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Changing hardware constraints and the physics of computing

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary  
[2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012
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32-bit FP ADD:  0.9 pJ
32-bit FP MUL:  3.2 pJ

2x32 bit from L1 (8 kiB):    10 pJ
2x32 bit from L2 (1 MiB):  100 pJ
2x32 bit from DRAM:         1.3 nJ

…

Three Ls of modern computing:

How to address locality challenges on standard architectures and programming?

D. Unat et al.: “Trends in Data Locality Abstractions for HPC Systems”

IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol 28, Nr. 10, IEEE, Oct. 2017
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Control Locality? Load-store vs. Dataflow architectures

Memory

Cache

RegistersControl

x=a+b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y=(a+b)*(c+d)

a b

+

x

a b c d

a+b c+d

y

Turing Award 1977 (Backus): "Surely there must be a less primitive 
way of making big changes in the store than pushing vast numbers 

of words back and forth through the von Neumann bottleneck."

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non von Neumann”)
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Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

Memory

Cache

RegistersControl

ALUALU

ALUALU

ALUALU

ALUALU

ALUALU
45nm, 0.9 V [1]

Random Access SRAM:

8 kiB: 10 pJ
32 kiB: 20 pJ
1 MiB: 100 pJ

Memory

+

c d ya b

+

x

a b c d

45nm, 0.9 V [1]

Single R/W registers: 

32 bit: 0.1 pJ

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary  

(High Performance) Computing really 
became a data management challenge



spcl.inf.ethz.ch

@spcl_eth

image source: 21stcentury.com image source: intel.com image source: intel.com 5

Crystal Ball into the Post-Moore Future (maybe already today?)

• Completely different paradigm
• Concept of qubits
• Bases on quantum mechanics 

(which only works in isolation)
• Many different ideas how to build

• Ion trap (ions trapped in fields)
• Optical 
• Spin-based 
• Superconducting
• Majorana qubits
• … (none proven to scale)

• Needs new algorithms to be useful
• Algorithms are limited

Quantum Efficient CMOS

• Asynchronous CMOS circuits
• 1000x energy benefit 

• Integrates compute (neurons) and 
memory/communication (synapses)

• Very specialized
• Network and storage
• Phrase your problem as 

inference!
• Even learning is hard

• Comparatively little work
• Suddenly much lower energy 

benefits …

Neuromorphic

• FPGAs or CGRAs or GPUs
• Have been around for a while

• Use transistors more efficiently
• Accelerators
• Custom architectures
• Reconfigurable datapaths

• Adapt architecture to problem
• Dataflow + Control Flow

• Main challenge
• Programmability!
• See our SC18 tutorial

“Productive Parallel 

Programming for FPGA

Rest of this talk: how do we understand which 
parts of programs to accelerate on which device?

Future architectures will force us to manage
accelerated heterogeneity

Obvious answer: the slow ones! 
So simply observe their performance? Not so fast.
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~4x

dgemm("N", "N", 50, 50, 50, 1.0, A, 50, B, 50, 1.0, C, 50);

>2x

What can we learn from High Performance Computing 
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HPC is used to solve complex problems!

Image credit: Serena Donnin, Sarah Rauscher, Ivo Kabashow
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Scientific Performance Engineering

1) Observe
2) Model

3) Understand
4) Build
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Part I: Observe

Measure systems

Collect data

Examine documentation

Gather statistics

Document process

Experimental design

Factorial design
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The latency of 
Piz Daint is 

1.77us!

How did you get 
this number?

I averaged 106

experiments, it 
must be right!

u
se

c

sample

Why do you think 
so? Can I see the 

data?

Trivial Example: Simple ping-pong latency benchmark

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

~1.77us

~1.2ms
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The 99.9% confidence 
interval is 1.765us to 

1.775us

Did you assume 
normality?

Can we test for 
normality?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

What? Isn’t that always 
the case with many 

measurements?

Ugs, the data is not normal at all. 
The nonparametric 99.9% CI is 

much wider: 1.6us to 1.9us!
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Looking at the data in detail

This CI makes 
me nervous. 
Let’s zoom!

Clearly, the 
mean/median are 

not sufficient!

Try quantile 
regression!

Image credit: nersc.gov

S

D
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Scientific benchmarking of parallel computing systems

Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as well as 

the absolute execution performance of the base case.Rule 2: Specify the reason for only reporting subsets of standard 
benchmarks or applications or not using all system resources.Rule 3: Use the arithmetic mean only for summarizing costs. Use the 

harmonic mean for summarizing rates.
Rule 4: Avoid summarizing ratios; summarize the costs or rates that 

the ratios base on instead. Only if these are not available use the 
geometric mean for summarizing ratios.

