
Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware

Tiziano De Matteis
Department of Computer Science, ETH Zurich

tiziano.dematteis@inf.ethz.ch

Johannes de Fine Licht
Department of Computer Science, ETH Zurich

definelicht@inf.ethz.ch

Jakub Beránek
IT4Innovations, VŠB - Technical University of Ostrava

jakub.beranek@vsb.cz

Torsten Hoefler
Department of Computer Science, ETH Zurich

htor@inf.ethz.ch

ABSTRACT
Distributed memory programming is the established paradigm used
in high-performance computing (HPC) systems, requiring explicit
communication between nodes and devices. When FPGAs are de-
ployed in distributed settings, communication is typically handled
either by going through the host machine, sacrificing performance,
or by streaming across fixed device-to-device connections, sacri-
ficing flexibility. We present Streaming Message Interface (SMI), a
communication model and API that unifies explicit message pass-
ing with a hardware-oriented programming model, facilitating
minimal-overhead, flexible, and productive inter-FPGA communica-
tion. Instead of bulk transmission, messages are streamed across the
network during computation, allowing communication to be seam-
lessly integrated into pipelined designs. We present a high-level
synthesis implementation of SMI targeting a dedicated FPGA inter-
connect, exposing runtime-configurable routing with support for
arbitrary network topologies, and implement a set of distributed
memory benchmarks. Using SMI, programmers can implement
distributed, scalable HPC programs on reconfigurable hardware,
without deviating from best practices for hardware design.

KEYWORDS
DistributedMemory Programming, Reconfigurable computing, High-
Level Synthesis Tools

ACM Reference Format:
Tiziano De Matteis, Johannes de Fine Licht, Jakub Beránek, and Torsten
Hoefler. 2019. Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware. In The International
Conference for High Performance Computing, Networking, Storage, and Anal-
ysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3295500.3356201

1 INTRODUCTION
The end of Moore’s law and Dennard scaling causes a major dis-
ruption to the high-performance computing industry. Both require

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6229-0/19/11.
https://doi.org/10.1145/3295500.3356201

APP

 INTERFACE
 TRANSPORT

PORT PORT PORT PORT

D
R
A
M

FPGA FPGA

FPGA FPGA

APP

FPGA
NETWORK

SMI

Figure 1: Multi-FPGA programming with SMI1.

us to re-think computer architecture in order to reduce data move-
ment and power dissipation on chips, and to use the existing tran-
sistors more efficiently. To address both problems, reconfigurable
architectures with application-specific dataflow as well as com-
pute logic provide a viable option. Many large-scale datacenter
operators, such as Amazon [13] and Microsoft [3], already build
on reconfigurable logic to specialize hardware implementations to
their workloads. Reconfigurable logic can avoid the well-known
architectural von Neumann (load-store) bottleneck, but poses new
challenges in programming these devices. Yet, highly efficient de-
signs with significant performance and energy benefits have shown
that efforts in the area are well spent [14, 26, 27].

Reconfigurable hardware traditionally came in the flavor of fully
configurable logic devices, field-programmable gate arrays (FPGAs),
or devices with a large fraction of hardened logic with flexible dat-
apaths, so-called coarse-grained reconfigurable arrays (CGRAs).
Today, the boundary between FPGAs and CGRAs is vanishing,
with the introduction of high-performance FPGAs that contain
powerful DSP cores, such as Intel’s Stratix 10 (10 TFLOP/s single
precision [24]), and AI Engines in Xilinx Versal devices [25]. Those
high-performance FPGAs become highly attractive for HPC work-
loads if the programming problem can be solved. Recent develop-
ments in high-level synthesis promises to deliver high productivity
on FPGAs replacing the traditional register transfer logic (RTL)
specification with a standard C/C++ code interface integrated with
modern OpenCL frameworks [4, 5].

Most of the HLS research focuses on programming one or mul-
tiple FPGAs attached to a single host. Yet, in HPC systems, single
FPGAs need to be scaled up to clusters containing many devices.
Today, communication is performed through message passing at
the host, where data is usually transported via PCI Express (PCIe)

1SMI is publicly available at https://github.com/spcl/SMI

https://doi.org/10.1145/3295500.3356201
https://doi.org/10.1145/3295500.3356201
 https://github.com/spcl/SMI

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

to the main memory, and then through a different PCIe channel to
the network interface. This adds high overheads in terms of latency,
bandwidth, and load on the host’s memory subsystem. Nearly all
modern FPGA chips bear high-performance serial link network
connections. For example, Intel’s Stratix 10 chip has four 40Gbit/s
connections and Xilinx’ UltraScale+ chips support 30Gbit/s off-
chip connectivity. These links are often available via proprietary
interfaces for communication among directly connected FPGAs.
Unfortunately, no distributed memory programming model exists
for HLS-programmed devices, and programmers are forced to resort
to licensed IP cores and RTL designs to implement FPGA-to-FPGA
communications [16, 20].

