
Accelerating Deep Learning Frameworks with
Micro-batches

Yosuke Oyama∗, Tal Ben-Nun†, Torsten Hoefler† and Satoshi Matsuoka‡ ∗
∗Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan, oyama.y.aa@m.titech.ac.jp

†Department of Computer Science, ETH Zurich, Zurich, Switzerland, {talbn,htor}@inf.ethz.ch
‡RIKEN Center for Computational Science, Hyogo, Japan, matsu@acm.org

Abstract—cuDNN is a low-level library that provides GPU
kernels frequently used in deep learning. Specifically, cuDNN im-
plements several equivalent convolution algorithms, whose
performance and memory footprint may vary considerably,
depending on the layer dimensions. When an algorithm is
automatically selected by cuDNN, the decision is performed on
a per-layer basis, and thus it often resorts to slower algorithms
that fit the workspace size constraints. We present µ-cuDNN,
a thin wrapper library for cuDNN that transparently divides
layers’ mini-batch computation into multiple micro-batches, both
on a single GPU and a heterogeneous set of GPUs. Based on
Dynamic Programming and Integer Linear Programming (ILP),
µ-cuDNN enables faster algorithms by decreasing the workspace
requirements. At the same time, µ-cuDNN does not decrease the
accuracy of the results, effectively decoupling statistical efficiency
from the hardware efficiency. We demonstrate the effectiveness of
µ-cuDNN for the Caffe and TensorFlow frameworks, achieving
speedups of 1.63x for AlexNet and 1.21x for ResNet-18 on
the P100-SXM2 GPU. We also show that µ-cuDNN achieves
speedups of up to 4.54x, and 1.60x on average for DeepBench’s
convolutional layers on the V100-SXM2 GPU. In a distributed
setting, µ-cuDNN attains a speedup of 2.20x when training
ResNet-18 on a heterogeneous GPU cluster over a single GPU.
These results indicate that using micro-batches can seamlessly
increase the performance of deep learning, while maintaining
the same overall memory footprint.

Index Terms—Deep learning, convolutional neural networks,
performance tuning, micro-batch.

I. INTRODUCTION

Prevalent Deep Neural Networks (DNNs) are becoming
increasingly deeper and are trained with large batch sizes.
Specifically, recent DNNs contain hundreds of layers [1], [2],
and utilize batch sizes in the order of thousands [3]–[5].

Large batches are also favored by distributed data-parallel
deep learning frameworks, because they improve GPU
utilization, as well as hide the communication of parameter
gradients in the computation efficiently. Consequently, the
batch size per GPU should be large to achieve better scaling.
Since the memory usage of a DNN is nearly proportional to
the layer size and the batch size, the GPU memory tends to
be used at full capacity in most real-world cases.

This “limited memory scenario” is also exhibited in cuDNN
[6], a deep learning kernel library for NVIDIA GPUs. cuDNN
provides a variety of computational primitives for neural net-
works, and is widely used in deep learning frameworks, such
as Caffe [7] and others [8]–[10]. cuDNN provides up to eight

M
em

or
y

[M
iB

]
0

200

400

600

800

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
conv fc

(8 MiB)
conv fc
(64 MiB)

conv fc
(512 MiB)

Data
Weights
Workspace

0

50

100

150

200

250

300

Ti
m

e
[m

s]

IMPLICIT_PRECOMP_GEMM
FFT
FFT_TILING
WINOGRAD
(Total time)

Fig. 1: Per-layer breakdowns of memory consumption (left
axis, bars) and computation time of forward and backward
passes (right axis, points) of AlexNet’s convolutional layers
on P100-SXM2. We use three different workspace sizes (8,
64, 512 MiB), and a mini-batch of 256.

different algorithms to perform convolutions, each of which
requires different temporary storage (workspace) schemes. To
guide users to determine the best algorithm, cuDNN provides
a function cudnnGetConvolution*Algorithm (* is
one of convolution types, Forward, BackwardData and
BackwardFilter), that benchmarks all the algorithms and
chooses the best algorithm, either with respect to computation
time or memory usage. However, if the workspace size
requested by a fast algorithm is larger than provided, cuDNN
will resort to a slower algorithm that requires less workspace.
In fact, cuDNN may require workspace sizes that are as large
as the network itself to use efficient convolution algorithms,
such as FFT-based convolution [11] and Winograd’s algorithm
[12] (Figure 1).

In this paper, we propose µ-cuDNN, a transparent wrapper
for cuDNN that attempts to mitigate the aforementioned
inefficiency. In order to utilize fast convolution algorithms
with limited workspace size, µ-cuDNN automatically divides
a layer’s mini-batch computation into several “micro-batches”
and perform multiple convolutions sequentially (Figure 2).
µ-cuDNN decouples the statistical efficiency (speed of

Time

conv1
N = 256

relu1
N = 256

pool1
N = 256

conv2
N = 256

conv1
N = 128

conv1
N = 128

relu1
N = 256

pool1
N = 256

conv2
N = 64

cuDNN

µ-cuDNN

Using GEMM-based convolution

Using FFT-based convolution

Fig. 2: The conceptual execution timeline of µ-cuDNN. N
represents the mini-batch size.

accuracy/loss improvement with fixed number of parameter
updates) from the hardware efficiency (speed of computations
with fixed number of updates), improving only the latter. Using
micro-batches, µ-cuDNN improves the hardware utilization
without incurring any reduction in training accuracy.

The contributions of this paper are as follows:
• We present a method to automatically divide mini-

batch training into several “micro-batches”, so that faster
algorithms are utilized with tight workspace constraints.

• We propose different workspace allocation policies,
which enable optimization of multiple convolutional
layers with inter-dependencies.

• We provide a Python interface, compatible with ma-
jor deep learning frameworks, which suggests high-
performing micro-batch divisions over heterogeneous
GPU clusters.

• We evaluate µ-cuDNN over two different deep learning
frameworks, Caffe and TensorFlow, showing that it can
mitigate the inefficiency of cuDNN with several Convo-
lutional Neural Networks (CNNs), AlexNet, ResNet and
DenseNet, both in single and multi-node environments.

The source code of µ-cuDNN is available online at
https://github.com/spcl/ucudnn.

II. THE ANATOMY OF CONVOLUTIONAL NEURAL
NETWORKS

Convolution operations in CNNs apply multiple filters to a
batch of channels of two-dimensional data (Algorithm 1). In
particular, input and output tensors are represented as four-
dimensional tensors with dimensions (N,C,H,W), where N
is the mini-batch size, C is the number of channels, and H and
W represent image height and width, respectively. Similarly,
the filter tensor is represented as four-dimensional (K,C, V, U)
tensor, where K is the number of output channels and V,U
represent kernel height and width.

