
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Performance Modeling for Future Computing Technologies
Presentation at Tsinghua University, Beijing, China
Part of the 60th anniversary celebration of the Computer Science Department (#9)

spcl.inf.ethz.ch

@spcl_eth

2

Changing hardware constraints and the physics of computing

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary
[2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012

130nm

90nm

65nm

45nm

32nm

22nm
14nm

10nm

0.9 V [1]

32-bit FP ADD: 0.9 pJ
32-bit FP MUL: 3.2 pJ

2x32 bit from L1 (8 kiB): 10 pJ
2x32 bit from L2 (1 MiB): 100 pJ
2x32 bit from DRAM: 1.3 nJ

…

Three Ls of modern computing:

How to address locality challenges on standard architectures and programming?

D. Unat et al.: “Trends in Data Locality Abstractions for HPC Systems”

IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol 28, Nr. 10, IEEE, Oct. 2017

spcl.inf.ethz.ch

@spcl_eth

3

Control Locality? Load-store vs. Dataflow architectures

Memory

Cache

RegistersControl

x=a+b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y=(a+b)*(c+d)

a b

+

x

a b c d

a+b c+d

y

Turing Award 1977 (Backus): "Surely there must be a less primitive
way of making big changes in the store than pushing vast numbers

of words back and forth through the von Neumann bottleneck."

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non von Neumann”)

spcl.inf.ethz.ch

@spcl_eth

4

Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

Memory

Cache

RegistersControl

ALUALU

ALUALU

ALUALU

ALUALU

ALUALU
45nm, 0.9 V [1]

Random Access SRAM:

8 kiB: 10 pJ
32 kiB: 20 pJ
1 MiB: 100 pJ

Memory

+

c d ya b

+

x

a b c d

45nm, 0.9 V [1]

Single R/W registers:

32 bit: 0.1 pJ

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary

(High Performance) Computing really
became a data management challenge

spcl.inf.ethz.ch

@spcl_eth

image source: 21stcentury.com image source: intel.com image source: intel.com 5

Crystal Ball into the Post-Moore Future (maybe already today?)

• Completely different paradigm
• Concept of qubits
• Bases on quantum mechanics

(which only works in isolation)
• Many different ideas how to build

• Ion trap (ions trapped in fields)
• Optical
• Spin-based
• Superconducting
• Majorana qubits
• … (none proven to scale)

• Needs new algorithms to be useful
• Algorithms are limited

Quantum Efficient CMOS

• Asynchronous CMOS circuits
• 1000x energy benefit

• Integrates compute (neurons) and
memory/communication (synapses)

• Very specialized
• Network and storage
• Phrase your problem as

inference!
• Even learning is hard

• Comparatively little work
• Suddenly much lower energy

benefits …

Neuromorphic

• FPGAs or CGRAs or GPUs
• Have been around for a while

• Use transistors more efficiently
• Accelerators
• Custom architectures
• Reconfigurable datapaths

• Adapt architecture to problem
• Dataflow + Control Flow

• Main challenge
• Programmability!
• See our SC18 tutorial

“Productive Parallel

Programming for FPGA

Rest of this talk: how do we understand which
parts of programs to accelerate on which device?

Future architectures will force us to manage
accelerated heterogeneity

Obvious answer: the slow ones!
So simply observe their performance? Not so fast.

spcl.inf.ethz.ch

@spcl_eth

1 ~103 ~104 ~106 ~108 ~1010 ~1011

6

~4x

dgemm("N", "N", 50, 50, 50, 1.0, A, 50, B, 50, 1.0, C, 50);

>2x

What can we learn from High Performance Computing

spcl.inf.ethz.ch

@spcl_eth

7

HPC is used to solve complex problems!

Image credit: Serena Donnin, Sarah Rauscher, Ivo Kabashow

spcl.inf.ethz.ch

@spcl_eth

8

Scientific Performance Engineering

1) Observe
2) Model

3) Understand
4) Build

spcl.inf.ethz.ch

@spcl_eth

9

Part I: Observe

Measure systems

Collect data

Examine documentation

Gather statistics

Document process

Experimental design

Factorial design

spcl.inf.ethz.ch

@spcl_eth

10

The latency of
Piz Daint is

1.77us!