We propose a distributed memory HLS programming model for
FPGAs that provides the convenience of message passing for HLS-
programmed hardware devices. While we cannot simply use the
Message Passing Interface (MPI) API due to the peculiarities of
programmed hardware, we are heavily inspired by MPI’s interface,
to benefit from its proven effectiveness in practice, and maintain
familiarity for programmers. The reason for this specialization is
that high-performance HLS designs are deeply pipelined and vec-
torized. This means that several results are produced at each clock
cycle and shallow buffering along predefined (pipeline) paths is a
necessity for performance. Thus, our Streaming Message Interface
(SMI) does not assume that buffers are first computed and then
communicated—instead, sending a message is integrated into the
pipeline. The key concept of SMI is its streaming nature, where a
send or receive is set up first, and the data is then written or read on
a cycle-by-cycle basis. This concept modifies MPI-style messages
into transient channels, that have similar semantics, but integrate
seamlessly with HLS-programmed pipelines.
The key contributions of our work are:

• We propose the streaming messages communication model, uni-
fying the message passing and streaming models;

• We design the Streaming Message Interface (SMI), an HLS com-
munication interface specification for programming streaming
messages in distributed memory multi-FPGA systems;

• We implement and benchmark a reference implementation of
SMI that integrates with OpenCL on Intel FPGAs;

• We release the reference library and example applications imple-
mented with a modern HLS tool as open source code that does
not rely on additional licensed IP cores.

We evaluate our approach on several numerical computations,
showing the performance benefits of distributed memory FPGA pro-
gramming, by increasing available compute resources and memory
bandwidth.

2 PROGRAMMING FPGA COMMUNICATION
To design a suitable communication model for distributed FPGA
programming, we wish to learn from the most prominent model
found in HPC, namely message passing (specifically, MPI), but adapt
it to a form suitable for hardware programming. We call our model
streaming messages, and will introduce it by highlighting the gaps
in existing models, which it has been designed to fill.

Programming FPGAs with high-level synthesis revolves around
designing deep hardware pipelines, exploiting the spatially parallel
nature of the FPGA fabric. Parallelism is achieved by making this
pipeline deeper (pipeline parallelism), by making the pipeline wider
(vector parallelism), or by replicating the pipeline entirely (task
parallelism) [6]. Pipelines are expressed as loops in the HLS code,
designed such that new operands can be accepted every cycle. It is
thus imperative that a communicationmodel is compatible with this
programming model, allowing communication to happen during
pipelined computations.

2.1 Existing Communication Models
2.1.1 Message Passing. The paradigm ofmessage passing uses local
buffers to both send and receive information to/from other pro-
cesses (called ranks). A distributed algorithm will work on a local
subset of data on each rank, then indicate to the communication
layer when a buffer is ready to be sent to another rank, or when it
is ready to receive new data into a buffer. This is illustrated with an
example code in Fig. 2, where a buffer is populated in a loop, then
sent to another rank. To hide communication time, message passing
uses non-blocking calls to overlap communication and computation,
thus letting ranks operate on different data than what is currently
being exchanged.

In the context of hardware programming, message passing has
two key shortcomings. First, the model relies on bulk transfers,
which is a poor match to the HLS programming model, as we
wish to communicate during pipelined computation. Second, bulk
transfers imply large buffers required to store intermediate data.
On the CPU, these buffers exist in the global memory space, and

for (int i = 0; i < N; i++)
buffer[i] = compute(data[i]);

SendMessage(buffer, N, my_rank + 2);

FPGA 0 FPGA 1

FPGA 2FPGA 3

a
b
c
d

a
b
c
d

Figure 2: Message passing.

// Channel fixed in the architecture
for (int i = 0; i < N; i++)

stream.Push(compute(data[i]));

FPGA 0 FPGA 1

FPGA 2FPGA 3

Figure 3: Streaming.

Channel channel(N, my_rank + 2, 0);
for (int i = 0; i < N; i++)

channel.Push(compute(data[i]));

FPGA 0 FPGA 1

FPGA 2FPGA 3

Figure 4: Streaming messages.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

can dynamically move between cache and DRAM, depending on
their size and the behavior of the program. In contrast, buffers used
when programming for hardware are explicitly instantiated in a
fast memory distributed across the chip, and moving them to an off-
chip memory requires explicit wiring to limited DRAM interfaces,
which are shared among all accesses. Fully adapting this approach
in hardware would thus come with significant disadvantages in
resource utilization, programmability, and performance.