The two-dimensional convolution is composed of seven-
nested loops (Algorithm 1). The innermost three loops
compute the actual convolution, where one element of the
input tensor X is multiplied and accumulated to one element
of the output tensor Y. The remaining loops iterate over all
elements of Y. The key observation is that in order to solve

Algorithm 1 Pseudo-code of two-dimensional convolution.

1: for(n = 0; n < N ; n++) // Mini-batch loop
2: for(k = 0; k < K; k++) // Output channel loop
3: for(h = 0; h < H; h++) // Height loop
4: for(w = 0; w < W ; w++) // Width loop
5: for(c = 0; c < C; c++) // Input channel loop
6: for(v = 0; v < V ; v++) // Kernel width loop
7: for(u = 0; u < U ; u++) // Kernel height loop
8: Y[n, k, h, w] += W[k, c, v, u]×X[n, c, h+ v, w + u];

the problem described in Section I, there is no dependence
inside the mini-batch loop between different iterations. This
is intuitive because in training or inference we compute
parameter gradients or outputs with respect to different data
samples, so this is equivalent to computing N different CNNs
concurrently. This observation motivates us to apply loop tiling
to the mini-batch loop, so that we can reduce the resident
workspace size.

The only exception to the inter-sample independence is the
computation of parameter gradients;

∂L

∂W
=

1

N

N∑
n=1

∂Ln

∂Yn
∗Xn,

where L and Ln is the loss function with respect to
a mini-batch and a sample n respectively, and ∗ is the
convolution operation [11]. The semantics of this computation
are, however, not violated by the loop splitting, if each of the
iterations is performed sequentially.

In cuDNN, there are three operations related to the two-
dimensional convolution; Forward for forward computation,
BackwardData for computing neuron errors in back-
propagation, BackwardFilter for computing parameter
gradients in back-propagation.

Although Forward and BackwardData can directly be
divided into several micro-batches, BackwardFilter can-
not, since there are output dependencies on the accumulated
parameter gradients tensor ∂L/∂W. However, we can still
divide the loops by running BackwardFilter multiple
times while accumulating the results, i.e., output scale = 1 in
cuDNN. Therefore, loop splitting can be achieved by repeating
cuDNN kernels one or more times for any convolution-related
operation, regardless of the underlying method.

III. µ-CUDNN
µ-cuDNN is a transparent C++ wrapper library for cuDNN,

which can easily be integrated into most deep learning
frameworks [7], [8], [10], [13] (Figure 3). µ-cuDNN can
be called either by a deep learning framework as a low-
level performance tuning library for cuDNN, or its dedicated
Python frontend for high-level performance analysis, as
described in Section III-E.

To enable µ-cuDNN, the only modification that needs to
be performed to the code is to replace the cuDNN handle
type cudnnHandle_t with UcudnnHandle_t. The µ-
cuDNN handle object is an opaque type that wraps the original

https://github.com/spcl/ucudnn

User code

DL Framework

µ-cuDNN

cuDNN

NVIDIA GPU

µ-cuDNN

Python etc.

C/C++

C

CUDA

Python

(N)FS

File-based DB

1.

2. 3.

Fig. 3: µ-cuDNN software stack. Users can obtain perfor-
mance metrics via 1. to 3., as described in Section III-E.

type, such that users can call any cuDNN function. When a
convolution operation or a benchmarking function is called
with the µ-cuDNN handle object, the µ-cuDNN internally
computes the optimal configurations, and returns a virtual
algorithm ID and required workspace size. This mechanism
enables users to call µ-cuDNN with minimal modification to
the original code. For example, only three lines of code need
to be modified to introduce µ-cuDNN to Caffe (v1.0).

The implementation of µ-cuDNN is based on overloading
a subset of cuDNN functions, where the memory of the µ-
cuDNN handle type is structured to act as the cuDNN internal
handle for the other calls. We define a cast operator from the
µ-cuDNN handle to cuDNN handle so that the framework
automatically adopts this method. Using this technique, µ-
cuDNN delegates most of the functions to cuDNN, but
overrides functions related to the convolutional layers.

µ-cuDNN caches the optimized configurations and the
benchmark results into memory and optional file-based
database respectively, to skip unnecessary recomputations.
This is especially beneficial for networks that replicate
convolutional layers of the same size, such as ResNet [2]. In
addition, the file-based caching enables offline benchmarking,
as well as sharing the results among a GPU cluster via a
networked file system.

A. µ-cuDNN Methodology

The key concept of µ-cuDNN is that it automatically divides
a mini-batch to several batches (referred to as “micro-batches”

in this paper) and optimizes their sizes, to utilize faster
convolution algorithms. Our µ-cuDNN library employs one of
two workspace utilization policies to optimize micro-batches
for convolution kernels (Figure 4):

• Workspace Reuse (WR): WR allocates one workspace
per layer, sharing the space between the internal micro-
batches. In this scheme, each layer is assumed to use
the workspace exclusively, hence the total size of the
workspaces cannot be determined before runtime.

• Workspace Division (WD): WD allocates one workspace
per network, and assigns different segments to each
convolutional layer. WD enables small groups of
convolution operations, as in the Inception module [14],
to run concurrently with larger workspaces. In WD, the
actual workspace is managed by µ-cuDNN rather than the
deep learning framework. This is because conventional
frameworks allocate each workspace separately, lacking
a global view of the entire network’s workspace
requirements.

WR and WD both rely on the parameters of one or more
convolution kernel(s), the mini-batch size, and the maximum
workspace size. The output of µ-cuDNN is a division of the
mini-batch, and “micro-configurations”; a pair of a convolution
algorithm and micro-batch size for each convolution micro-
batch. In this paper, we define “configuration” of a segmented
convolution kernel as “a list of micro-configurations”. For
example, if a kernel with a mini-batch size of 256 is equally
divided into four micro-batches and each of them uses
algorithm X , the configuration is represented as {(X, 64),
(X, 64), (X, 64), (X, 64)}. Also, we define concatenation of
two lists as +, such as {a, b} + {c, d} = {a, b, c, d} and
{a}+ ∅ = {a}.

