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What is task parallelism?

▶ like most CS terms, the definition is vague

▶ I don’t consider contraposition “data parallelism vs.
task parallelism” useful

▶ imagine lots of tasks each working on a piece of data
▶ is it data parallel or task parallel?

▶ let’s instead ask:
▶ what’s useful from programmer’s view point
▶ what are useful distinctions to make from

implementer’s view point
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What is task parallelism?

A system supports task parallelism when:

1. a logical unit of concurrency (that is,
a task) can be created dynamically,
at an arbitrary point of execution,

2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, . . . )

4. and cheaply context-switched

create task

create task
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What are they good for?

▶ generality: “creating tasks at arbitrary points” unifies
many superficially different patterns

▶ parallel nested loop, parallel recursions
▶ they trivially compose

▶ programmability: cheap task creation + automatic
load balancing allow straightforward,
processor-oblivious decomposition of the work
(divide-and-conquer-until-trivial)

▶ performance: dynamic scheduling is a basis for hiding
latencies and tolerating noises
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Our goal

▶ programmers use tasks (+
higher-level syntax on top) as
the unified means to express
parallelism

▶ the system maps tasks to
hardware parallelism

▶ cores within a node
▶ nodes
▶ SIMD lanes within a core!
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Taxonomy

▶ library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

▶ tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

▶ synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

▶ tasks untied or tied: can tasks migrate after they
started?
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Instantiations

library suspendable untied sync
/frontend task tasks topology

OpenMP tasks frontend yes yes fork/join
TBB library yes no fork/join
Cilk frontend yes yes fork/join
Quark library no no arbitrary
Nanos++ library yes yes arbitrary
Qthreads library yes yes arbitrary
Argobots library yes yes? arbitrary
MassiveThreads library yes yes arbitrary
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MassiveThreads

▶ https://github.com/massivethreads/massivethreads

▶ design philosophy: user-level threads (ULT) in an
ordinary thread API as you know it

▶ tid = myth create(f, arg)
▶ tid = myth join(arg)
▶ myth yield to switch among threads (useful for

latency hiding)
▶ mutex and condition variables to build arbitrary

synchronization patterns

▶ efficient work stealing scheduler (locally LIFO and
child-first; steal oldest task first)

▶ an (experimental) customizable work stealing
[Nakashima and Taura; ROSS 2013]
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User-facing APIs on MassiveThreads

▶ TBB’s task group and
parallel for (but with untied
work stealing scheduler)

▶ Chapel tasks on top of
MassiveThreads (currently
broken orz)

▶ SML# (Ueno @ Tohoku
University) ongoing

▶ Tapas (Fukuda @ RIKEN), a
domain specific language for
particle simulation

�
quicksort(a, p, q) {

if (q - p < th) {

...

} else {

mtbb::task group tg;

r = partition(a, p, q);

tg.run([=]{ quicksort(a, p, r-1); });

quicksort(a, r, q);

tg.wait();

}

}

TBB interface on
MassiveThreads
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Important performance metrics

▶ low local creation/sync overhead
▶ low local context switches
▶ reasonably low load balancing (migration) overhead
▶ somewhat sequential scheduling order

π0

γ π1

�
1 parent() {

2 π0:

3 spawn { γ: ... };

4 π1:

5 }

op measure what time (cycles)
local create π0 → γ ≈ 140
work steal π0 → π1 ≈ 900
context switch myth yield ≈ 80

(Haswell i7-4500U (1.80GHz), GCC 4.9)
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Comparison to other systems
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1 parent() {

2 π0:

3 spawn { γ: ... };

4 π1:

5 }

Summary:

▶ Cilk(Plus), known for its superb local creation
performance, sacrifices work stealing performance

▶ TBB’s local creation overhead is equally good, but it is
“parent-first” and tasks are tied to a worker once
started
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Further research agenda (1)

▶ task runtimes for ever larger scale systems is vital

▶ ⇒ “locality-/cache-/hierarchy-/topology-/whatever-
aware” schedulers obviously
important

▶ ⇒ hierarchical/customizable schedulers proposals

▶ ⇒ yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

▶ the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?
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Further research agenda (2)

▶ quantify the gap between hand-optimized
decomposition vs. automatic decomposition (by work
stealing); e.g.