2.1.2 Streaming. A classical way of moving data between FPGAs
is to simply stream it across an inter-FPGA channel in a pipelined
fashion (e.g., the Maxeler dataflow engine architecture [7]), similar
to how data is moved across the chip on a single FPGA. This ap-
proach offers a way of expressing communication that is natural to
the hardware paradigm, by pushing data to the output interface in a
pipelined fashion during processing (see Fig. 3). Streaming relies on
point-to-point connections known at configuration time, suitable
for extending one-dimensional systolic array-style architectures
across multiple chips [22].

The major shortcoming of streaming interfaces in a distributed
memory setting is the lack of flexibility in the implied API and
transport layer. Even if the target platform has the necessary hard-
ware ports, a shell that exposes them, and an API to access them,
moving data from a given source to a given destination requires
the programmer to construct the exact path that the data has to
move across as part of the architecture. This has to be repeated for
every desired communication channel, for every target application;
including forwarding logic when multiple hops are required, and
arbitration between different channels using the same hardware
connection. In the example shown in Fig. 3, data travelling from
FPGA 0 to FPGA 2must first be sent through FPGA 1, where custom
user logicmust take care of forwarding it to the final destination. For
more complicated distributed memory environments, the streaming
interface in its pure form is thus insufficient to productively express
arbitrary communication patterns.

2.2 Streaming Messages
To capture the key ideas of message passing and streaming, while
addressing the gaps in both outlined above, we introduce streaming
messages: an HPC-oriented communication model for hardware
programming, with an implied transport layer. Streaming messages
replace traditional, buffered messages with pipeline-friendly tran-
sient channels, offering a streaming interface to the hardware pro-
grammer, but with the flexibility known from the message passing
paradigm. Knowledge of the interconnect topology is not required
at compile-time: channels between endpoints are transiently es-
tablished, where source and destination ranks can be specified
dynamically. This is illustrated in Fig. 4, where a kernel on rank 0
on FPGA0 opens a channel to rank 2 on FPGA2, using port 0 to
distinguish the target application (akin to starting a non-blocking
send in MPI, but without implying that the data is ready), then
pushes data to the channel during processing in a pipelined fashion
(as in the streaming paradigm). Routing data to the destination is
then handled transparently by the transport layer.

In streaming messages, a rank is associated with a coarse hard-
ware entity assigned to dedicated communication logic, connected
to the incoming and outgoing hardware communication ports. A

port uniquely identifies an endpoint within a rank, and implements
a hardware streaming interface for every Push and Pop operation
present in the code to/from a matching external port. This implies
that all ports must be known at compile time, such that, within each
rank, the necessary hardware connections between the communi-
cation endpoints and the network can be instantiated. Ports must
be specified both for point-to-point and collective communication
primitives to establish the required hardware. All ports represent
hardware connections, and can thus operate fully in parallel.

Channels can be programmed either in a single program, mul-
tiple data (SPMD) fashion, or in a multiple program, multiple data
(MPMD) fashion. In this work, we assume a single rank per FPGA.
Ranks involved in communication and the total number of ranks
can then be dynamically altered without recompiling the program,
by simply updating the routing configuration at each rank.

3 STREAMING MESSAGE INTERFACE
To concretize the concept of streaming messages, we introduce
the Streaming Message Interface (SMI), a communication interface
specification for HLS programs inspired by MPI [19]. SMI is not an
implementation, and merely implies the functionality that must be
supported by the transport layer to support the interface specifica-
tion. The interface exposes primitives for both point-to-point and
collective communications.

3.1 Point-to-Point Communication
Point-to-point communication in SMI codes is based on transient
channels: when established, a streaming interface is exposed at the
specified port at either end, allowing data to be streamed across the
network using FIFO semantics, with an optional finite amount of
buffer space at each endpoint. A streaming message consists of one
or more elements with a specified data type. The communication
endpoints are uniquely identified by their rank. Ranks uniquely
identify FPGA devices, and ports distinguish distinct communica-
tion endpoints within a rank.

void Rank0(const int N, /* ...args... */) {
SMI_Channel chs = SMI_Open_send_channel(// Send to

N, SMI_INT, 1, 0, SMI_COMM_WORLD); // rank 1
#pragma ii 1 // Pipelined loop
for (int i = 0; i < N; i++) {

int data = /* create or load interesting data */;
SMI_Push(&chs, &data);

} }

void Rank1(const int N, /* ...args... */) {
SMI_Channel chr = SMI_Open_recv_channel(// Receive

N, SMI_INT, 0, 0, SMI_COMM_WORLD); // from rank 0
#pragma ii 1 // Pipelined loop
for (int i = 0; i < N; i++) {

int data;
SMI_Pop(&chr, &data);
// ...do something useful with data...