B. WR Algorithm

The goal of the WR policy is to minimize T (B), the total
execution time with mini-batch size of B using Dynamic
Programming (DP), where T (b) is defined as follows:

T (b) = min

{
Tµ(b),
minb′=1,2,...,b−1 T (b

′) + T (b− b′)

}
,

where Tµ(b) is the fastest execution time of one convolution
kernel with a micro-batch size of b, within the workspace
constraint. If the first row of the definition of T (b) is smaller

ILP Optimizer

Dynamic Programming
Optimizer

UcudnnConvolution*

DL Framework µ-cuDNN
for(i = 1..L) {
cudnnGetConvolution*Algorithm(· · ·);
cudaMalloc(&ws[i], · · ·);

}
// Training loop
for(· · ·) {
for(i = 1..L)
cudnnConvolution*(· · ·, ws[i], · · ·);

}

Metadata

WS size (WR)
Zero WS size (WD)

Metadata
WS (WR)

In-memory
optimization
result cache

Workspace (WR)

w
s
[
1
]

M

Workspace (WD)

w
s
[
1
]
w
s
[
2
]

..
.

M

Fig. 4: Overview of µ-cuDNN. µ-cuDNN optimizes micro-batch sizes and internally calls cuDNN functions, with either a
per-layer workspace (WR) or a part of a global workspace (WD) of a size limit M .

than the second row, µ-cuDNN does not have to divide the
batch. Otherwise, it is beneficial to divide the batch into two
or more parts, applying the process recursively.

The key point of WR is that the optimal micro-configuration
size is deterministic and independent from other kernels. This
is because in this case, we assume that multiple kernels do
not run simultaneously.

The algorithm of WR comprises three steps, where the mini-
batch size is B, and given maximum workspace size is M :

1) For b = 1, 2, · · · , B, WR benchmarks all available
convolution algorithms of micro-batch size of b with
maximum workspace size of M , using cuDNN. We
define the fastest micro-configuration as cµ(b) = (a, b)
(where a is the fastest algorithm).

2) For b = 1, 2, · · · , B, WR computes T (b), the fastest
execution time for micro-batch size of b and c(b), as
follows (where T (0) = 0, c(0) = ∅). T (b) and c(b) are
memorized and reused for further iterations.

b̂µ ← argmin
bµ=1,2,...,b

{Tµ(bµ) + T (b− bµ)}

T (b) ← Tµ(b̂µ) + T (b− b̂µ)

c(b) ← {cµ(b̂µ)}+ c(b− b̂µ)

3) Outputs the optimal configuration c(B).
In practice, µ-cuDNN provides “micro-batch size policies”,

which determine what micro-batch sizes are benchmarked at
the step 1 of the WR algorithm, as follows:

• all uses all micro-batch sizes b ∈ {1, 2, 3, · · · , B}.
Although this always finds the best solution, it takes
O(B) time for the benchmark.

• powerOfTwo uses only power-of-two batch sizes b ∈
{20, 21, 22, · · · , B}. This saves a considerable amount of
time since it only costs O(logB) time for the benchmark.

• undivided uses only the original mini-batch size
b ∈ {B}. In WR, this option always selects the same
configuration as cuDNN, hence this option is only useful
to evaluate the overhead of µ-cuDNN.

These policies can be specified via an environment variable or
through a special library function in µ-cuDNN. Furthermore,
µ-cuDNN supports parallel micro-configuration evaluation,
where the aforementioned micro-batches are distributed to
different GPUs on the same computing node and tested
concurrently. This function assumes that the node contains
multiple GPUs of the same kind.

C. WD Algorithm

In the WD scheme, configurations for multiple convolution
kernels are optimized, while at the same time the total
workspace size should be less than the total workspace limit
that users specify. Therefore, WD is a more complex problem
than WR, since the configuration of each convolution kernel is
no longer independent from others, due to the total workspace
size constraint.

To solve this problem, we formulate a 0-1 Integer Linear
Programming (ILP)-based optimization algorithm (Figure 5).

conv1
u ∈ C1

x1,u = 1 conv2
v ∈ C2

x2,v = 1 . .
.

convk
c ∈ Ck

xk,c = 1

Total workspace size

Time

M

T2(v)

M2(v)

T

Fig. 5: ILP-based optimization of WD.

Given the set of kernels K and sets of available configurations
Ck of kernel k, WD is solved by minimizing Eq. (1):

min T =
∑
k∈K

∑
c∈Ck

Tk(c)xk,c (1)

subject to
∑
k∈K

∑
c∈Ck

Mk(c)xk,c ≤M (2)∑
c∈Ck

xk,c = 1 (∀k ∈ K) (3)

xk,c ∈ {0, 1} (∀k ∈ K,∀c ∈ Ck), (4)

where Mk(c) and Tk(c) are the workspace size and execution
time of kernel k with configuration c, respectively. Eq. (2)
limits the total workspace size to the user-specified size M .
µ-cuDNN uses configuration c on kernel k if and only if
xk,c = 1, and exactly one of them is selected for each kernel
k, according to the constraint in Eq. (3).

1) Desirable Configuration Selection: The challenging
problem of the above ILP-based algorithm is that if all possible
configurations are evaluated (i.e., all combinations of the
number of micro-batch and algorithms), the search-space is in
the order of |A|(|A| + 1)B−1 configurations for each kernel,
which is resulted from x(b) =

∑b
bµ=1 |A|x(b − bµ), where

x(b) is the number of configurations of a micro-batch size b,
A is set of algorithms and B is the mini-batch size. This huge
search-space makes the problem impractically large.

Below, we compute a Pareto front to remove undesirable
configurations from all possible configurations, without
returning any sub-optimal solutions. The resulting Pareto front
Ck is then input to the ILP to solve the entire problem.

First, we modify the DP algorithm from WR (Section III-B)
to output a set of configurations, rather than the fastest
configuration, as follows:

C(b) = D

 ∪
bµ=1,2,...,b

∪
cµ∈Cµ(bµ)

∪
c∈C(b−bµ)

({cµ}+ c)

 ,

where Cµ(b) is a set of available micro-configurations of
micro-batch size of b, and D is a pruning function described
below. Note that this outputs c(B) of the WR algorithm as
one of its elements; c(b) ∈ C(b) and cµ(b) ∈ Cµ(b) for any
b.

0 2 4 6 8 10

0

20

40

60

80

100

120

Time [ms]

W
or

ks
pa

ce
[M

iB
]

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
FFT
FFT_TILING
WINOGRAD_NONFUSED

Fig. 6: A Pareto front (in circles) and the corresponding
compositions of AlexNet’s “conv2” layer (Forward) on P100-
SXM2 with a maximum workspace size of 120 MiB, and a
mini-batch size of 256. Colored bars corresponding to data
points represent the division of the mini-batch and the chosen
micro-batch algorithms.

