Life would be so much easier if only we had the source code...
Home -> Publications
Home
  Publications
    
all years
    2019
    2018
    2017
    2016
    2015
    2014
    2013
    2012
    2011
    2010
    2009
    2008
    2007
    2006
    2005
    2004
    theses
    techreports
    presentations
    edited volumes
    conferences
  Awards
  Research
  Teaching
  BLOG
  Miscellaneous
  Full CV [pdf]






  Events








  Past Events





Publications of Torsten Hoefler
Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

T. Hoefler:

 High-Performance Communication for Machine Learning

(Presentation - presented in Aachen, Germany, Jan. 2019)

Abstract

One of the main drivers behind the rapid recent advances in machine learning has been the availability of efficient system support. Despite existing progress, scaling compute-intensive machine learning workloads to a large number of compute nodes is still a challenging task. In this talk, we provide an overview of communication aspects in deep learning. We address the communication challenge, by proposing SparCML, a general, scalable communication layer for machine learning applications. SparCML is built on the observation that many distributed machine learning algorithms either have naturally sparse communication patterns, or have updates which can be sparsified in a structured way for improved performance, without loss of convergence or accuracy. To exploit this insight, we analyze, design, and implement a set of communication-efficient protocols for sparse input data, in conjunction with efficient machine learning algorithms which can leverage these primitives. Our communication protocols generalize standard collective operations, by allowing processes to contribute sparse input data vectors, of heterogeneous sizes. Our generic communication layer is enriched with additional features, such as support for non-blocking (asynchronous) operations and support for low-precision data representations. We validate our algorithmic results experimentally on a range of large-scale machine learning applications and target architectures, showing that we can leverage sparsity for order-of-magnitude runtime savings, compared to existing methods and frameworks.

Documents

download slides:


Recorded talk (best effort)

 

BibTeX

@misc{hoefler-aachen,
  author={T. Hoefler},
  title={{High-Performance Communication for Machine Learning}},
  year={2019},
  month={Jan.},
  location={Aachen, Germany},
  source={http://www.unixer.de/~htor/publications/},
}

serving: 3.85.143.239:56434© Torsten Hoefler