} }

Listing 1: MPMD program with two ranks.

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

The example in Lst. 1 shows an MPMD application composed of
two ranks implemented with SMI (for code examples, we use the
Intel FPGA OpenCL directive syntax, where pragmas apply to the
following scope). Rank 0 streams a message of N integer elements
to Rank 1 using a send channel. Rank 1 opens a receive channel
to receive the message, and applies a computation on each data
item. Input and output channels are opened before the beginning
of the loop, and messages are received and sent one-by-one during
computation. Channels are thus accessible with a streaming cycle-
by-cycle interface: computations can Push or Pop data to/from a
communication channel, one data element per clock cycle.

3.1.1 Point-to-Point Communication API. The user can declare a
send or receive channel by specifying the number of elements to
send, the data type of the elements, the source or destination rank,
the port, and the communicator. Once established, channels exist
in code in the form of channel descriptors. Channels are implicitly
closed when the specified number of elements have been sent or
received.

SMI_Channel SMI_Open_send_channel(int count, SMI_Datatype

type, int destination, int port, SMI_Comm comm);↪→

SMI_Channel SMI_Open_recv_channel(int count, SMI_Datatype

type, int source, int port, SMI_Comm comm);↪→

Analogously to MPI, communicators can be established at run-
time, and allow communication to be further organized into logical
groups. Channels can also be used to communicate between two
applications that exist within the same rank using matching ports.
To send and receive data elements from within the pipelined HLS
code, SMI provides the SMI_Push and SMI_Pop primitives:

void SMI_Push(SMI_Channel* chan, void* data);
void SMI_Pop(SMI_Channel* chan, void* data);

Both functions operate on a channel descriptor from a previously
opened channel, and a pointer either to the data to be sent, or to
the target at which to store the data. These primitives are blocking,
such that SMI_Push does not return before the data element has
been safely sent to the network, and the sender is free to modify
it, and SMI_Pop returns only after the output buffer contains the
newly received data element.

To respect the streaming message model, SMI_Push and SMI_Pop
must be implemented in such a way that: i) data elements are sent
and received in the same order specified by the user, and ii) calling
them can be pipelined to a single clock cycle, such that they can be
used in pipelined loops without impairing the initiation interval.
Additionally, the type specified by the SMI_Push/SMI_Pop opera-
tions must match the ones defined in the Open_Channel primitives.
With these primitives, communication is programmed in the same
way that data is normally streamed between intra-FPGA modules.

3.2 Collective Communication
Collective communication in MPI is key to develop distributed
applications that can scale to a large number of nodes. In collective
operations, all ranks in a given communicator must be involved
in communicating data. SMI defines the Bcast, Reduce, Scatter,

and Gather collective operation primitives analogous to their MPI
counterparts.

Each collective operation defined by SMI implies a distinct chan-
nel type, open channel operation, and communication primitive.
The example in Lst. 2 shows an SPMD application in which the root
rank broadcasts the locally produced elements to the other ranks
in the communicator.

void App(int N, int root, SMI_Comm comm, /* ... */) {
SMI_BChannel chan = SMI_Open_bcast_channel(

N, SMI_FLOAT, 0, root, comm);
int my_rank = SMI_Comm_rank(comm);
for (int i = 0; i < N; i++) {

int data;
if (my_rank == root)

data = /* create or load interesting data */;
SMI_Bcast(&chan, &data);
// ...do something useful with data...

} }

Listing 2: SPMD program with broadcast.

To perform a Bcast, each rank opens a broadcast-specific channel
(SMI_BChannel), indicating the count and data type of the message
elements, the rank of the root, the port, and the communicator:

SMI_BChannel SMI_Open_bcast_channel(
int count, SMI_Datatype type, int port, int root,

SMI_Comm comm);↪→

To participate in the broadcast operation, each rank will use the
associated primitive (analogous to SMI_Push and SMI_Pop for Send
and Recv, respectively):

void SMI_Bcast(SMI_BChannel* chan, void* data);

If the caller is the root, it will push the data towards the other ranks.
Otherwise, the caller will pop data elements from the network.
Similarly, to perform a Reduce, the associated channel must be
opened, indicating the reduction operation to perform, such as
SMI_ADD, SMI_MAX, or SMI_MIN:

SMI_RChannel SMI_Open_reduce_channel(int count,
SMI_Datatype type, SMI_Op op, int port, int root,
SMI_Comm comm);

↪→

↪→

Data communication occurs with the primitive:

void SMI_Reduce(SMI_RChannel* chan, void* data_snd, void*

data_rcv);↪→

Each rank sends its contribution (data_snd), while the reduced
result is produced to the root rank (data_rcv).

