
AM++: A Generalized Active 

Message Framework

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, 

and Andrew Lumsdaine



Large-Scale Computing

 Not just for PDEs

anymore

 Many new, important

HPC applications

are data-driven

(“informatics 

applications”)

 Social network analysis

 Bioinformatics



Data-Driven Applications

 Different from “traditional” applications

 Communication highly data-dependent

 Little memory locality

 Impractical to load balance

 Many small messages to random nodes

 Computational ecosystem is a bad match for 

informatics applications

 Hardware

 Software

 Programming paradigms

 Problem solving approaches



Two-Sided (BSP) Breadth-First Search

while any rank’s queue is not empty:

for i in ranks: out_queue[i]  empty

for vertex v in in_queue[*]:

if color(v) is white:

color(v)  black

for vertex w in neighbors(v):

append w to out_queue[owner(w)]

for i in ranks: start receiving in_queue[i] from rank i

for j in ranks: start sending out_queue[j] to rank j

synchronize and finish communications



Two-Sided (BSP) Breadth-First Search

Rank 0 Rank 1 Rank 2 Rank 3

Get 

neighbors

Redistribute 

queues

Combine 

received 

queues



Messaging Models

 Two-sided

 MPI

 Explicit sends and receives

 One-sided

 MPI-2 one-sided, ARMCI, PGAS languages

 Remote put and get operations

 Limited set of atomic updates into remote memory

 Active messages

 GASNet, DCMF, LAPI, Charm++, X10, etc.

 Explicit sends, implicit receives

 User-defined handler called on receiver for each message



Active Messages

 Created by von Eicken

et al, for Split-C (1992)

 Messages sent explicitly

 Receivers register 

handlers but not 

involved with individual 

messages

 Messages often 

asynchronous for higher 

throughput

Send

Message 

handler

Reply

Reply 

handler

T
im

e

Process 1 Process 2



Active Message Breadth-First Search

handler vertex_handler(vertex v):

if color(v) is white:

color(v)  black

append v to new_queue

while any rank’s queue is not empty:

new_queue  empty

begin active message epoch

for vertex v in queue:

for vertex w in neighbors(v):

tell owner(w) to run vertex_handler(w)

end active message epoch

queue  new_queue



Active Message Breadth-First Search

Rank 0 Rank 1 Rank 2 Rank 3

Get 

neighbors

Send vertex 

messages

Check color 

maps

Insert into 

queues

Active 

message 

handler



Low-Level vs. High-Level AM Systems

 Active messaging systems (loosely) on a spectrum 

of features vs. performance

 Low-level systems typically have restrictions on message 

handler behavior, explicit buffer management, etc.

 High-level systems often provide dynamic load balancing, 

service discovery, authentication/security, etc.

DCMF GASNet Java RMICharm++/X10

Low High



The AM++ Framework

 AM++ provides a “middle ground” between low- and 

high-level systems

 Gets performance from low-level systems

 Gets programmability from high-level systems

 High-level features can be built on top of AM++

AM++
DCMF GASNet Java RMICharm++/X10

Low High



Key Characteristics

 For use by applications

 AM handlers can send messages

 Mix of generative (template) and object-oriented 

approaches

 Object-orientation for flexibility and type erasure

 Templates for optimal performance

 Flexible/application-specific message coalescing

 Messages sent to processes, not objects



Example

Create Message Transport

(Not restricted to MPI)

Coalescing layer

(and underlying message type)
Message Handler

Messages are nested to depth 0

Epoch scope



AM++ Design



 Interface to underlying communication layer

 MPI and GASNet currently

 Designed to send large messages produced by 

higher-level components

 Object-oriented techniques

allow run-time flexibility

(type erasure)

 MPI-style progress model

 Progress thread optional

 User must call into AM++

Transport



Message Types

 Handler registration for messages within transport

 Type-safe interface to reduce user casts and errors

 Automatic data buffer handling



Termination Detection/Epochs

 AM++ handlers can send messages

 When have they all been sent and handled?

 Termination detection – a standard distributed 

computing problem

 Some applications send a

fixed depth of nested

messages

 Time divided into epochs



Message Coalescing

 Standard way to amortize overheads

 Trade off latency for throughput

 Layered on transport and message type

 Can be specific to

application or message type

 Handlers apply to one

small message at a time

 Sends are of a single

small message



Message Handler Optimizations

 Coalescing uses generative programming and C++ 

templates for performance on high message rates

 Small-message handler type is known statically

 Simple loop calls handler

 Compiler can optimize

using standard techniques



Message Reductions

 Some applications have messages that are

 Idempotent: duplicate messages can be ignored

 Reducible: some messages can be combined

 Detect some at sender

 Cache



AM++ and Threads

 AM++ is thread-safe

 Models for thread use:

 Run separate handlers in separate threads

 Split a single message across several threads

 Coalescing buffer sizes affect parallelism in both 

models



Evaluation: Message Latency

Single-data-rate InfiniBand, GASNet 1.14.0 testam section L



Evaluation: Message Bandwidth

Single-data-rate InfiniBand, GASNet 1.14.0 testam section L



Breadth-First Search: Strong Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 227 vertices, degree 4 



Breadth-First Search: Weak Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 225 vertices/node, degree 4 



Delta-Stepping: Strong Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 227 vertices, degree 4 



Delta-Stepping: Weak Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 224 vertices/node, degree 4 



Conclusion

 Generative programming techniques used to design 

a flexible active messaging framework, AM++

 “Middle ground” between previous low-level and

high-level systems

 Features can be composed on that framework

 Performance comparable to other systems


