create_task

wait_tasks

begin_section

endtask

34 / 52

Why record the DAG?

▶ DAG is a logical representation of the program
execution independent from the runtime system

▶ you can compare DAGs by two systems side by side

▶ DAG contains sufficient information to reconstruct
many details

▶ work and critical path (excluding overhead)
▶ actual parallelism (running cores) along time
▶ available parallelism (ready tasks) along time
▶ how long each task was delayed by the scheduler

35 / 52

DAGViz Demo

Seeing is believing.

36 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold

E

B
C

E

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold

E

B
C

E

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
E

B
C

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
E

B
C

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
E

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
E

B
C

create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
create_task

wait_tasks

begin_section

endtask

37 / 52

Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold
create_task

wait_tasks

begin_section

endtask

37 / 52

Ongoing work

▶ hoping to use this tool to automate discovery of issues
in runtime systems

▶ scheduler delays along a critical path
▶ work time inflation

▶ shed light on “steal or not” trade-offs

38 / 52

39 / 52

Agenda

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

40 / 52

Motivation

▶ task parallelism is a friend of divide-and-conquer
algorithms

▶ divide-and-conquer makes coding “trivial,” by dividing
until the problem becomes trivial

▶ matrix multiply, matrix factorization, triangular solve,
FFT, sorting, . . .

▶ in reality, the programmer has to optimize leaves
manually

▶ why? because we lack good compilers

41 / 52

The power of divide-and-conquer

�
/∗ quick sort ∗/
quicksort(a , p , q) {
if (q − p < 2) {
return ;

} else {
...

}
}�
/∗ FFT ∗/
fft (n , x) {
if (n = 1) {
return x0 ;

} else {
...

}
}

�
/∗ C += AB ∗/
mm(A, B, C) {

if (|A| = 1 && |B| = 1
&& |C| = 1) {

C00 += A00 ·B00 ;
} else {

...
}

}�
/∗ triangular solve

LX = B . ∗/
trsm(L,B) {

if (M = 1) {
B /= l11 ;

} else {
...

}
}

�
/∗ Cholesky factorization ∗/
chol(A) {

if (n = 1) {
return (

√
a11) ;

} else {
...

}
}

They all admit
“trivial” base case,
only if performance is
acceptable . . .

42 / 52

Static optimizations and vectorization of tasks

▶ goal: run straightforward task-based programs as fast
as manually optimized programs

▶ write once, parallelize everywhere (nodes, cores, and
vectors)

43 / 52

Static optimizations and vectorization of tasks

▶ goal: run straightforward task-based programs as fast
as manually optimized programs

▶ write once, parallelize everywhere (nodes, cores, and
vectors)

serialized and vectorized

43 / 52

What does our compiler do?

1. static cut-off statically eliminates task creations

2. code-bloat-free inlining inline-expands recursions

3. loopification transforms recursions into flat loops (and
then vectorizes it if possible)

44 / 52

Static cut-off

�
1 f(a, b, · · ·) {

2 if (E) {

3 L(a, b, · · ·)
4 } else {

5 · · ·
6 spawn f(a1, b1, · · ·);
7 · · ·
8 spawn f(a2, b2, · · ·);
9 · · ·

10 }

11 }

⇒

�
1 fseq(a, b, · · ·) {

2 if (E) {

3 L(a, b, · · ·)
4 } else {

5 · · ·
6 fseq(a1, b1, · · ·);
7 · · ·
8 fseq(a2, b2, · · ·);
9 · · ·

10 }

11 }

key: determine a condition Hk, in which the
height of recursion from leaves ≤ k

▶ H0 = E

▶ Hk+1 = E or ∀i(ai, bi, · · ·) satisfy Hk

when succeeded, generate code that statically
eliminate all task creations

45 / 52

Code-bloat-free inlining

▶ under condition Hk, inline-expanding all recursions k
times would eliminate all function calls

▶ but this would result in an exponential code bloat
when the function has multiple recursive calls

▶ code-bloat-free inlining fuses multiple recursive calls
into a single call site

�
1 · · ·
2 f(a1, b1, · · ·);
3 · · ·
4 f(a2, b2, · · ·);
5 · · ·

⇒

�
1 for (i = 0; i < 2; i++) {

2 switch (i) {

3 case 0: · · ·
4 case 1: · · ·
5 }

6 f(ai, bi, · · ·);
7 }

46 / 52

Loopification�
1 fseq(a, b, · · ·) {

2 if (E) {

3 L(a, b, · · ·)
4 } else {

5 · · ·
6 fseq(a1, b1, · · ·);
7 · · ·
8 fseq(a2, b2, · · ·);
9 · · ·

10 }

11 }

⇒

�
1 for i ∈ P {

2 L(xi, yi, · · ·)
3 }

▶ instead of code-bloat-free inlining, loopification
attempts to generate a flat (or shallow) loop directly
from recursive code

▶ it tries to synthesize hypotheses that the original code
is an affine loop of leaf blocks

▶ the loopified code may then be vectorized

47 / 52

Results: effect of optimizations

0

2

4

6

8

10

12

14

16

fib nqueens

fft sort
nbody

strassen

vecadd

heat2d

heat3d

gaussian

matmul

trimul

treeadd

treesum

uts

27.12 17.56 17.65 220.14 109.72

re
la
ti
v
e
p
er
fo
rm

a
n
ce

base
dynamic

static
cef

loop
proposed

48 / 52

Results: remaining gap to hand-optimized code

0

0.5

1

1.5

2

2.5

3

nbody
vecadd

heat2d

heat3d

gaussian

matmul

trimul

average

geomean

re
la
ti
v
e
p
er
fo
rm

a
n
ce

(t
a
sk
=
1
)

task
omp

omp optimized
polly

49 / 52

50 / 52

Agenda

Intra-node Task Parallelism

Task Parallelism in Distributed Memory

Need Good Performance Analysis Tools

Compiler Optimizations and Vectorization

Concluding Remarks

51 / 52

Future outlook of task parallelism

▶ the goal: offer both programmability and performance

▶ long way toward achieving acceptable performance on
distributed memory machines. why?

▶ dynamic load balancing → random traffic
▶ global address space → fine-grain communication

▶ OK in shared memory today. why not on distributed
memory (at least for now)?

▶ checking errors and completion everywhere
▶ doing mutual exclusion everywhere
▶ no hardware-prefetching analog
▶ or lack of bandwidth to tolerate random traffic and

aggressive prefetching

Thank you for listening

52 / 52

	Intra-node Task Parallelism
	Task Parallelism in Distributed Memory
	Need Good Performance Analysis Tools
	Compiler Optimizations and Vectorization
	Concluding Remarks