How did you get
this number?

I averaged 106

experiments, it
must be right!

u
se

c

sample

Why do you think
so? Can I see the

data?

Trivial Example: Simple ping-pong latency benchmark

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

~1.77us

~1.2ms

spcl.inf.ethz.ch

@spcl_eth

Dealing with variation

11

The 99.9% confidence
interval is 1.765us to

1.775us

Did you assume
normality?

Can we test for
normality?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

What? Isn’t that always
the case with many

measurements?

Ugs, the data is not normal at all.
The nonparametric 99.9% CI is

much wider: 1.6us to 1.9us!

spcl.inf.ethz.ch

@spcl_eth

12

Looking at the data in detail

This CI makes
me nervous.
Let’s zoom!

Clearly, the
mean/median are

not sufficient!

Try quantile
regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

13

Scientific benchmarking of parallel computing systems

Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as well as

the absolute execution performance of the base case.Rule 2: Specify the reason for only reporting subsets of standard
benchmarks or applications or not using all system resources.Rule 3: Use the arithmetic mean only for summarizing costs. Use the

harmonic mean for summarizing rates.
Rule 4: Avoid summarizing ratios; summarize the costs or rates that

the ratios base on instead. Only if these are not available use the
geometric mean for summarizing ratios.

Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the

measurement.Rule 6: Do not assume normality of collected data (e.g., based on
the number of samples) without diagnostic checking.
Rule 7: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.
Rule 9: Document all varying factors and their levels as well as the

complete experimental setup (e.g., software, hardware, techniques)
to facilitate reproducibility and provide interpretability.

Rule 10: For parallel time measurements, report all measurement,
(optional) synchronization, and summarization techniques.Rule 11: If possible, show upper performance bounds to facilitate

interpretability of the measured results.
Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if they
indicate trends and the interpolation is valid.

ACM/IEEE Supercomputing 2015 (SC15) + talk online on youtube!

spcl.inf.ethz.ch

@spcl_eth

14

Simplifying Measuring and Reporting: LibSciBench

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

▪ Simple MPI-like C/C+ interface
▪ High-resolution timers
▪ Flexible data collection
▪ Controlled by environment variables
▪ Tested up to 512k ranks
▪ Parallel timer synchronization
▪ R scripts for data analysis and visualization

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

spcl.inf.ethz.ch

@spcl_eth

15

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

t(n=1510)?

t(n=2100)?

Matrix Multiply
t(n) = a*n3

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

16

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.
The adjusted R2 of the model fit is 0.99

t(n=1510)=0.248s

t(n=2100)=0.667s

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

17

Part II: Model

Burnham, Anderson: “A model is a simplification or approximation of
reality and hence will not reflect all of reality. ... Box noted that “all
models are wrong, but some are useful.” While a model can never
be “truth,” a model might be ranked from very useful, to useful, to
somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.
We focus on performance modeling in the following!

Model

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements Model

spcl.inf.ethz.ch

@spcl_eth

19

Requirements modeling I: Six-step performance modeling

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11
[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

Input
parameters

Describe application
kernels

Communication
pattern

Communication /
computation overlap

Fit sequential
baseline

Communication
parameters

10-20% speedup [2]

spcl.inf.ethz.ch

@spcl_eth

▪ Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

▪ Idea: Automatically select best (scalability) model from predefined search space

20

Requirements modeling II: Automated best-fit modeling

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13

=

=
n

k

ji

k ppcpf kk

1

2)(log)(n Î

ik Î I

jk Î J

I, J Ì

n =1

I = 0,1, 2{ }

J = {0,1}

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

e.g., number of
processes

(model) constant

number of terms

spcl.inf.ethz.ch

@spcl_eth

▪ Manual kernel selection and hypothesis generation is time consuming (and boring)