SMI allows multiple collective communications of the same type
to execute in parallel, provided that they use separate ports. We
leave out the interfaces for Scatter and Gather, as they follow the
same scheme as presented above.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

3.3 Buffering and Communication Mode
SMI channels are characterized by an asynchronicity degree k ≥ 0,
meaning that the sender can run ahead of the receiver by up to k
data elements. If the sender tries to push the (k + 1)-th element
before an element is popped by the receiver, the sender will stall.
The concrete implementation of these buffers can use any form
of on-chip memory. Because of this asynchronicity, an SMI send
is non-local: it can be started whether or not the receiver is ready
to receive, but its completion may depend on the receiver, if the
message size is larger than k . Correctness of the communication in
a distributed setting must be guaranteed by the user, i.e., ensuring
that there are no cyclic dependencies between sends and receives
that allow deadlocks, and that the program will terminate even if
the system provides no buffering.

If the channel asynchronicity degree is bigger or equal than
the message size, we suggest to use an eager protocol to transfer
data for efficient point-to-point communication: elements can be
pushed into the network without first performing a handshake with
the receiver, aided by buffers at either endpoint. This saves costly
round-trip latencies, improving the efficiency of small messages.
Creating a new channel is thus a zero-overhead operation, as this
merely instructs the transport layer where data should be sent. The
network interfaces must be able to handle stalling and backpres-
sure to safely enable eager communication. On the other hand,
if the buffer size is smaller than the message size, a transmission
protocol with credit-based flow control must be used between the
two application endpoints, to guarantee that the communication
occurring on a transient channel will not block the transmission of
other streaming messages.

For streaming collective operations, even with sufficiently large
buffers, we cannot rely on backpressure and flow control alone to
coordinate senders and receivers. With streaming messages, we
exploit that data is produced, communicated, and consumed in
a pipelined fashion, such that we can rely on small intermediate
storage in the FPGA fast memory to buffer parts of the message
during computation. However, when data can arrive from a dynamic
number of other ranks to a single root FPGA (all-to-one), or when
multiple collectives are used in succession, some ranks can run
ahead of others. In these scenarios, data can arrive at the receiver
side (the root in all-to-one, or any rank in one-to-all) in arbitrary
order. Because of limited buffer space, the root cannot reorder
the data for a dynamic number of ranks and number of elements.
Consider, for example, a Gather without any coordination: rank
i + 1 could send its full contribution to the root before rank i , which
the root would be unable to reorder for arbitrary message sizes.

To ensure correctness in collective primitives, we employ differ-
ent synchronization protocols, depending on the type of commu-
nication used. For one-to-all collectives (i.e., Bcast and Scatter),
ranks must communicate to the root when they are ready to receive
before the root starts streaming data across the network, to prevent
mixing of data from subsequently opened transient channels us-
ing the same port. For all-to-one collectives (Reduce and Gather),
the root rank must communicate to each source rank when it is
ready to receive the given sequence of data. For Bcast, Scatter,
and Gather, synchronization is done once per rank, before all data
elements from the given rank can be sent. For Reduce, the root

r
a
n
k

3

2

1

4

5 6

count count

1 2 3 4

r
a
n
k

Figure 5: Order of data elements communication (arrows)
and coordination steps (numbers) for Scatter/Gather and
Reduce, respectively.

synchronizes with all ranks per tile of reduced elements. This is
illustrated for Scatter/Gather and Reduce, respectively, in Fig. 5.
In Gather/Scatter, each rank will send/receive count elements in
sequence, only when allowed by the matching rank (i.e., the root for
Gather or a non-root rank for Scatter). The communication be-
tween the root and the different ranks are performed in sequential
order (shown with arrow and numbers in Fig. 5). For Reduce, the
root must receives the first sequence of element from all ranks (in
any order, given the associativity and commutativity properties of
the reduction operation), before receiving the next sequence from
all ranks. All the ranks can stream their contributions in parallel
(fill columns in Fig. 5) for the current tile being reduced (horizontal
width of columns), to the root. The root communicates to all the
other ranks when they can start sending the data for the next tile.

