
Enabling Accurate Power 
Profiling of HPC Applications 
on Exascale Systems  

GOKCEN KESTOR, ROBERTO GIOIOSA, DARREN KERBYSON, ADOLFY HOISIE 

June 10, 2013 1 

Pacific Northwest National Laboratory 
Richland, WA 



June 10, 2013 2 

Introduction 

!   Power is one of the main limiting factors on the road to Exascale 
!   Other challenges may be reduced to power limitation (e.g., resilience) 
 

!   To increase power efficiency with limited power budget: 
!   Shift power to threads on the application’s critical path 
!   Quickly move idle cores to low power mode 
 

!   New aggressive power-aware algorithms need to be developed: 
!   precisely measure power consumed by each system component at a 

given time 
!   Power information available to runtimes and applications during execution  

ROSS 2013 



June 10, 2013 3 

Motivation 

!   Despites its importance, power is not yet considered a “first-class” 
resource 
!   Difficult to measure power and to account power consumption to a given 

process/thread 
!   Limits the development of power-aware software algorithms  

 
!   Current power measurement infrastructures: 

!   Typically out-of-band 
!   Coarse-grained sampling frequency (2-3s sampling interval) 
!   Spatially coarse grained (measure the entire node) 
!   Good for debugging/offline analysis 

!   In-band 
!   Timing fine-grained (register updated every 1-10ms) 
!   Spatially finer grained but still at the level of an entire chip (e.g, Intel 

SandyBridge) 
 

ROSS 2013 



June 10, 2013 4 

Outline 

!   Introduction 
 
!  Proposal 

!  System Monitor Interface 
!  Proxy per-core power sensor 
 

!  Experimental results 
 
!  Conclusions 

ROSS 2013 



June 10, 2013 5 

Proposal 

!   We want to start developing power-aware algorithms for exascale 
systems 
!   Decoupled algorithms from power measurement infrastructures  
 

!   System Monitor Interface (SMI): 
!   Portable interface between user and kernel mode 
!   Hides low-level architecture details 

!   Proxy per-core power sensors: 
!   Based on per-core activity 

!   uses performance counters 
!   Generated with regression model 
 

!   The proxy power sensor can be replaced with real power sensors 
without modifications to upper level software 

ROSS 2013 



System Monitor Interface (SMI) 

!   Generic interface between OS and 
user runtimes, tools, and apps 

 
!   Enables the development of 

power-aware software algorithms/
runtime  
!   Abstract the low-level details of the 

architectural power sensors 
!   Uses common sysfs interface 
 

!   Implemented as a Linux kernel 
module 
!   Need to port only once this module 

to use future per-core power 
sensors rather than all runtime 
systems 

June 10, 2013 ROSS 2013 6 

Run$me	  Library	  

SMI	  

Power	  Sensors	  



System Monitor Interface (SMI) (2) 

!   Access per-core power information from: 
 

/sys/smi/cpu/cpuX/power/core!
 

!   Represents the per-core active power of cpuX!
!   Can be accessed by a program or system administration tools (e.g., cat) 
!

!   Access to uncore power information from: 
!

/sys/smi/system/power/uncore!
 

!   We also develop a dynamic profiling library that periodically requests 
per-core power information while an application is running.  

 
!

 
 

June 10, 2013 7 ROSS 2013 



June 10, 2013 8 

Outline 

!   Introduction 
 
!  Proposal 

!  System Monitor Interface 
!  Proxy per-core power sensor 
 

!  Experimental results 
 
!  Conclusions 

ROSS 2013 



Proxy per-core power sensor 

!   Per-core power sensors are not commonly available 
 
!   We develop a per-core power model based on Ordinary Least Square 

(OLS) regression analysis 
 
!   Per-core power consumption is derived from core activity 

!   Use performance counters as predictors!
!   Use power value measured by a power meter as output variable!

