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Introduction 

!   Power is one of the main limiting factors on the road to Exascale 
!   Other challenges may be reduced to power limitation (e.g., resilience) 
 

!   To increase power efficiency with limited power budget: 
!   Shift power to threads on the application’s critical path 
!   Quickly move idle cores to low power mode 
 

!   New aggressive power-aware algorithms need to be developed: 
!   precisely measure power consumed by each system component at a 

given time 
!   Power information available to runtimes and applications during execution  
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Motivation 

!   Despites its importance, power is not yet considered a “first-class” 
resource 
!   Difficult to measure power and to account power consumption to a given 

process/thread 
!   Limits the development of power-aware software algorithms  

 
!   Current power measurement infrastructures: 

!   Typically out-of-band 
!   Coarse-grained sampling frequency (2-3s sampling interval) 
!   Spatially coarse grained (measure the entire node) 
!   Good for debugging/offline analysis 

!   In-band 
!   Timing fine-grained (register updated every 1-10ms) 
!   Spatially finer grained but still at the level of an entire chip (e.g, Intel 

SandyBridge) 
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Outline 

!   Introduction 
 
!  Proposal 

!  System Monitor Interface 
!  Proxy per-core power sensor 
 

!  Experimental results 
 
!  Conclusions 
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Proposal 

!   We want to start developing power-aware algorithms for exascale 
systems 
!   Decoupled algorithms from power measurement infrastructures  
 

!   System Monitor Interface (SMI): 
!   Portable interface between user and kernel mode 
!   Hides low-level architecture details 

!   Proxy per-core power sensors: 
!   Based on per-core activity 

!   uses performance counters 
!   Generated with regression model 
 

!   The proxy power sensor can be replaced with real power sensors 
without modifications to upper level software 

ROSS 2013 



System Monitor Interface (SMI) 

!   Generic interface between OS and 
user runtimes, tools, and apps 

 
!   Enables the development of 

power-aware software algorithms/
runtime  
!   Abstract the low-level details of the 

architectural power sensors 
!   Uses common sysfs interface 
 

!   Implemented as a Linux kernel 
module 
!   Need to port only once this module 

to use future per-core power 
sensors rather than all runtime 
systems 
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System Monitor Interface (SMI) (2) 

!   Access per-core power information from: 
 

/sys/smi/cpu/cpuX/power/core!
 

!   Represents the per-core active power of cpuX!
!   Can be accessed by a program or system administration tools (e.g., cat) 
!

!   Access to uncore power information from: 
!

/sys/smi/system/power/uncore!
 

!   We also develop a dynamic profiling library that periodically requests 
per-core power information while an application is running.  

 
!
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Proxy per-core power sensor 

!   Per-core power sensors are not commonly available 
 
!   We develop a per-core power model based on Ordinary Least Square 

(OLS) regression analysis 
 
!   Per-core power consumption is derived from core activity 

!   Use performance counters as predictors!
!   Use power value measured by a power meter as output variable!

!   We develop a set of micro-benchmarks (training set) that stress 
individual functional unites 
!   Integer 
!   Floating point 
!   L1/L2/L3/Memory 
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Hierarchical distribution of resources 

!   Current processor architectures are hierarchical (e.g., AMD 
Interlagos) 
!   Hardware resources are clustered 

!   When training the regression model, we take into consideration how 
resources are clustered together and shared among cores. 
!   Micro-benchmarks are opportunely combined to account for shared 

resources 
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Performance counters selection 

!   Using a large set of performance counters increases the accuracy of 
the regression model 

!   Only a limited number of performance counter registers can be 
sampled at any given time 
!   Above this number, the performance counter registers are multiplexed 

and the counter values extrapolated 
!   Multiplexing performance counter registers reduces the accuracy of the 

regression model 
!   Remove performance counters that show high correlation with others 
!   We generate our final regression model based on four predictors 

!   Retired instructions, stalled cycles, last level cache misses, FP operations  
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Regression model validation 

!   Validate the accuracy of our power model with the NAS applications, 
Nekbone and GTC  

!   Error rate is usually below 5% with maximum error below 10% 
!   Error rate computed by comparing the estimated power to average 

power meter output 
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Per-Process Power Profile 

!   Sampling rate 2Hz 
!   FT, irregular power profile due to the all-to-all communication pattern 
!   GTC, an initialization phase followed by a regular computing phase 
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Varying sampling frequency 

!   Process 4 power profile is consistently higher than others 
!   But… increasing the sampling frequency (2Hz) highlights more details 

such as large peaks up to 8.6 Watt 
!   Close-up Process 4’s power profile, the power variation is much 

higher with peaks up to 9.4 Watt 
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Accounting power consumption to each process is essential 



Power saving opportunities 

! NEKBone performs several iterations of a conjugate gradient solver 
!   Higher power consumption during the execution CG and lower power 

consumption when waiting at the barrier 
!   Process 1 and Process 2 present different power profile 
!   Might be effective to shift power between Process 1 and Process 2 
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Power Breakdown 

!   Some applications spend a considerable percentage of power in 
moving data from memory to the processor 

!   FT, MG and LU, the FP component of power breakdown is also high 
!   40-50% of power for all application is wasted due to 

!   Data dependencies, functional unit contention, etc. 
June 10, 2013 17 ROSS 2013 
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Conclusions 

!   Power is one of the major challenges to achieve exaflops 
performance 

!   Accurate measurements of power consumption of individual cores is 
complicated 
!   Makes it difficult to develop power-aware algorithms 

!   We decoupled power-aware algorithms from power sensors 
!   System monitor interface 
!   Per-core proxy power sensors 

!   We analyzed scientific applications from NAS benchmarks suite and 
the exascale co-design centers 
!   Power profiles of each application’s thread 
!   Effects of sampling frequency 
!   Power consumption breakdown 

!   Found power saving opportunities that can be explored in future work 
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Questions? 
 

gokcen.kestor@pnnl.gov 