As participating in collective operations is parallel with the num-
ber of distinct ports, multiple collectives can perform their
rendezvous and communication concurrently.

4 REFERENCE IMPLEMENTATION
We present a proof-of-concept implementation of SMI, where the
transport layer and all communication primitives are implemented
as HLS code, targeting the Intel FPGA SDK for OpenCL [5]. Network
connections are implemented using I/O channels in the SDK, which
are mapped to physical interfaces implemented by the board support
package (BSP) specifying the FPGA shell, provided by the board
vendor. SMI as an interface specification is platform independent,
but as the transport layer relies on many platform-specific features,
we focus on the Intel infrastructure here.

4.1 General Architecture
The SMI implementation resides between applications and the net-
work ports exposed by the FPGA board (see Fig. 6). It is composed
of two components: the interface, which implements the SMI primi-
tives described in Sec. 3, and a transport component, which handles
data transfer between endpoints.

At the SMI application interface, messages are packaged in net-
work packets, which have a size equal to the width of the I/O
interface to the network provided by the BSP (e.g., 32 Bytes for the
experimental platform used). The network packet is the minimal
unit of routing, and it may contain one or more data elements.
The transport component receives network packets both from the

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

Interface

Transport

PORT 0 PORT 1 PORT 2 PORT 3

CKS CKR

PUSH POP
S
M
I

APPL APPL

CKS CKR CKS CKR CKS CKR

BCAST

Figure 6: SMI implementation.

interface and from the network (through the BSP network inter-
faces). The packet is immediately forwarded onto one of the output
links according to the specified target rank and port. The transport
layer can accept one new network packet, either coming from the
network or from the applications, every clock cycle. With the ex-
ception of the routing metadata, no bulk data needs to be buffered
in the transport layer, and the transmission of a message is fully
pipelined across the network.

4.2 Data Forwarding
Each data communication to/from the network involves moving the
data between applications and the transport component through
physical hardware connections configured on the FPGA. These
connections are implemented using FIFO buffers, where the inter-
nal buffer size is a compile-time parameter. This buffer size can be
tweaked according to the expected length of the messages that will
be sent, taking available FPGA resources into account. By increasing
the buffer size, a sending rank can commit more data to the network
while continuing computations, which can in some cases improve
the overall runtime. This is considered an optimization parameter,
as programs must not rely on these buffer sizes for correctness (i.e.,
to avoid deadlocks). The ports declared in Open_Channel primitives
are used to uniquely identify the accessed FIFO buffer, and instructs
the HLS compiler to lay down the buffer for connecting the com-
munication endpoint (e.g., a push or a pop) to the transport layer.
The transport component effectively acts as middleware between
the applications and the network ports.

In the Intel FPGA SDK for OpenCL, channels are restricted to a
single reader (for input channels) or writer (for output channels):
for this reason, we create dedicated entities that handle access to
the BSP network I/O channels. We refer to these entities as send
communication kernels (CKS), if they send data to the network,
and receive communication kernels (CKR), if they receive data from
the network, respectively. To perform the actual data transmission
between two remote endpoints, we can follow two approaches:

• Circuit switching: when a CKS accepts the first network packet
that composes a message, it will continue to accept data only
from that application until all the content of the message has
been transferred. The message first transmits a single network
packet containing all meta-information (source and destination
rank, message data type, port, etc.), followed by a sequence of
payload network packets.

CKS

To Net. Port From Net. Port

From

Applications
To

Applications

CKR
Other

CKS

Other

CKR

Figure 7: Communication kernel (CK) connectivity.

• Packet switching: CKS allows interleaving messages from dif-
ferent endpoints. The message is transmitted as a sequence of
packets in which each packet must contain the meta-information
necessary to route it.

The reference implementation presented here uses the second ap-
proach. Despite being less bandwidth efficient, as part of each net-
work packet is consumed by the message header, it allow us to
easily multiplex different channels, avoiding temporary stalls due
to the transmission of long messages, and all applications can con-
currently send/receive messages.

Concretely, network packets in our implementation are com-
posed of 4 Bytes of header data, and a payload of 28 Bytes. The
header contains source and destination ranks (1 B each), the port
(1 B), the operation type (e.g., send/receive, 3 bits), and the num-
ber of valid data items contained in the payload (5 bits). We thus
truncate the rank and port information with respect to the SMI
interface to 8 bit each to mitigate the penalty of packet switching.

