
Documentation DDTBench Version 1.2

Robert Gerstenberger

Chemnitz University of Technology

Timo Schneider

ETH Zurich

Torsten Hoefler

ETH Zurich

January 27, 2014

Contents

1 Using DDTBench 2
1.1 Build Instructions . 2
1.2 Running DDTBench . 2
1.3 Output File . 3

2 Input Parameter/Datatype Description 3

3 Evaluation Scheme 6
3.1 Message Passing Scheme . 6
3.2 One Sided Scheme . 7

4 Citation 8

1

1 Using DDTBench

This benchmark implements data access patterns from a wide range of applica-
tions (WRF, MILC, NAS LU/MG, FFT, SPECFEM3D GLOBE and LAMMPS).
Each of the micro-apps performs several tests whose parameters are derived
from real application runs and input files. Please refer to Schneider, Gersten-
berger, Hoefler: ”Micro-Applications for Communication Data Access Patterns
and MPI Datatypes” [2] for details!

1.1 Build Instructions

Currently this benchmark is implemented in Fortran as well as in C.

1. edit Makefile.inc to set FC, CC, FCFLAGS, etc.

• choose the right parameter for HRT_ARCH according to your hardware
to use a high resolution timer instead of MPI Wtime

• choose your measurement mode (time, papi, time+papi)

2. build: make

3. run: mpiexec -n 32 ./ddtbench_{c,f90,c_onesided,f90_onesided}

The DDTBench binaries come with a small command line interface to influence
the number of measurements, which in the Fortran case is implemented by using
Fortran 2003 features (command_argument_count, get_command_argument). If
one of those break your build, please comment out the lines 74 to 110 in the file
src_f90/ddtbench.F90 .

The Makefile offers a test option (make test NPROCS=n OUTER=n INNER=n):
this fetches the sources of the stable and unstable version of OpenMPI and
MPICH, builds them and runs tests with each of the MPI versions for all four
DDTBench versions. The benchmark will be executed with NPROCS processes
with OUTER number of outer loops and INNER number of inner loops. If you
don’t specify one or all of the parameters, the default settings mentioned in
test.inc will be used.

1.2 Running DDTBench

• command line interface:
ddtbench_{c,f90,c_onesided,f90_onesided} <oloop> <iloop>

If no or not all parameter are provided the following defaults are used:

– outer loop (number of creations of MPI derived datatypes (MPI
DDTs) for each micro-application): oloop = 10

– inner loop (number of communication operations per MPI DDT):
iloop = 20

2

• The DDTBench binaries run several different micro-applications (16 all
together), where each micro-app has several runs for different input sizes.

• Nearly all the micro-applications are running as a ping-pong, except for
the FFT micro-app, which performs an Alltoall. The one sided versions of
the FFT micro-app substitutes the Alltoall with NPROC put operations
per process. In all cases only rank 0 measures the time.

• One should run the benchmark with at least 2 processes.

• If you like to run measurements with PAPI, the PAPI events are chosen
over the environmental variables PAPI_EVT1 and PAPI_EVT2. One can run
the benchmark with counting one or two events.

1.3 Output File

The output file is named ddtbench.out and has 9 columns. The first col-
umn is the testname. The second column specifies the type of benchmark
(the ”method’, see below), the third column states the number of transferred
bytes for that particular test configuration (i.e., the MPI Type size of the used
datatype). The fourth column identifies the step in the benchmark (the ”epoch”,
see section 3) to which the time (in microseconds) in the fifth column corre-
sponds. The sixth and the eight column specify the name of an PAPI event,
while the seventh and ninth column report the respective PAPI event count.

The 16 tests have the following names: WRF_{x,y}_{sa,vec}, MILC_su3_zd,
NAS_MG_{x,y,z}, NAS_LU_{x,y}, FFT{NPROCS}, SPECFEM3D_{cm,mt,oc} and
LAMMPS_{atomic,full}. The four methods are:

• mpi_ddt: benchmark using MPI derived datatypes (MPI DDTs)

• manual: benchmark using the original pack routines from the applications

• mpi_pack_ddt: benchmark using MPI Pack/MPI Unpack with MPI DDTs

• reference: benchmark that does a traditional ping-pong of the same
datasize

The five epoch names are: ddt_create_overhead, pack, communication,
unpack and ddt_free_overhead. If one epoch isn’t used in one test, this epoch
will be printed at the end of this test with a time of zero nanoseconds, so that
all epochs are present for each test.

Note that no statistical aggregation is done by the benchmark itself, the
full information about each measured value is given to the user. A sample R
analysis script is provided under analysis_scripts/ddt_analysis.R.

