
Characteristics of Adaptive
Runtime Systems in HPC	

Laxmikant	 (Sanjay)	 Kale	
h3p://charm.cs.illinois.edu	

What runtime are we talking about?
•  Java runtime:
–  JVM + Java class library
–  Implements JAVA API

•  MPI runtime:
–  Implements MPI standard API
–  Mostly mechanisms

•  I want to focus on runtimes that are “smart”
–  i.e. include strategies in addition mechanisms
–  Many mechanisms to enable adaptive strategies

6/10/13 ROSS 2013 2

6/10/13 ROSS 2013 3

Why?

And what kind of adaptive
runtime system I have in
mind?

Let us take a detour

6/10/13 ROSS 2013 4

Source: wikipedia

Governors
•  Around 1788 AD, James Watt and

Mathew Boulton solved a problem
with their steam engine
–  They added a cruise control… well,

RPM control
–  How to make the motor spin at the

same constant speed
–  If it spins faster, the large masses

move outwards
–  This moves a throttle valve so less

steam is allowed in to push the prime
mover

6/10/13 ROSS 2013 5

Source: wikipedia

Feedback Control Systems Theory
•  This was interesting:
–  You let the system “misbehave”, and use that

misbehavior to correct it..
–  Of course, there is a time-lag here
–  Later Maxwell wrote a paper about this, giving

impetus to the area of “control theory”

6/10/13 ROSS 2013 6

Source: wikipedia

Control theory
•  The control theory was concerned with

stability, and related issues
–  Fixed delay makes for highly analyzable system

with good math demonstration
•  We will just take the basic diagram and two

related notions:
–  Controllability
–  Observability

6/10/13 ROSS 2013 7

A modified system diagram

6/10/13 ROSS 2013 8

System

controller

Output variables

Observable /
Actionable
variables

Control
variables

Metrics
That we
care about

6/10/13 ROSS 2013 9

Archimedes is supposed to have said, of the lever:
Give me a place to stand on, and I will move the
Earth

Source: wikipedia

Need to have the lever
•  Observability:
–  If we can’t observe it, can’t act on it

•  Controllability:
–  If no appropriate control variable is available, we

can’t control the system
•  (bending the definition a bit)

•  So: an effective control system needs to
have a rich set of observable and
controllable variables

6/10/13 ROSS 2013 10

A modified system diagram

6/10/13 ROSS 2013 11

System

controller

Output variables

Observable /
Actionable
variables

Control
variables

Metrics
That we care
about

These include one or more:
•  Objective functions (minimize, maximize, optimize)
•  Constraints: “must be less than”, ..

Feedback Control Systems in HPC?
•  Let us consider two “systems”
–  And examine them for opportunities for

feedback control
•  A parallel “job”
–  A single application running in some partition

•  A parallel machine
–  Running multiple jobs from a queue

6/10/13 ROSS 2013 12

A Single Job
•  System output variables that we care about:
–  (Other than the job’s science output)
–  Execution time, energy, power, memory usage, ..
–  First two are objective functions
–  Next two are (typically) constraints
–  We will talk about other variables as well, later

•  What are the observables?
–  Maybe message sizes, rates? Communication

graphs?
•  What are the control variables?
–  Very few…. Maybe MPI buffer size? bigpages?

6/10/13 ROSS 2013 13

Control System for a single job?
•  Hard to do, mainly because of the paucity of

control variables
•  This was a problem with “Autopilot”, Dan

Reed’s otherwise exemplary research
project
–  Sensors, actuators and controllers could be

defined, but the underlying system did not
present opportunities

•  We need to “open up” the single job to
expose more controllable knobs

6/10/13 ROSS 2013 14

Alternatives
•  Each job has its own ARTS control system, for

sure
•  But should this be:

–  Specially written for that application?
–  A common code base?
–  A framework or DSL that includes an ARTS?

•  This is an open question, I think..
–  But it must be capable of interacting with the

machine-level control system
•  My opinion:

–  Common RTS, but specializable for each application

6/10/13 ROSS 2013 15

The Whole Parallel Machine
•  Consists of nodes, job scheduler, resource

allocator, job queue, ..
•  Output variables:
–  Throughput, Energy bill, energy per unit of work,

power, availability, reliability, ..
•  Again, very little control
–  About the only decision we make is which job to

run next, and which nodes to give to it..