Packing and unpacking network packets is implemented in the
Push and Pop primitives. Push internally accumulates data items
until a network packet is full. The packet is then forwarded to
CKS, which will forward it towards its destination. Pop internally
unpacks data returned from CKR, and transmits it to the application
one element at a time, according to the specified data type.

4.3 Routing Management
In our implementation we exploit dedicated interconnection net-
work between FPGAs without using additional network equipment
like routers or switches. Therefore, the transport layer is in charge
of implementing the routing of the data between any pair of ranks.

Each FPGAnetwork interface ismanaged by a differentCKS/CKR
pair. In this way, we avoid a single centralization point that would
have serialized packet transferring. Application endpoints are con-
nected to one CKS or CKR using a FIFO buffer. The communication
kernels are interconnected as shown in Fig. 7. After the kernel
receives a packet, it consults an internal routing table to determine
where to forward the packet. The reference implementation em-
ploys a configurable polling scheme: when a CKS/CKR module
receives a packet from an incoming connection, it keeps reading
from the same connection up to R times (where R is an optimiza-
tion parameter) while data is available, before continuing to poll
other ports. With R = 1, the CKS module polls a different connec-
tion every cycle. Higher values of R increase the bandwidth for
applications with a sparse communication pattern, but increases
the per-connection latency for applications where many incoming
connections are active simultaneously.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

The routing information used by the SMI communication ker-
nels can be uploaded dynamically at runtime, allowing it to be
specialized to the interconnect, and even to the application. We
use static routing to determine the optimal paths for routing pack-
ets between any pair of FPGAs: before the application starts, the
paths between FPGAs are computed using a deadlock-free routing
scheme [8], according to the target FPGA interconnection topology.
If the interconnection topology changes, or the programs run on
a different number of FPGAs, the bitstream does not need to be
rebuilt, as the routing scheme merely needs to be recomputed and
uploaded to each device.

Routing tables are buffered in on-chip memory local to each CKR
and CKS module. The routing tables at sender modules (CKS) are
indexed by the destination rank of the packet: if the destination
rank is the local rank, the packet is forwarded to the connected
CKR; otherwise, the packet is forwarded either to another local
CKS module, or to the associated network interface. At a receiver
module (CKR), if the destination rank is not the local rank, it is
forwarded to the associated CKS module. This situation could occur
when the local rank is an intermediate hop in the route to reach the
destination. Otherwise, the CKR will use the port of the packet as
an index into its routing table. The table instructs it to either send
the packet directly to a connected application, or to forward the
packet to the CKR that is directly connected to the destination port.

By implementing the routing logic in this way, we guarantee
that a rank is reachable from all others, even if there is no physical
direct connection between them, and we allow the communication
topology to be changed without regenerating the FPGA bitstream.

4.4 Collective Implementation
Collective communication requires coordination between involved
ranks (see Sec. 3.2). In our reference implementation, collectives
are implemented using a simple linear scheme. The implemented
SMI transport layer uses a support kernel for coordinating each
collective. Support kernels reside between the application and the
associated CKR/CKS modules, and their logic is specialized to the
specific collective. For this reason they can also be exploited to
offer different implementations of collectives, such as tree-based
schema for Bcast and Reduce. Both the root and non-root behavior
is instantiated at every rank, to allow the root rank to be specified
dynamically. For Bcast and Scatter, the support kernel will wait
at the root for the notification that a receiving rank is ready to
receive before streaming data towards it. For Gather, the root rank
has to receive the data from the ranks in the correct order, which is
coordinated by the support kernel. For Reduce, the support kernel
will be in charge of receiving the elements to reduce, and applying
the relevant reduction operation. The latter implements rendezvous
with a credit-based flow control algorithm with C credits, corre-
sponding to an internal buffer of size C at the root rank holding
accumulation results. When C contributions have been received
from each rank, the reduced result is forwarded to the application,
and new credits are sent to the ranks (C can be considered a tile
size of the Reduce communication, corresponding to the width of
columns in Fig. 5).

Code
generator

Topology

A:0 - B:0
A:1 - C:1
B:1 - C:2
...

Bitstream

User provided

SMI provided

Compiler

dev.cl

CKR-A0
CKR-A1
CKS-A0
...

Source code

#include<smi.h>

SMI_Push(
 &chan,
 &data
);

Routes
generator Host Program

int main(){
 SMI_Init(...));

 //execute

host.h

SMI_Init(){
 ...
}

Figure 8: Development workflow.