▪ Idea: Automatically select best model from predefined space

21

Requirements modeling II: Automated best-fit modeling

f (p) = ck × pik × log2

jk (p)
k=1

n

å
n Î

ik Î I

jk Î J

I, J Ì

n = 2

I = 0,1, 2{ }

J = {0,1}

c1 + c2 × p

c1 + c2 × p2

c1 + c2 × log(p)

c1 + c2 × p × log(p)

c1 + c2 × p2 × log(p)

)log(

)log()log(

)log(

)log(

)log(

)log()log(

)log(

)log()log(

)log(

2

2

2

1

2

21

2

21

2

21

2

21

21

2

21

2

21

21

21

ppcpc

ppcppc

pcppc

ppcpc

pcpc

ppcpc

ppcpc

pcpc

ppcpc

pcpc

+

+

+

+

+

+

+

+

+

+

[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13

spcl.inf.ethz.ch

@spcl_eth

▪ Extra-P selects model based on best fit to the data

▪ What if the data is not sufficient or too noisy?

▪ Back to first principles

▪ The source code describes all possible executions

▪ Describing all possibilities is too expensive, focus on counting loop iterations symbolically

22

Requirements modeling III: Source-code analysis [1]

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

OperationInBody(j,k);

2log)1(2 +−+= nnnN

Parallel program
Loop extraction

→

=

=

=

p

p

ND

NW
1

Requirements Models
Number of iterations

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements ModelInput
paramet

ers

Describe
application

kernels

Commun
ication
pattern

Communicati
on /

computation
overlap

Fit
sequenti

al
baseline

Commun
ication

paramet
ers

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commun
ication
pattern

Communicati
on /

computation
overlap

Fit
sequenti

al
baseline

Commun
ication

paramet
ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

spcl.inf.ethz.ch

@spcl_eth

26

Capability models for cache-to-cache communication

X =

| = Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

write read

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commun
ication
pattern

Communicati
on /

computation
overlap

Fit
sequenti

al
baseline

Commun
ication

paramet
ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Performance Model

spcl.inf.ethz.ch

@spcl_eth

▪ Use models to

1. Proof optimality of real implementations

• Stop optimizing, step back to algorithm level

2. Design optimal algorithms or systems in the model

• Can lead to non-intuitive designs

▪ Proof optimality of matrix multiplication

▪ Intuition: flop rate is the bottleneck

▪ t(n) = 76ps * n3

▪ Flop rate R = 2flop * n3/(76ps * n3) = 27.78 Gflop/s

▪ Flop peak: 3.864 GHz * 8 flops = 30.912 Gflop/s

Achieved ~90% of peak (IBM Power 7 IH @3.864GHz)

▪ Gets more complex quickly

▪ Imagine sparse matrix-vector

28

Part III: Understand

Understand

☺

spcl.inf.ethz.ch

@spcl_eth

30

Design algorithms – bcast in cache-to-cache model

Tree cost

Tree depth

Reached threads

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

0

2

4 5 6 7

Multi-ary tree example

3 8

1

depth d = 2

k1 = 2

k2 = 3

Level size

spcl.inf.ethz.ch

@spcl_eth

31

Measured results – small broadcast and reduction

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

Intel Xeon Phi 5110P (60 cores at 1052 MHz), Intel MPI v.4.1.4 – each operation timed separately, reporting maximum across processes

4.7x
3.3x

P=10

P=58

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commun
ication
pattern

Communicati
on /

computation
overlap

Fit
sequenti

al
baseline

Commun
ication

paramet
ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

spcl.inf.ethz.ch

@spcl_eth

33

How to continue from here?

▪ Data-centric, explicit requirements models

DAPP Parallel Language

▪ User-supported, compile- and run-time

DAPP Transformation System

memlets

+
operators

DCIR=

[1]: M. Besta, TH: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, ACM HPDC’15
[2]: R. Belli, TH: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
[3]: S. Di Girolamo, P. Jolivet, K. D. Underwood, TH: Exploiting Offload Enabled Network Interfaces, IEEE Micro’16

Performance-transparent Platforms

RMA foMPI-NA [2] NISA [3]HTM [1]