2 Input Parameter/Datatype Description

General: If data from more than one array has to be communicated, the
different subarrays are packed together with MPI Type create struct where the

3

displacements of each array are relative to MPI BOTTOM. The displacements
are obtained by calls to MPI Get address.

WRF: WRF exchanges, in so called halo/period functions (about 30 to 40),
faces of several arrays. Those arrays and their subarrays can be two, three
or four dimensional. The faces are exemplary implemented with different MPI
datatypes. The WRF_{x,y}_sa case uses MPI Type create subarray, while the
WRF_{x,y}_vec case uses nested MPI vectors in the following way:

• 2D: MPI Type vector

• 3D: MPI Type hvector of MPI Type vector

• 4D: MPI Type hvector of MPI Type hvector of MPI Type vector

The faces of different arrays are packed together as described above. The x and
y denotes the communication in x and y direction of the processor grid. The
datatypes are built in the same way, but with different input parameters.

The input parameter for the array boundaries were extracted from runs of
the em_b_wave ideal case with different numbers of processes (4, 9, 16, 25, 64).
The number of arrays is static (4x 2Ds, 3x 3Ds and 2x 4Ds) and is exemplary
for the halo functions in WRF.

MILC: MILC represents space time with a four dimensional grid (Lx * Ly *
Lz * Lt), decomposed with checkerboarding. It exchanges gluons from various
positions. The datatype for the ZDOWN direction is build in the following way:

1. The base type is a contiguous type of six floats (in C) or 3 complex types
(in Fortran).

2. The next datatype is a vector type of the above mentioned contiguous
type with Lt blocks, each block contains Lx * Ly/2 elements and has a
stride of Lx * Ly * Lz/2 elements.

3. The final datatype is a hvector type with 2 blocks of the above mentioned
vector type. The stride depends from the model used, which defines among
other things the distance between odd and even elements. For the test the
hypercubic model was chosen, in which the stride is Lx * Ly * Lz * Lt/2
elements.

The input parameter were obtained by running MILC with 1024 processes with
different grid sizes (from 64x64x32x32 to 128x128x64x64).

NAS MG: The NAS MG benchmark performs a face exchange in each direc-
tion of a cube (3D array). Each communication direction (x,y,z) was modeled
since each surface needs a different MPI DDT and performs differently.

• x (yz surface): a hvector of vector with stride between every element of
the surface

4

• y (xz surface): a vector with a stride after each line in the x dimension

• z (xy surface): a vector with a stride after each line in the x dimension,
the stride is much smaller than in the y direction

The input parameter were obtained by running the classes S,W,A,C with 4
processes.

NAS LU: The NAS LU benchmark performs a 1D face exchange in x and y
direction from a 2D array. Each surface needs a different datatype and performs
differently. Each grid point consists of 5 doubles.

• x: a contiguous type

• y: A vector type with a stride between each grid point, which is modeled
as a contiguous type.

The grid sizes of the classes S,W,A-E were directly taken as input parameters
for the array size on each node.

FFT: This test performs with an Alltoall a transpose of a distributed matrix
with interleaved vector types (different on sender and receiver side). For further
details see [2]. The one sided version issues NPROCS puts per process instead of
an MPI Alltoall.

SPECFEM3D mt: The SPECFEM3D GLOBE performs the assembly of a
distributed matrix in conjunction with a transpose of that matrix. To go along
with the ping-pong scheme the sender assembles a xz plane using MPI DDTs
(a vector type), and the receiver stores it as a xy plane and doesn’t use MPI
derived datatypes since the data is already contiguous.

The input parameter were obtained by running SPECFEM3D GLOBE with
600 processes (10x10x6) with a constant c of 1,2,3 and 4, which is equal to
nproc_eta = nproc_xi = 80, 160, 240 and 320.

LAMMPS: LAMMPS exchanges particles with different properties. There
is a different array for each property, where the information for every particle
is stored. A list stores the position of all the particles that will be transfered.
This list is modeled as a MPI indexed type and since all the blocks of one
property have the same size, MPI Type create indexed block is used. Since the
blocklengths of different properties aren’t the same, several MPI indexed types
are used. To assemble the different arrays a struct type is used. On the receiver
side the properties are stored at the end of each array with a different MPI
DDT.

• sender side: struct of several MPI Type create indexed block

• receiver side: struct of several contiguous types

5

In the full case all of the six properties are present, while in the atomic case
only four are used.

The input parameter for the full case were extracted from running the pep-
tide example with 2, 4 and 8 processes. For the atomic case the crack example
with 2, 4 and 8 processes was used.