Second, we define the “desirable configuration set” D(C) ⊂
C as a Pareto front in the two-dimensional (execution time ×
workspace size) space:

D(C) = {c ∈ C|∀c′ ∈ C [T (c) < T (c′) ∨M(c) < M(c′)]},

where T (c) and M(c) stand for execution time and required
workspace size of a configuration c. This definition implies
that any c ∈ D(C) is the fastest configuration among any of
the elements of D(C) using a workspace size of M(c) or less.
Conversely, if an element c ∈ C is not in D(C), there is an
element that is both faster than c and requires less workspace,
hence there is no reason to choose c.

The above pruning drastically reduces the number of
variables of Eq. (1), and enables solving the ILP for state-
of-the-art deep CNNs in practical time. For instance, the
maximum number of desirable configurations of AlexNet’s
layers we examined in Section IV-B2 was 68, which is much
smaller than the exponential order, |A|(|A|+ 1)B−1 = 1.9×
10216, where |A| = 6 (the number of BackwardFilter
algorithms), B = 256. Figure 6 illustrates a Pareto front of
one convolutional layer of AlexNet.

2) Implementation Details: To perform WD optimization,
µ-cuDNN must know the number of convolutional layers
and corresponding layer parameters in advance, i.e., before
running any kernel. In the current cuDNN API, however, the
parameters are passed one layer at a time, and thus there is
no way to obtain all the parameters collectively from deep
learning frameworks.

To overcome this issue, we assume that the deep learning
framework calls cudnnGetConvolution*Algorithm
one time for each layer prior to the computation of the
entire network (e.g., training, inference). This is the most
straightforward use of the cuDNN interface, as memory
(including workspace) is usually allocated before initiating
computations. When the function is called, µ-cuDNN pushes

TABLE I: Convolution configurations of cuDNN 7.1.3.

Configuration Data Compute Algorithms
Type Type GEMM Winograd FFT

TRUE_HALF half half ✓ ✓
PSEUDO_HALF half float ✓ ✓ ✓
FLOAT float float ✓ ✓ ✓

the kernel parameters to an internal list, and returns a
dummy result. Note that the returned results satisfy the
semantics given by the cuDNN interface, so the framework
will not raise errors nor allocate its own workspaces. When
cudnnConvolution* is called for the first time, µ-cuDNN
executes the optimization algorithm (namely, WD). We use the
GNU Linear Programming Kit (GLPK) [15] as the ILP solver.

D. Exploiting Higher Computation Precision

µ-cuDNN increases the number of available algorithms by
exploiting higher computation precision than the framework
specifies. In particular, cuDNN permits three types of
configurations on convolutional layers that use either single-
or half-precision, which determine a data type in memory and
computation precision (Table I).

Table I shows that while TRUE_HALF can exploit either
GEMM (GEneral Matrix-Matrix multiply)-based convolu-
tion or Winograd’s algorithm, PSEUDO_HALF can select
FFT-based convolution in addition to them. Thus, when
TRUE_HALF is specified by the framework µ-cuDNN takes
algorithms of PSEUDO_HALF into account, in order to
exploit potential speedups by FFT-based convolution and
well-optimized implementations. Since computing precision
is increased, the function chosen by µ-cuDNN does not
incur higher numerical error than TRUE_HALF. In addition,
changing computation precision does not require explicit
memory realignment, hence no additional overhead will be
introduced except for a change in the workspace size.

E. High-level Optimization Frontend

In this section, we introduce µ-cuDNN’s Python interface.
Since the convolutional layers’ parameters are passed through
µ-cuDNN, it is capable of simplifying the analysis and
optimization of the convolutional layers, regardless of the
underlying deep learning framework. Indeed, almost all deep
learning frameworks exploit cuDNN, and thus this interface
provides widely-applicable utilities to end users.
µ-cuDNN first transparently stores benchmark results,

coupled with layer parameters, in an SQLite database (1.
and 2. of Figure 3). The database contains a table of
performance metrics of the cuDNN’s benchmarking functions
for specific GPUs, a table of layer IDs, and corresponding
layer parameters. Then, the Python interface loads the results
from the database, without involving the framework itself
(3.). This scheme decouples framework-specific codes from
the analysis process itself. This file-based caching is also
beneficial to eliminate repetition of benchmarking for the
optimization scheme described in Section III-B.

1 import ucudnn
2 import framework as f
3
4 mb = 256
5 gpus = ["K80", "K80", "K20Xm"]
6 f.CNN(gpus=gpus, minibatch=[mb, mb, ...]).run_once()
7 f.CNN(gpus=gpus,
8 minibatch=ucudnn.best_batch_size(mb, gpus)).run()

Fig. 7: Sample code for heterogeneous cluster optimization.

One concern when storing network parameters is that the
cuDNN interface does not provide unique identifiers for layers,
such as its name. To solve this problem, µ-cuDNN requires
an extra “layer ID” argument to be passed to the µ-cuDNN
functions. This requirement can easily be fulfilled in most
frameworks, as internal layer identifiers are already kept.

As a part of the Python interface, we provide a function
to minimize training time by assigning different micro-batch
sizes to heterogeneous GPUs (Figure 7). The motivation
behind this function is that researchers tend to have access
to clusters of heterogeneous accelerators, and highly utilizing
such clusters may speed up training considerably.

In Figure 7, the function in line 8 provides an uneven
batch size for each GPU so that the time to perform
forward and backward passes of synchronous SGD becomes
uniform among GPUs, increasing load balancing among
GPUs. Since gradient communication is typically overlapped
with computation, especially in large batch training [4],
we omit the extra communication term in the objective,
formulating the problem as follows:

min max
g∈G

{∑
b∈B

tg,bxg,b

}
subject to

∑
b∈B

xg,b ≤ 1 (∀g ∈ G)∑
g∈G

∑
b∈B

bxg,b = B

xg,b ∈ {0, 1} (∀g ∈ G, ∀b ∈ B),

where G is a set of GPUs, B is a set of available batch sizes
for each GPUs, B is the mini-batch size, and tg,b is time to
perform forward and backward passes on GPU g with a batch
size of b. µ-cuDNN uses a micro-batch size of b on GPU g
if and only if xg,b = 1. It is reasonable to restrict b to be
a multiple of a power of two in order to reduce the number
of configurations. If

∑
b∈B xg,b = 0 for a given GPU g, the

ILP failed to find a fast configuration with g and it will not
participate in training.