!   We develop a set of micro-benchmarks (training set) that stress 
individual functional unites 
!   Integer 
!   Floating point 
!   L1/L2/L3/Memory 

June 10, 2013 9 ROSS 2013 



Hierarchical distribution of resources 

!   Current processor architectures are hierarchical (e.g., AMD 
Interlagos) 
!   Hardware resources are clustered 

!   When training the regression model, we take into consideration how 
resources are clustered together and shared among cores. 
!   Micro-benchmarks are opportunely combined to account for shared 

resources 
June 10, 2013 10 ROSS 2013 



Performance counters selection 

!   Using a large set of performance counters increases the accuracy of 
the regression model 

!   Only a limited number of performance counter registers can be 
sampled at any given time 
!   Above this number, the performance counter registers are multiplexed 

and the counter values extrapolated 
!   Multiplexing performance counter registers reduces the accuracy of the 

regression model 
!   Remove performance counters that show high correlation with others 
!   We generate our final regression model based on four predictors 

!   Retired instructions, stalled cycles, last level cache misses, FP operations  

June 10, 2013 11 ROSS 2013 

P = Puncore + Pi
i=1

N

∑ Pi = α jrj
j=1

4

∑



Regression model validation 

!   Validate the accuracy of our power model with the NAS applications, 
Nekbone and GTC  

!   Error rate is usually below 5% with maximum error below 10% 
!   Error rate computed by comparing the estimated power to average 

power meter output 
June 10, 2013 12 ROSS 2013 



June 10, 2013 13 

Outline 

!   Introduction 
 
!  Proposal 

!  System Monitor Interface 
!  Proxy per-core power sensor 
 

!  Experimental results 
 
!  Conclusions 

ROSS 2013 



Per-Process Power Profile 

!   Sampling rate 2Hz 
!   FT, irregular power profile due to the all-to-all communication pattern 
!   GTC, an initialization phase followed by a regular computing phase 

June 10, 2013 14 ROSS 2013 

Power profile reflects applications characteristics 

FT	   GTC	  



Varying sampling frequency 

!   Process 4 power profile is consistently higher than others 
!   But… increasing the sampling frequency (2Hz) highlights more details 

such as large peaks up to 8.6 Watt 
!   Close-up Process 4’s power profile, the power variation is much 

higher with peaks up to 9.4 Watt 

June 10, 2013 15 ROSS 2013 

0.3Hz	   2Hz	   100Hz	  

Accounting power consumption to each process is essential 



Power saving opportunities 

! NEKBone performs several iterations of a conjugate gradient solver 
!   Higher power consumption during the execution CG and lower power 

consumption when waiting at the barrier 
!   Process 1 and Process 2 present different power profile 
!   Might be effective to shift power between Process 1 and Process 2 

June 10, 2013 16 ROSS 2013 



Power Breakdown 

!   Some applications spend a considerable percentage of power in 
moving data from memory to the processor 

!   FT, MG and LU, the FP component of power breakdown is also high 
!   40-50% of power for all application is wasted due to 

!   Data dependencies, functional unit contention, etc. 
June 10, 2013 17 ROSS 2013 

Nekbone GTC CG EP FT IS LU MG
0

10

20

30

40

50

60

70

80

90

100

Benchmarks

Br
ea

kd
ow

n 
(%

)

 

 

Integer
Memory
Floating Point
Stall



June 10, 2013 18 

Outline 

!   Introduction 
 
!  Proposal 

!  System Monitor Interface 
!  Proxy per-core power sensor 
 

!  Experimental results 
 
!  Conclusions 

ROSS 2013 



Conclusions 

!   Power is one of the major challenges to achieve exaflops 
performance 

!   Accurate measurements of power consumption of individual cores is 
complicated 
!   Makes it difficult to develop power-aware algorithms 

!   We decoupled power-aware algorithms from power sensors 
!   System monitor interface 
!   Per-core proxy power sensors 

!   We analyzed scientific applications from NAS benchmarks suite and 
the exascale co-design centers 
!   Power profiles of each application’s thread 
!   Effects of sampling frequency 
!   Power consumption breakdown 

!   Found power saving opportunities that can be explored in future work 

June 10, 2013 19 ROSS 2013 



Questions? 
 

gokcen.kestor@pnnl.gov 