▶ Space-filling decomposition vs. work stealing
▶ 2.5D matrix-multiply vs. work stealing

▶ both experimentally and theoretically
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Two facets of task parallelism in distributed

memory settings

▶ a means to hide latency, for which we merely need a
local user-level thread library supporting
suspend/resume at arbitrary points

▶ a means to globally balance loads, for which we need a
system specifically designed to migrate tasks across
address spaces

MassiveThreads/DM is a system supporting

▶ distributed load balancing and latency hiding

▶ + global address space supporting migration and
replication
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Tasks to hide latencies

The goal:

▶ individual tasks look like
ordinary blocking access
(programmer-friendly)

▶ hide latencies by creating lots
of tasks

Ingredients for implementation:

▶ local tasking layer with good
context switch performance

▶ message/RDMA layer with
good multithreaded performance

�
scan(global_array<T> a) {

for (i = 0; i < n; i++) {

.. = .. a[i] ..;

}

}�
scan(global_array<T> a) {

pfor (i = 0; i < n; i++) {

.. = .. a[i] ..;

}

}
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Preliminary results

▶ context switch: we used MassiveThreads’s myth yield

function to switch context upon blocking

▶ message/RDMA: we rolled our own thread-safe comm
layer (on MPI, on IB verbs, and on Fujitsu Tofu
RMA), partly because Fujitsu MPI lacks
multithreading support

�
/* a[i] */

T get(address<T>) {

issue non-blocking get(address);
while (!the result available) {

myth_yield();

}

return result;
} 0
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Taxonomy

▶ library or frontend

▶ tasks suspendable or atomic

▶ synchronization patterns arbitrary or pre-defined

▶ tasks untied or tied

▶ the main issue:
implementation complexity raises on
distributed memory especially for untied tasks

▶ that is, how to move tasks across address spaces?
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Instantiations

library suspendable untied sync scale
/frontend task tasks topology

Distributed Cilk frontend yes yes fork/join 16
[Blumofe et al. 96]

Satin frontend yes no fork/join 256
[Neuwpoort et al. 01]

Tascell frontend yes yes fork/join 128
[Hiraishi et al. 09]

Scioto library no no BoT 8192
[Dinan et al. 09]

HotSLAW library yes no fork/join 256
[Min et al. 11]

X10/GLB library no no BoT 16384
[Zhang et al. 13]

Grappa library yes no fork/join 4096
[Nelson et al. 15]

MassiveThreads/DM library yes yes fork/join 4096
[Akiyama et al. 15]
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MassiveThreads/DM

▶ global (inter-node) work stealing library

▶ usable with ordinary C/C++ compilers
▶ supports fork-join with untied tasks

▶ ⇒ moves native threads across nodes
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Migrating native threads

▶ problem: the stack of native threads has pointers
pointing to the inside

▶ migrating a thread to an arbitrary address breaks
these pointers

▶ ⇒ upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])

@a
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Iso-address limits scalability

▶ for each thread, all nodes must reserve its address

▶ ⇒ a huge waste of virtual memory

vi
rt

u
a

l 
a

d
d

re
ss

 s
p

a
c

e
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Is consuming a huge virtual memory really a

problem?

▶ with high concurrency, it may indeed overflow virtual
address space

stack size × tasks depth × cores/node × nodes
214 × 213 × 28 × 213 = 248

▶ more important, the luxury use of virtual memory
prohibits using RDMA for work stealing (as RDMA
memory must be pinned)

▶ ⇒ proposed UniAddress scheme [Akiyama et al. 2015]
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Further research agenda

▶ demonstrate global distributed load balancing with
practical workloads with lots of shared data

▶ “locality-/hierarchy-. . . ”awareness are even more
important in this setting

▶ latency-hiding opportunity adds an extra dimension

▶ steal or not, switch or not
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Analyzing task parallel programs

▶ task parallel systems are more
“opaque” from users

▶ task management, load
balancing, scheduling

▶ they show performance differences
and researchers want to precisely
understand where they come from
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DAG Recorder and DAGViz

▶ DAG Recorder runs a task
parallel program and extracts
its DAG, augmented with
timestamps, CPUs, etc.

▶ DAGViz is its visualizer

A() {
 for(i=0;i<2;i++) {
   mk_task_group;
   create_task(B());
   create_task(C());
   D();
   wait_tasks();
 }
}
D() {
 mk_task_group;
 create_task(E());
 F();
 wait_tasks(); 
}

E

B
C

E

B
C

create_task

wait_tasks

begin_section

endtask
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Why record the DAG?