IV. PERFORMANCE EVALUATION

We evaluate the performance of µ-cuDNN for three different
GPU architectures, NVIDIA Tesla K80 [17], P100-SXM2
[18] and V100-SXM2 [19] on the TSUBAME-KFC/DL,
TSUBAME 3.0 supercomputers, and an NVIDIA DGX-
1, respectively. We also use a spare Tesla K20Xm and
GTX 750Ti on TSUBAME-KFC/DL in Section IV-C. The

TABLE II: Evaluation environment specification.

TSUBAME-KFC/DL TSUBAME 3.0 NVIDIA DGX-1
CPU E5-2620 × 2 E5-2680 v4 × 2 E5-2698 v4 × 2(Intel Xeon)

GPU
(NVIDIA
Tesla)

K80 × 4 P100-SXM2 × 4 V100-SXM2 × 8
- 8.73 SP TFlop/s - 10.6 SP TFlop/s - 15.7 SP TFlop/s
- 24 GiB GDDR5 - 16 GiB HBM2 - 16 GiB HBM2
(480 GiB/s BW) (732 GiB/s BW) (900 GiB/s BW)

SUSE Linux
OS CentOS 7.3.1611 Enterprise Server Ubuntu 16.04.3

12 SP2
CUDA 8.0.61 / 9.1.85 8.0.44 9.0.176
cuDNN 6.0 / 7.1.2 6.0 7.1.2
GLPK 4.63 4.63 N/A

Caffe 1.0 1.0 NVCaffe
v0.16.5 [16]

TensorFlow N/A 1.4.1 N/A

specifications of these systems are listed in Table II. Note
that a K80 GPU contains two GK210 chips, and we show
performance results of a single GK210 as “K80”.

Table III summarizes the experimental configurations
evaluated in this section. Throughout the evaluation, unless
explicitly mentioned, we use single-precision floating point
format and store tensors in the (N,H,C,W) storage order. We
use three different deep learning frameworks for evaluations:
Caffe [7], its NVIDIA branch (NVCaffe) [16], and TensorFlow
[8]. All of them support recent versions of cuDNN (6
or 7). We use a built-in benchmarking command (Caffe’s
“time” command) or an official benchmarking script (from
TensorFlow models repository [20]) to measure the execution
time of forward and backward passes, and show the sum
of forward and backward passes together. In the following
sections, unless explicitly mentioned, each forward-backward
pass is measured 50 times on both Caffe and TensorFlow.

For neural networks, we use AlexNet [1], ResNet [2],
and DenseNet [21]. For evaluations on Caffe, we use the
AlexNet model defined in Caffe, ResNet-18, and ResNet-
50 from NVCaffe. We modify data prefetching size from 4
to 16 for AlexNet and ResNet-18 for TSUBAME 3.0. For
evaluations on TensorFlow, we use the definitions in an official
benchmarking repository [22].

As for workspace limit, unless explicitly mentioned, we
use 8 MiB and 64 MiB for each layer, which are the default
workspace size limits of Caffe and Caffe2 [13] respectively. In
addition, we use 512 MiB of workspace per layer to investigate
the case where sufficiently large workspace is provided. To
shorten the benchmarking time, we use several GPUs on the

TABLE III: Evaluation settings. Neural architectures “DB”,
“A”, “R”, and “D” represent DeepBench, AlexNet, ResNet,
and DenseNet respectively.

Workspace Workspace Neural GPU(s)policy limit [MiB] Architecture
Layer Micro- WR 64 DB K80, P100, V100benchmark
Caffe WR, WD 8, 64, 512 A, R K80, P100, V100
TensorFlow WR 64 A, R, D P100
Heterogeneous

WR 64 R K80, K20Xm, 750Ticluster
optimization

TABLE IV: Number of convolutional layers in DeepBench.

Network type Kernel size Batch size # of layers
DeepSpeech 10× 5, 20× 5 4, 8, 16, 32 8
OCR 3× 3 16 4
Face Recognition 1× 1, 3× 3 8, 16 23
Vision 1× 1, 3× 3, 5× 5, 7× 7 8, 16 19
Speaker ID 3× 3, 5× 5 16 8
ResNet 1× 1, 3× 3 8, 16 32

same node with the parallel evaluation function of µ-cuDNN,
mentioned in Section III.

A. Layer Microbenchmark

DeepBench [23] is a set of frequently used layer
(e.g., convolution kernels) configurations in deep learning,
proposed by Baidu. DeepBench defines the parameters of 94
convolutional layers, including those of ResNet (Table IV).

Figure 8 shows the speedup of each convolutional layer
against cuDNN on three different GPUs. In this section, we
use the latest version of cuDNN (7.1.2), and set the workspace
limit to 64 MiB. Also, we multiply the batch size by 4 from
the original size.

In Figure 8, not only does µ-cuDNN accelerate the
frequently used 3 × 3 and 5 × 5 kernels for all the
GPUs, it also achieves up to 4.54x speedup (1.60x on
average) on a V100-SXM2 GPU, when computation is
done with half-precision and Tensor Cores. In this case,
µ-cuDNN adopts the PSEUDO_HALF configuration for 65
kernels (69% of the kernels), and TRUE_HALF for the others.
This observation demonstrates that µ-cuDNN successfully
avoids new implementations that are potentially inefficient. In
addition, Tensor Core-enabled convolutions tend to consume
a large amount of memory (up to 437.73 MiB, 64.6 MiB on
average on V100-SXM2) since GEMM-based convolution is
more efficient but require a large workspace to rearrange the
elements of an input tensor. This workspace requirement is,
however, naturally resolved by µ-cuDNN. More importantly,
µ-cuDNN was able to accelerate 3×3 kernels in half-precision,
which are usually adopted in recent CNNs, by 1.16x on P100-
SXM2 and 1.73x on V100-SXM2, on average respectively.

B. Deep Learning Frameworks

1) Caffe (WR): Figure 9 shows timing breakdowns of Caffe
on AlexNet with three different GPUs. We only highlight
convolutional layers since the others (e.g., pooling) are out
of the scope of this paper.