SPECFEM3D: SPECFEM3D GLOBE exchanges the acceleration data of
grid points. The different layers of the earth have different relevant directions:

• oc (outer core): described by one float

• cm (crust mantle/inner core): described by three floats

Only some grid points will be exchanged (which is statically determinated by the
mesher). The list of grid points is modeled as an MPI Type create indexed block.
Since in the cm case the acceleration data of two different layers (crust mantle
and inner core) is exchanged, we use a struct type on top of those MPI indexed
types. The lists for the crust mantle and the inner core are different and so are
the MPI indexed types.

The input parameters for this benchmarks were obtained in the same way
as for the SPECFEM3D_mt micro-application.

3 Evaluation Scheme

3.1 Message Passing Scheme

(a) Manual Pack Loop (b) Send/Recv with DDTs (c) MPI Pack

Figure 1: Measurement loops for the micro-applications with the message pass-
ing scheme (Source: [2])

Each micro-application is implemented as a benchmark with a ping-pong
scheme between two processes using MPI Send and MPI Recv. Three different
methods are used to assemble and communicate the data. The manual method
(Figure 1(a)) uses the pack and unpack loop, that were found in the origi-
nal application, to serialize/deserialize the data into/from a contiguous buffer.
With this method only contiguous data is communicated. The second method

6

(Figure 1(b)) specifies MPI derived datatypes directly in the MPI Send and
MPI Recv calls, so optimizations of the pack/unpack process and the com-
munication are entirely handled by the MPI library. The third method (Fig-
ure 1(c)) uses MPI Pack and MPI Unpack with MPI derived datatypes to se-
rialize/deserialze the data into/from a contiguous user-specified buffer, so that
only contiguous data is communicated. Additionally a traditional ping-pong
with contiguous data is performed to serve as a reference measurement. Each
method is divided into two nested loops and the number of iterations per loop
can be configured via command line parameters (see 1.2). The outer loop is used
to measure static overhead like MPI DDT creation/destruction or the (de)allo-
cation of user buffer space while the inner loop measures the time of the packing
and the communication. To avoid synchronized clocks, time is only measured on
one process (Process 0 in Figure 1). The reported communication time of pro-
cess 0 contains the complete ping-pong (including the pack and unpack epochs
on process 1). This has to be considered, if you want to write your own analysis
scripts.

3.2 One Sided Scheme

(a) Manual Pack Loop (b) Put with DDTs (c) MPI Pack

Figure 2: Measurement loops for the micro-applications with the one sided
scheme (Original source for 2(a) and 2(b): [1])

The one sided scheme was introduced in DDTBench Version 1.2. In MPI
One Sided one process specifies the local and the remote parameters for a com-
munication call, so the target isn’t involved in the communication. In message
passing synchronization is done implicitly, while in the one sided context it has to
be done explicitely. The one sided scheme of DDTBench replaces the MPI Send
and MPI Recv calls with MPI Put and a subsequent call to MPI Win fence (a
global synchronization) to ensure memory consistency and notify the target that
the communication is finished. The use of MPI Win fence allows DDTBench
to evaluate implementations that are only MPI-2 compliant. To be compara-
ble with the message passing scheme, the reported time for the communication
epoch is the combination of the communication and the synchronization time,
so that the same analysis scripts can be used for both schemes. The time to
create MPI windows is not reported and is done before the measurement loops.

7

4 Citation

Any published work which uses this software should include one of the following
citations:

T. Schneider, R. Gerstenberger and T. Hoefler: Micro-Applications for Com-
munication Data Access Patterns and MPI Datatypes. In Recent Advances in
the Message Passing Interface (EuroMPI’12) [2]

or

T. Schneider, R. Gerstenberger and T. Hoefler: Application-Oriented Ping-Pong
Benchmarking: How to Assess the Real Communication Overheads. In Journal
of Computing, May 2013 [3]

If you refer to the one sided scheme, please include the following citation:

R. Gerstenberger and T. Hoefler: Handling Datatypes in MPI-3 One Sided.
ACM Student Research Competition Poster at the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’13) [1]

References

[1] R. Gerstenberger. Handling datatypes in MPI-3 one sided. In ACM Student
Research Competion Poster at the IEEE/ACM International Conference on
High Performance Computing, Networking, Storage and Analysis (SC’13),
Nov. 2013.

[2] T. Schneider, R. Gerstenberger, and T. Hoefler. Micro-applications for com-
munication data access patterns and MPI datatypes. In Recent Advances
in the Message Passing Interface - 19th European MPI Users’ Group Meet-
ing, EuroMPI 2012, Vienna, Austria, September 23-26, 2012. Proceedings,
volume 7490, pages 121–131. Springer, Sep. 2012.

[3] T. Schneider, R. Gerstenberger, and T. Hoefler. Application-oriented ping-
pong benchmarking: How to assess the real communication overheads. Jour-
nal of Computing, May 2013. doi: 10.1007/s00607-013-0330-4.

8