▶ DAG is a logical representation of the program
execution independent from the runtime system

▶ you can compare DAGs by two systems side by side

▶ DAG contains sufficient information to reconstruct
many details

▶ work and critical path (excluding overhead)
▶ actual parallelism (running cores) along time
▶ available parallelism (ready tasks) along time
▶ how long each task was delayed by the scheduler
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DAGViz Demo

Seeing is believing.
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Challenge : reducing space requirement

▶ literally recording all subgraphs is
prohibitive

▶ collapse “uninteresting” subgraphs
into single nodes

▶ current criteria: we collapse a
subgraph ⇐⇒
1. its nodes are executed by a single

worker,
2. its span is smaller than a

(configurable) threshold

E

B
C

E

B
C

create_task

wait_tasks

begin_section

endtask
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Ongoing work

▶ hoping to use this tool to automate discovery of issues
in runtime systems

▶ scheduler delays along a critical path
▶ work time inflation

▶ shed light on “steal or not” trade-offs
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Motivation

▶ task parallelism is a friend of divide-and-conquer
algorithms

▶ divide-and-conquer makes coding “trivial,” by dividing
until the problem becomes trivial

▶ matrix multiply, matrix factorization, triangular solve,
FFT, sorting, . . .

▶ in reality, the programmer has to optimize leaves
manually

▶ why? because we lack good compilers
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The power of divide-and-conquer

�
/∗ quick sort ∗/
quicksort(a , p , q) {
if (q − p < 2) {
return ;

} else {
...

}
}�
/∗ FFT ∗/
fft (n , x) {
if (n = 1) {
return x0 ;

} else {
...

}
}

�
/∗ C += AB ∗/
mm(A, B, C) {

if (|A| = 1 && |B| = 1
&& |C| = 1) {

C00 += A00 ·B00 ;
} else {

...
}

}�
/∗ triangular solve

LX = B . ∗/
trsm(L,B) {

if (M = 1) {
B /= l11 ;

} else {
...

}
}

�
/∗ Cholesky factorization ∗/
chol(A) {

if (n = 1) {
return (

√
a11) ;

} else {
...

}
}

They all admit
“trivial” base case,
only if performance is
acceptable . . .
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Static optimizations and vectorization of tasks

▶ goal: run straightforward task-based programs as fast
as manually optimized programs

▶ write once, parallelize everywhere (nodes, cores, and
vectors)
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What does our compiler do?

1. static cut-off statically eliminates task creations

2. code-bloat-free inlining inline-expands recursions

3. loopification transforms recursions into flat loops (and
then vectorizes it if possible)
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Static cut-off

�
1 f(a, b, · · · ) {

2 if (E) {

3 L(a, b, · · · )
4 } else {

5 · · ·
6 spawn f(a1, b1, · · · );
7 · · ·
8 spawn f(a2, b2, · · · );
9 · · ·

10 }

11 }

⇒

�
1 fseq(a, b, · · · ) {

2 if (E) {

3 L(a, b, · · · )
4 } else {

5 · · ·
6 fseq(a1, b1, · · · );
7 · · ·
8 fseq(a2, b2, · · · );
9 · · ·

10 }

11 }

key: determine a condition Hk, in which the
height of recursion from leaves ≤ k

▶ H0 = E

▶ Hk+1 = E or ∀i(ai, bi, · · · ) satisfy Hk

when succeeded, generate code that statically
eliminate all task creations
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Code-bloat-free inlining

▶ under condition Hk, inline-expanding all recursions k
times would eliminate all function calls

▶ but this would result in an exponential code bloat
when the function has multiple recursive calls

▶ code-bloat-free inlining fuses multiple recursive calls
into a single call site

�
1 · · ·
2 f(a1, b1, · · · );
3 · · ·
4 f(a2, b2, · · · );
5 · · ·

⇒

�
1 for (i = 0; i < 2; i++) {

2 switch (i) {

3 case 0: · · ·
4 case 1: · · ·
5 }

6 f(ai, bi, · · · );
7 }
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Loopification�
1 fseq(a, b, · · · ) {

2 if (E) {

3 L(a, b, · · · )
4 } else {

5 · · ·
6 fseq(a1, b1, · · · );
7 · · ·
8 fseq(a2, b2, · · · );
9 · · ·

10 }

11 }

⇒

�
1 for i ∈ P {

2 L(xi, yi, · · · )
3 }

▶ instead of code-bloat-free inlining, loopification
attempts to generate a flat (or shallow) loop directly
from recursive code

▶ it tries to synthesize hypotheses that the original code
is an affine loop of leaf blocks

▶ the loopified code may then be vectorized
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Results: effect of optimizations
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Results: remaining gap to hand-optimized code
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Future outlook of task parallelism

▶ the goal: offer both programmability and performance

▶ long way toward achieving acceptable performance on
distributed memory machines. why?

▶ dynamic load balancing → random traffic
▶ global address space → fine-grain communication

▶ OK in shared memory today. why not on distributed
memory (at least for now)?

▶ checking errors and completion everywhere
▶ doing mutual exclusion everywhere
▶ no hardware-prefetching analog
▶ or lack of bandwidth to tolerate random traffic and

aggressive prefetching

Thank you for listening
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