6/10/13 ROSS 2013 16

6/10/13 ROSS 2013 17

The Big Question/s:

How to add more control variables?
How to add more observables?

One method we have explored
•  Overdecomposition and processor

independent programming

6/10/13 ROSS 2013 18

Object based over-decomposition
•  Let the programmer decompose computation

into objects
–  Work units, data-units, composites

•  Let an intelligent runtime system assign
objects to processors
–  RTS can change this assignment during execution

•  This empowers the control system
–  A large number of observables
–  Many control variables created

6/10/13 ROSS 2013 19

Object-based over-decomposition: Charm++

6/10/13 ROSS 2013 20

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors

6/10/13 ROSS 2013 21

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

Note the control points created
•  Scheduling (sequencing) of multiple method

invocations waiting in scheduler’s queue
•  Observed variables: execution time, object

communication graph (who talks to whom)
•  Migration of objects
–  System can move them to different processors at

will, because..
•  This is already very rich…
–  What can we do with that??

6/10/13 ROSS 2013 22

Optimizations Enabled/Enhanced by
These New Control Variables

•  Communication optimization
•  Load balancing
•  Meta-balancer
•  Heterogeneous Load balancing
•  Power/temperature/energy optimizations
•  Resilience
•  Shrink/Expand sets of nodes
•  Application reconfiguration to add control

points
•  Adapting to memory capacity

6/10/13 ROSS 2013 23

Principle of Persistence
•  Once the computation is expressed in terms of

its natural (migratable) objects
•  Computational loads and communication

patterns tend to persist, even in dynamic
computations

•  So, recent past is a good predictor of near
future

6/10/13 LBNL/LLNL 24

In spite of increase in irregularity and
adaptivity, this principle still applies at
exascale, and is our main friend.

Measurement-based Load Balancing

6/10/13 LBNL/LLNL 25

Regular
Timesteps

Instrumented
Timesteps

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

Load Balancing Framework
•  Charm++ load balancing framework is an

example of “customizable” RTS
•  Which strategy to use, and how often to call

it, can be decided for each application
separately

•  But if the programmer exposes one more
control point, we can do more:
–  Control point: iteration boundary
–  User makes a call each iteration saying they can

migrate at that point
–  Let us see what we can do: metabalancer

6/10/13 ROSS 2013 26

Meta-Balancer

•  Automating load balancing related
decision making

•  Monitors the application continuously
–  Asynchronous collection of minimum statistics

•  Identifies when to invoke load balancing
for optimal performance based on
–  Predicted load behavior and guiding principles
–  Performance in recent past

Fractography: Without LB

Fractography: Periodic

 10

 100

 1000

 10000

 4 16 64 256 1024 4096

El
ap

se
d

tim
e

(s
)

LB Period

Elapsed time vs LB Period (Jaguar)

64 cores
128 cores
256 cores

512 cores
1024 cores

•  Frequent load balancing leads to high
overhead and no benefit

•  Infrequent load balancing leads to load
imbalance and results in no gains

iterations

Meta-Balancer on Fractography

•  Identifies the need for frequent load balancing in the
beginning

•  Frequency of load balancing decreases as load becomes
balanced

•  Increases overall processor utilization and gives gain of 31%

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  Reduce frequency if temperature is high

–  Independently for each core or chip
•  This creates a load imbalance!
•  Migrate objects away from the slowed-down

processors
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Recently implemented in experimental version
–  SC 2011 paper

•  Several new power/energy-related strategies

6/10/13 Charm++: HPC Council Stanford 31

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  So, Reduce frequency if temperature is high

–  Independently for each core or chip
•  But, This creates a load imbalance!
•  No prolem, we can handle that:

–  Migrate objects away from the slowed-down Procs
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Implemented in experimental version
–  SC 2011 paper
–  IEEE TC paper

•  Several new power/energy-related strategies
–  PASA ‘12: Exploiting differential sensitivities of code segments to

freq change

6/10/13 Charm++: HPC Council Stanford 32

Fault Tolerance in Charm++/AMPI

•  Four Approaches:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint/restart
–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Common Features:
–  Leverages object-migration capabilities
–  Based on dynamic runtime capabilities

•  Several new results in the last year:
–  FTXS 2012: scalability of in-mem scheme
–  Hiding checkpoint overhead .. with semi-blocking..
–  Energy efficiency of FT protocols : best paper SBAC-PAD