One important observation from Figure 9 is that the
performance improvement of µ-cuDNN over cuDNN (which
is equivalent to undivided) is significant when the moderate
amount of workspace is set by users. For instance, if the
workspace size per kernel is 64 MiB, µ-cuDNN with the
all option achieves 1.81x speedup with respect to the entire
iteration, and 2.10x with respect to convolutions alone, than
undivided on K80. This is because µ-cuDNN successfully
enables cuDNN to use faster algorithms, as in Figure 10. In
addition, a similar speedup is achieved on P100-SXM2 (1.40x
for the entire iteration, and 1.63x for convolutions alone), and
on V100-SXM2 (1.45x for the entire iteration, and 1.60x for
convolutions alone).

In the case where workspace size is limited to 8 MiB, µ-
cuDNN cannot attain any performance improvement, because
of WR’s per-layer workspace allocation scheme, which are too
small to utilize. Indeed, on P100-SXM2, only one kernel of
all option seems to increase the utilization of the workspace
over undivided.

On the other hand, when the workspace size limit is too
large (512 MiB) on K80 and P100-SXM2 GPUs, performance
difference between cuDNN and µ-cuDNN is negligible. This
is because there is no benefit from dividing the mini-batch,
as all algorithms fit into the workspace constraints. However,
this workspace limit consumes a considerable amount of
workspace memory: While the undivided option consumes
2.87 GiB in total, all with 64 MiB limit only consumes
0.70 GiB, although with 4% overhead caused by the choice
of micro-batch algorithms.

From the viewpoint of the time to optimization, including
kernel benchmarking and solving DP, powerOfTwo consid-
erably outperforms all. In particular, with 64 MiB workspace
on P100-SXM2, all takes 34.16 s, whereas powerOfTwo
takes 3.82 s. This result and Figure 9 imply that powerOfTwo

1

2

3

4

S
pe

ed
up

K80 P100-SXM2 P100-SXM2
(half)

V100-SXM2 V100-SXM2
(half)

V100-SXM2
(Tensor Cores)

1×1
3×3
5×5
7×7
10×5
20×5

Fig. 8: Relative speedups of DeepBench’s forward convolution against cuDNN. The whiskers and the points represent
minimum/maximum speedups and their means respectively. We use 64 MiB workspace size.

u p a u p a u p a

Ti
m

e
[m

s]

0

200

400

600

800

1000

(8 MiB) (64 MiB) (512 MiB)

etc.
conv5
conv4
conv3
conv2
conv1

(a) K80

u p a u p a u p a

Ti
m

e
[m

s]

0

50

100

150

200

(8 MiB) (64 MiB) (512 MiB)

(b) P100-SXM2

u p a u p a u p a

Ti
m

e
[m

s]

0

20

40

60

80

100

120

140

(8 MiB) (64 MiB) (512 MiB)

(c) V100-SXM2

Fig. 9: Benchmark results of AlexNet on three different GPUs with different workspace sizes (8, 64, 512 MiB). The labels
“u”, “p” and “a” represent undivided, powerOfTwo, and all, respectively. We use a mini-batch size of 256.

is a reasonable choice to test the computation efficiency of new
CNNs quickly. Note that we can reuse the same benchmarking
results for different hyperparameters to save time, since the
hyperparameters do not affect the computational performance
of the convolution operations. Generally, the overhead of µ-
cuDNN is negligible with respect to the entire training time,
since it is only run once, whereas the forward and backward
passes are repeated hundreds of thousands of times.

Figure 10 shows the execution time of forward convolution
(cudnnConvolutionForward) of the “conv2” layer in
AlexNet on P100-SXM2. With workspace size of 64 MiB,
the GEMM-based algorithm is the one chosen by cuDNN,
requiring only 4.3 KiB for workspace if the mini-batch is not
divided. On the other hand, FFT-based convolution is more
efficient, although it requires excessive amount of workspace
(213 MiB) to store the images and filters in the frequency
domain. µ-cuDNN with powerOfTwo option successfully
enables the use of FFT within the workspace size sizes,
using 48.9 MiB over micro-batches of size 32. The all
option also enables µ-cuDNN to use Winograd convolution,
an algorithm that is especially efficient for small convolution
kernels, achieving 2.33x speedup over undivided in total.

a

p

u

Time [ms]

0 1 2 3 4 5 6 7

IMPLICIT_PRECOMP_GEMM
FFT_TILING
WINOGRAD_NONFUSED32 32 48 48 48 48

32 32 32 32 32 32 32 32

256

Fig. 10: Benchmark results of forward convolution of
AlexNet’s “conv2” layer on P100-SXM2. We use 64 MiB
workspace size and a mini-batch size of 256. Numbers on
each rectangle represent micro-batch sizes.

Note that in our work we assume that CNNs are robust
against numerical errors introduced by changing a convolution
algorithm, as supported by previous work [12].

2) Caffe (WD): Figure 11 shows the benchmark results of
using the WD algorithm. The adjoined bars have the same
workspace limit in total: For example, since AlexNet has
five convolutional layers and each layer has three kernels
(Forward, BackwardData and BackwardFilter), we
place the result with 120 MiB WD workspace next to that of
8 MiB WR workspaces.

In Figure 11, we can see that the training time decreases as
the workspace constraints increase in both WR and WD. At
the same time, WD successfully manages the global memory
requirements better, attaining higher performance with the
same overall memory footprint (Figure 12). Specifically, when
120 MiB workspace in total is provided for AlexNet, the entire
execution time with WD optimization and all option is 1.24x

u p a u p a u p a u p a u p a u p a

Ti
m

e
[m

s]

0

50

100

150

200

(8 MiB) (64 MiB) (512 MiB)
(WR) (WD) (WR) (WD) (WR) (WD)

etc.
conv5...
conv1

Fig. 11: Benchmark results of AlexNet on P100-SXM2
with different workspace sizes and policies, WR (solid) and
WD (shaded). We use a mini-batch size of 256 for AlexNet
and 32 for ResNet-50. Note that the adjoined bars have the
same workspace limit in total.

u p a u p a

W
or

ks
pa

ce
[M

iB
]

0

20

40

60

80

100

120

140

F

BF

BD

BF

F

BF

BD

BF

(WR) (WD)

conv5
conv4
conv3
conv2
conv1

Fig. 12: Assigned workspace division of AlexNet on
P100-SXM2. “BD”, “BF” and “F” represent kernel types
(BackwardData, BackwardFilter and Forward re-
spectively). We use a mini-batch size of 256 for AlexNet. We
set a workspace limit of 8 MiB for WR, and a total workspace
limit of 120 MiB (shown as a dashed line) for WD.

faster than the WR with undivided option for the entire
iteration (or 1.38x for convolution). WD also outperforms the
baseline with 960 MiB workspace by 1.24x in total, which
can use 8 times more memory for workspace.