Rule 5: Report if the measurement values are deterministic. For 
nondeterministic data, report confidence intervals of the 

measurement.Rule 6: Do not assume normality of collected data (e.g., based on 
the number of samples) without diagnostic checking.
Rule 7: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.
Rule 9: Document all varying factors and their levels as well as the 

complete experimental setup (e.g., software, hardware, techniques) 
to facilitate reproducibility and provide interpretability.

Rule 10: For parallel time measurements, report all measurement, 
(optional) synchronization, and summarization techniques.Rule 11: If possible, show upper performance bounds to facilitate 

interpretability of the measured results.
Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if they 
indicate trends and the interpolation is valid.

ACM/IEEE Supercomputing 2015 (SC15) + talk online on youtube!
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Simplifying Measuring and Reporting: LibSciBench

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

▪ Simple MPI-like C/C+ interface
▪ High-resolution timers
▪ Flexible data collection
▪ Controlled by environment variables
▪ Tested up to 512k ranks
▪ Parallel timer synchronization
▪ R scripts for data analysis and visualization

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
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We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

t(n=1510)?

t(n=2100)?

Matrix Multiply
t(n) = a*n3

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.
The adjusted R2 of the model fit is 0.99

t(n=1510)=0.248s

t(n=2100)=0.667s

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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Part II: Model

Burnham, Anderson: “A model is a simplification or approximation of 
reality and hence will not reflect all of reality. ... Box noted that “all 
models are wrong, but some are useful.” While a model can never 
be “truth,” a model might be ranked from very useful, to useful, to 
somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.
We focus on performance modeling in the following!

Model
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Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements Model
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Requirements modeling I: Six-step performance modeling

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11
[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

Input 
parameters

Describe application 
kernels

Communication 
pattern

Communication / 
computation overlap

Fit sequential 
baseline

Communication 
parameters

10-20% speedup [2]
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▪ Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

▪ Idea: Automatically select best (scalability) model from predefined search space

20

Requirements modeling II: Automated best-fit modeling

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13
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▪ Manual kernel selection and hypothesis generation is time consuming (and boring)

▪ Idea: Automatically select best model from predefined space
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Requirements modeling II: Automated best-fit modeling
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[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13
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▪ Extra-P selects model based on best fit to the data

▪ What if the data is not sufficient or too noisy? 

▪ Back to first principles

▪ The source code describes all possible executions 

▪ Describing all possibilities is too expensive, focus on counting loop iterations symbolically

22

Requirements modeling III: Source-code analysis [1]

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

OperationInBody(j,k);

2log)1( 2 +−+= nnnN

Parallel program
Loop extraction

→

=

=

=

p

p

ND

NW
1

Requirements Models
Number of iterations

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14
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Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements ModelInput 
paramet

ers

Describe 
application 

kernels

Commun
ication 
pattern

Communicati
on / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commun
ication 

paramet
ers

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)
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Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input 
paramet

ers

Describe 
application 

kernels

Commun
ication 
pattern

Communicati
on / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commun
ication 

paramet
ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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Capability models for cache-to-cache communication

X =

| = Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

write read
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Performance Modeling

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input 
paramet

ers

Describe 
application 

kernels

Commun
ication 
pattern

Communicati
on / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commun
ication 

paramet
ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Performance Model
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▪ Use models to

1. Proof optimality of real implementations

• Stop optimizing, step back to algorithm level

2. Design optimal algorithms or systems in the model

• Can lead to non-intuitive designs

▪ Proof optimality of matrix multiplication

▪ Intuition: flop rate is the bottleneck

▪ t(n) = 76ps * n3

▪ Flop rate R = 2flop * n3/(76ps * n3) = 27.78 Gflop/s

▪ Flop peak: 3.864 GHz * 8 flops = 30.912 Gflop/s

Achieved ~90% of peak (IBM Power 7 IH @3.864GHz)

▪ Gets more complex quickly

▪ Imagine sparse matrix-vector

28

Part III: Understand

Understand

☺
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Design algorithms – bcast in cache-to-cache model

Tree cost

Tree depth

Reached threads

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

0

2

4 5 6 7

Multi-ary tree example

3 8

1

depth d = 2

k1 = 2

k2 = 3

Level size
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Measured results – small broadcast and reduction

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

Intel Xeon Phi 5110P (60 cores at 1052 MHz), Intel MPI v.4.1.4 – each operation timed separately, reporting maximum across processes

4.7x
3.3x

P=10

P=58
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Performance Modeling

Performance Model

Requirements Model

c1
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overlap

Fit 
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Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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How to continue from here?

▪ Data-centric, explicit requirements models

DAPP Parallel Language

▪ User-supported, compile- and run-time

DAPP Transformation System

memlets

+
operators

DCIR=

[1]: M. Besta, TH: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, ACM HPDC’15
[2]: R. Belli, TH: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
[3]: S. Di Girolamo, P. Jolivet, K. D. Underwood, TH: Exploiting Offload Enabled Network Interfaces, IEEE Micro’16

Performance-transparent Platforms

RMA foMPI-NA [2] NISA [3]HTM [1]