6/10/13 Charm++: HPC Council Stanford 33

Ships in Charm++
distribution, for years

In-memory double checkpointing

•  Is practical for many apps
–  Relatively small footprint at checkpoint time
–  Also, you can use non-volatile node-local storage

(e.g. FLASH)

6/10/13 Charm++: HPC Council Stanford 34

6/10/13 Charm++: HPC Council Stanford 35

6/10/13 Charm++: HPC Council Stanford 36

Blocking vs Semi-Blocking

NODE 1

NODE 2

barrier checkpoint done

!blocking

βα

β α

,blocking

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

!

βα

β

$ φ
%

α

Results: Strong Scaling runs of ChaNGa

 0

 2000

 4000

 6000

 8000

 10000

128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e(

s)

Number of Cores

no checkpoint
blocking checkpoint

semi−blocking checkpoint

 0

 5

 10

 15

 20

 25

 30

 35

 40

128 256 512 1024

C
he

ck
po

in
t O

ve
rh

ea
d(

s)

Number of Cores

blocking checkpoint
semi−blocking checkpoint

The extra control exposed by the underlying
communication layer was critical to attain this result

App based Creation of Control Points
•  A richer set of control points can be generated

if we enlist help from the application
–  Or its DSL runtime, or compiler

•  The idea is:
–  Application exposes some control knobs
–  Describes the effects of the knobs
–  The RTS observes performance variables, identifies

the knobs that will help the most, and turns them in
the right direction

•  Examples: granularity, yield frequencies in
inner loops, CPU-Accelerator balance

6/10/13 ROSS 2013 39

Shrink/Expand job
•  If a job is told to reduce the number of

nodes it is using..
•  It can do so now by migrating objects..
•  Same with expanding the set of nodes used
•  Empowered by migratability

6/10/13 ROSS 2013 40

6/10/13 Charm++: HPC Council Stanford 41

Inefficient Utilization within a cluster

Job A

Allocate A !

Job B

8 processors

B Queued Conflict ! 16 Processor
system

Job A

Job B

Current Job Schedulers can lead to low system utilization !

6/10/13 Charm++: HPC Council Stanford 42

Adaptive Job Scheduler
•  Scheduler can take advantage of the

adaptivity of AMPI and Charm++ jobs
•  Improve system utilization and response time
•  Scheduling decisions

–  Shrink existing jobs when a new job arrives
–  Expand jobs to use all processors when a job finishes

•  Processor map sent to the job
–  Bit vector specifying which processors a job is allowed to

use
•  00011100 (use 3 4 and 5!)

•  Handles regular (non-adaptive) jobs

6/10/13 Charm++: HPC Council Stanford 43

Two Adaptive Jobs

Job A

A Expands !

Job B

Min_pe = 8
Max_pe= 16

Shrink A Allocate B ! 16 Processor
system

Job A

Job B

B Finishes
Allocate A !

6/10/13 ROSS 2013 44

Whole Machine RTS

Per job
RTS

Job2

Per job
RTS

Job1

Per job
RTS

Jobk

Rich Interaction desirable: currently there is very little

Whole machine runtime
•  Job schedulers and resource allocators:
–  Accept more flexible QoS specifications from jobs

•  Creating more control variables
–  “moldable” specification:

•  This job needs between 3000-5000 nodes
•  Memory requirements..
•  Topology sensitivity, speedup profiles,…

–  Malleable:
•  this job can be told to shrink/expand after it has started

6/10/13 ROSS 2013 45

Whole machine control
•  Monitor failures, and act in job-specific

ways
•  Global power constraints:
–  Inform, negotiate with and constrain jobs

•  Thermal management
•  I/O system and job I/O interactions
•  Shrink and Expand jobs as needed to

optimize multiple metrics

6/10/13 ROSS 2013 46

Conclusions
•  We need a much richer control system
–  For each parallel job
–  For parallel machine as a whole

•  Current status: paucity of control variables
•  Programming models can help create new

observable and controllable variables
•  As far as I can see,
–  overdecomposition is the main vehicle for this..
–  Do you see other ideas?

6/10/13 ROSS 2013 47

6/10/13 ROSS 2013 48

An upcoming book
Surveys seven major
applications
developed using
Charm++