Furthermore, even for ResNet-50, which has 10 times
more convolutional layers than AlexNet, WD achieves 1.05x
speedup for the entire iteration (or 1.14x for convolutions)
with 2,544 MiB of total workspace, outperforming the original
version (which consumes 5,088 MiB) in terms of memory
footprint as well. In addition, the ILP for ResNet-50 is
still small enough to be solved in practical time. When the
workspace limit is set to 5,088 MiB, the number of variables
is 562, and the GLPK solver takes 5.46 ms to solve it. Even in
the most complicated case we tested, where ResNet-152 with
a mini-batch size of 128 is used, it only takes 716 ms.

The main reason that WD outperforms WR is that
in WR, if µ-cuDNN fails to find better algorithms and
micro-batch sizes to fully utilize the assigned workspace,
µ-cuDNN must abandon that workspace slot and cannot
allocate it to other kernels. On the other hand, in WD,
characteristics of different desirable workspace sizes of
different kernels (Figure 6) are implicitly considered in
the ILP-based optimization framework. Therefore, µ-cuDNN
can assign larger proportional workspaces to time-consuming
layers, if it is expected that the kernels will be considerably
faster with a larger workspace.

In Figure 12, µ-cuDNN with the WD policy spares most of
the workspace for “conv2” and “conv3” (93.7%), which are
the most time-consuming layers in the baseline. In contrast,
µ-cuDNN doesn’t allocate workspace of over 3 MiB for
“conv4” and “conv5”, although µ-cuDNN lists some faster
and desirable configurations than the baseline. For instance,
the fastest configuration of “conv5” (forward), which uses
FFT-based convolution with two micro-batches, is 1.29x faster

TABLE V: TensorFlow benchmark results on P100-SXM2.

Policy Time [ms] (Speedup)
AlexNet ResNet-50 DenseNet

undivided 229.0 318.0 639.0
powerOfTwo 186.0 (1.23) 302.0 (1.05) 579.0 (1.10)

all 185.0 (1.24) 302.0 (1.05) 574.0 (1.11)

than baseline, although this configuration uses 109 MiB of
workspace. This observation implies that the WD does not
unnecessarily allocate workspace for a specific layer but
chooses the best global combination, as defined by the ILP.

3) TensorFlow: Table V summarizes the speedups of the
second version of AlexNet [24], ResNet-50, and DenseNet-40
on P100-SXM2. We use a mini-batch size of 256 for AlexNet
and DenseNet, and 64 for ResNet-50.

We set the (input width, output width) to (224, 1000)
for AlexNet and ResNet-50, or (32, 10) for DenseNet-40,
which are used for training the ILSVRC2012 dataset [25]
or the CIFAR-10 dataset [26], respectively. We also set
k of DenseNet-40, the number of feature maps of each
convolutional layer, to 40 to obtain better computational
efficiency.

Since TensorFlow 1.4.1 does not provide any workspace
limits to µ-cuDNN via cuDNN’s benchmarking functions
before actual convolutions, we manually provide a workspace
limit of 64 MiB to µ-cuDNN. µ-cuDNN achieves 1.24x
speedup for AlexNet, 1.05x for ResNet-50, and 1.11x for
DenseNet. These results prove that µ-cuDNN has good
performance portability between different deep learning
frameworks that depend on cuDNN. Note that we do not
expect the same speedups between Caffe (Figure 9) and
TensorFlow (Table V). This is because TensorFlow uses
different parameters that µ-cuDNN cannot control (such as
padding widths), and a considerable part of the time is spent
on non-convolutional computation, which are implemented
differently in each framework.

C. Heterogeneous Cluster Optimization

In this section, we demonstrate the µ-cuDNN Python inter-
face by combining three different GPUs from the TSUBAME-
KFC/DL supercomputer: Tesla K20Xm, Tesla K80, and GTX
750Ti (Table VI). The K20Xm and K80 are Kepler generation
GPUs, whereas the 750Ti is a Maxwell generation GPU, not
intended for high performance computing.

We first run Caffe’s “time” command on each node to
collect performance metrics to a database. Since we employ
a file-based database, it is easily collected on a Networked
File System (NFS). Then, we use µ-cuDNN’s optimization
function in Python, which is explained in Section III-E.

TABLE VI: GPU specification.

FP32 TFlop/s Memory size [GiB]
Tesla K20Xm 3.95 6
Tesla K80 (GK210 × 2) 8.73 24
GTX 750Ti 1.31 2

Ti
m

e
[m

s]

0

100

200

300

400

750Ti K20Xm K80 750Ti
K20Xm

750Ti
K80

K20Xm
K80

K80×2
750Ti

K20Xm
K80

750Ti
K80×2

K20Xm
K80×2

750Ti
K20Xm
K80×2

334.1

154.2
130.8 123 107.2

80.5 70.3 70.3 65.9 61.8 59.5

750Ti
K20Xm
K80

32

32 32 11 21 9 23 15 17 16 16 6 10 16 5 13 14 8 12 12 5 7 10 10

Fig. 13: Estimated time of forward-backward passes of ResNet-18 on heterogeneous GPUs. Numbers on each bar represent
batch sizes. The objective is to minimize a maximum of GPUs’ time, shown as dashed lines.

Figure 13 shows the estimated time of forward-backward
passes of ResNet-18 on heterogeneous GPUs. By combining
two GK210 chips of a K80 GPU and a whole K20Xm GPU,
forward-backward passes become 2.12x faster than that
of a single GK210. When a K20Xm and a K80 are
combined, µ-cuDNN assigns uneven batch sizes, 8 and
{12, 12} respectively. In addition, if a user sets even batch
sizes for GPUs, 750Ti and K20Xm for example, the 750Ti will
become a bottleneck (168.43 ms vs 83.03 ms) and thus it will
incur a slowdown of 1.37x than µ-cuDNN. Furthermore, a
combination of all the GPUs yields 2.20x speedup against the
baseline. Note that the time to perform MPI all-reduce over
MVAPICH2 2.3a with a message size of 1 MiB on 3 nodes
takes 2.63 ms, which can be easily hidden by the computation.
Therefore, this example illustrates the potential speedups by
heterogeneous GPUs for training of a single CNN.

V. RELATED WORK

Li et. al [27] propose a heuristic to tune each tensor memory
layout to utilize either GEMM-based or FFT-based convolution
efficiently. The proposed heuristic is, however, based on
the authors’ performance observation using conventional
convolutional layers and specific GPU architecture, and thus
there is no guarantee that the algorithm always provides
the best memory alignment for any neural network and
GPU architecture. On the other hand, since µ-cuDNN uses
the techniques of dynamic programming and integer linear
programming, it is guaranteed that µ-cuDNN provides the best
performance that the library can produce.

Rhu et al. [28] propose a memory management technique
that offloads neuron activations, parameters, and errors from
the GPU memory to the CPU memory during forward-
/backward-propagation, so that larger models can be trained
with the same memory constraint. However, as Figure 1 shows,
even in such memory-efficient implementations or similar
memory management techniques [29] µ-cuDNN is expected
to save the peak memory usage of each layer.

Zlateski et al. [30] propose ZNNi, an FFT-based convolution
algorithm, and mention a technique similar to micro-batching

to reduce the temporal memory usage by FFT. We generalize
the schema so that micro-batching can be applied to
any convolution algorithm, obtain the best computational
performance for the given layer configurations, as well as
maintain high portability between different deep learning
frameworks.

VI. CONCLUSION

In this paper, we proposed µ-cuDNN, a wrapper library
for cuDNN, which divides the mini-batch to utilize high-
performance convolution algorithms with limited amount of
memory for workspaces. We have shown that µ-cuDNN can
easily be integrated into existing deep learning frameworks,
and works well with several recent CNNs, which are composed
of many convolutional layers. In addition, µ-cuDNN provides
a framework-independent interface that is useful for empirical
performance optimization within a single machine and load
balancing across a heterogeneous cluster.

The performance of µ-cuDNN demonstrated in our work
suggests that other layer types can be optimized as well, if they
can be decomposed and computed by different algorithms.
This is because µ-cuDNN does not use any special properties
of the convolution operator, apart from gradient accumulation.

In addition, the result of WD optimization (Figure 12)
provides us with the insight that allocating the same workspace
memory for each convolutional layer is not necessarily
effective, and dynamic, adaptive assignment performs better.
This observation should be beneficial for advanced deep
learning frameworks that dynamically manage GPU memory
to store tensors such as neuron data, weights and their
gradients, for further memory optimization.

ACKNOWLEDGMENT

This research was supported by the ETH Postdoctoral Fel-
lowship (for T. B. N.), Student Summer Research Fellowship
(for Y. O.), JST CREST Grant Number JPMJCR1303, JP-
MJCR1687, and JSPS KAKENHI Grant Number JP18J22858,
Japan. Part of this work is conducted as research activities of
AIST - TokyoTech Real World Big-Data Computation Open
Innovation Laboratory (RWBC-OIL).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems 25 (NIPS 2012), Dec 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2016), Jun 2016,
pp. 770–778.

[3] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, K. He, and P. Dollar, “Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour,” CoRR, vol. abs/1706.0,
Jun 2017, http://arxiv.org/abs/1706.02677.

[4] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large Minibatch
SGD: Training ResNet-50 on ImageNet in 15 Minutes,” CoRR, vol.
abs/1711.04325, Nov 2017, https://arxiv.org/abs/1711.04325.

[5] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t Decay the Learning
Rate, Increase the Batch Size,” CoRR, vol. abs/1711.00489, Nov 2017,
https://arxiv.org/abs/1711.00489.

[6] NVIDIA. NVIDIA cuDNN. https://developer.nvidia.com/cudnn. Ac-
cessed on 2017-11-23.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” https://www.
tensorflow.org/, Nov 2015.

[9] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016, http://arxiv.org/abs/1605.02688.

[10] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a Next-
Generation Open Source Framework for Deep Learning,” in Proceedings
of Workshop on Machine Learning Systems (LearningSys) in The
Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS 2015), Dec 2015.

[11] M. Mathieu, M. Henaff, and Y. Lecun, “Fast training of convolutional
networks through FFTs,” in International Conference on Learning
Representations (ICLR 2014), Apr 2014.

[12] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural
Networks,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2016), Jun 2016,
pp. 4013–4021.

[13] Facebook. Caffe2. https://caffe2.ai/. Accessed on 2017-11-23.
[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2015), vol. 07-12-June, Jun 2015.

[15] A. Makhorin. GLPK (GNU Linear Programming Kit). https://www.gnu.
org/software/glpk/. Accessed on 2017-11-23.

[16] NVIDIA. NVIDIA Caffe. https://github.com/NVIDIA/caffe. Accessed
on 2017-11-23.

[17] ——. Tesla K80 HPC and Machine Learning Accelerator. http://www.
nvidia.com/object/tesla-k80.html. NVIDIA. Accessed on 2017-11-23.

[18] ——. Tesla P100 Most Advanced Data Center Accelerator. http://www.
nvidia.com/object/tesla-p100.html. Accessed on 2017-11-23.

[19] ——. NVIDIA Tesla V100. https://www.nvidia.com/en-us/data-center/
tesla-v100/. Accessed on 2018-3-1.

[20] The TensorFlow Authors. tensorflow/models. https://github.com/
tensorflow/models. Accessed on 2018-3-1.

[21] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2017), Jul 2017.

[22] The TensorFlow Authors. tensorflow/benchmarks. https://github.com/
tensorflow/benchmarks. Accessed on 2018-3-1.

[23] Baidu Research. DeepBench. https://github.com/baidu-research/
DeepBench. Accessed on 2018-5-3.

[24] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint, vol. abs/1404.5, Apr 2014, http://arxiv.org/
abs/1404.5997.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, no. 3, pp. 211–252, 2015.

[26] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf,
Tech. Rep., Apr 2009.

[27] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing
Memory Efficiency for Deep Convolutional Neural Networks on GPUs,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’16). Piscataway,
NJ, USA: IEEE Press, Nov 2016, pp. 54:1–54:12.

[28] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2016), Oct 2016.

[29] K. Shirahata, Y. Tomita, and A. Ike, “Memory reduction method for deep
neural network training,” in 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP 2016), Sep 2016.

[30] A. Zlateski, K. Lee, and H. S. Seung, “ZNNi: Maximizing the Inference
Throughput of 3D Convolutional Networks on CPUs and GPUs,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’16), Nov 2016, pp.
854–865.

http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1711.04325
https://arxiv.org/abs/1711.00489
https://developer.nvidia.com/cudnn
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1605.02688
https://caffe2.ai/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://github.com/NVIDIA/caffe
http://www.nvidia.com/object/tesla-k80.html
http://www.nvidia.com/object/tesla-k80.html
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