4.5 Development Workflow
The development workflow for using SMI is depicted on Fig. 8. The
communication logic of SMI is produced by a code generator. It takes
the description of SMI operations (ports, data types) as an input
and outputs a device source file with all the necessary CKS, CKR,
communication primitives and collective support kernel implemen-
tations that are tailored for the specified set of SMI operations. The
code generator also outputs a host header file that contains support
functions for SMI initialization.

To generate the correct input to the code generator, we provide
a metadata extractor, that parses the user’s device code with Clang,
finds all used SMI operations and extracts their metadata to a file.
After the code generator is executed on this metadata, the code-
generated SMI implementation can be compiled together with the
the user’s code by an FPGA compiler to produce a bitstream. For
SPMD programs, only one instance of the code is generated, and thus
the user only needs to build a single bitstream for any number of
nodes in a multi-FPGA system.

A route generator accepts the network topology of the FPGA
cluster and produces the necessary routing tables that drive the
forwarding logic at runtime. The topology is provided as a JSON file,
which describes connections between FPGA network ports. The
route generator needs to access metadata created by the code gener-
ator, but it doesn’t modify or create any source code and therefore
it can be executed independently from the compilation (crucially,
you can change the routes without recompiling the bitstream).

Finally, the user host program takes the compiled bitstream and
the routing tables as inputs, and uses functions provided by the
generated host header to setup the routing tables, and to start all
of the SMI transport components on the FPGA. We also provide
build system integration for CMake which fully automates the full
workflow with a single function invocation.

4.6 Implementation Portability
The proof-of-concept implementation of SMI discussed here targets
the Intel FPGA SDK for OpenCL, but as SMI is a platform inde-
pendent interface specification, it can be implemented for other
vendors, such as Xilinx FPGAs, as well. The interface, and key con-
cepts of the transport component can be reused, adapting it to the
target platform and SDK (changing the pragma style, FIFO buffer
management, etc.). However, the current implementation exploits
Intel OpenCL I/O channels to perform communications using the
on-board network interfaces. To the best of our knowledge, other
vendors do not expose similar high level network interfaces di-
rectly from the shell to the HLS programmer. Therefore, additional
IP cores would be necessary to port the transport component.

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

5 EVALUATION
To analyze the expressiveness of SMI and the performance of our
reference implementation, we implement four microbenchmarks
and two distributed applications, showing both the SPMD and
MPMD approaches of writing SMI-based kernels.

5.1 Experimental Setup
We target the Noctua cluster at the University of Paderborn, which
contains Nallatech 520N boards, each carrying a Stratix 10 GX2800
FPGA chip. The board exposes 4 quad small form-factor pluggable
(QSFP) transceivers as network ports, each rated at 40Gbit/s. The
QSFP interfaces do not implement a full reliable network stack, but
implement error correction, flow control, and handle backpressure,
which we can rely on in our communication layer. We target the
18.1.1_max BSP provided by Nallatech, which exposes the QSFP
ports as 8 I/O channels (4 input and 4 output) per device. The I/O
channels exposed to HLS are 256 bit wide, and can be accessed us-
ing read/write primitives. All hardware kernels (applications and
transport layer) running on the device is implemented in OpenCL,
and are compiled with the Intel Quartus Prime Pro 18.1.1 toolset.

Within the target cluster, each node contains two FPGA devices,
and the QSFP ports of different FPGAs are directly connected to
each other (either within or between nodes). The FPGA intercon-
nection topology is described by a list of point-to-point connections,
which is used to generate the routing tables. For the experiments
performed here, we had access to 8 FPGAs connected in a 2D torus,
such that all the 4 QSFP ports in each FPGA are wired to 4 dis-
tinct other FPGAs. Each host node is equipped with two Intel Xeon
Gold 6148F CPUs, for a total of 40 cores operating at 2:4GHz, and
have 192GB of DRAM. The nodes are interconnected using an Intel
Omni-Path 100Gbit/s network. Host code is compiled using gcc
v7.3 and OpenMPI v3.1.

All experiments were executed multiple times until 99% confi-
dence interval is within 5% of the measured median. For the tests
in which there is no host intervention, few runs were sufficient to
meet this condition, due to the highly deterministic nature of FPGA
codes. Then, median times have been considered for producing the
reported performance figures.

5.2 FPGA Resource Utilization
Tab. 1 shows the FPGA resource consumption of SMI, in terms
of lookup tables (LUTs), flip-flops (FFs) and on-chip memory blocks
(M20Ks). The table reports resources consumed by the interconnec-
tion structure (Interconn.) and communication kernels (C.K.) both
in absolute values and in fractions of the total resource capacity.
We consider two scenarios: one where only a single network port
is used, and one where all the four available network ports are
utilized. In the former case, only one pair of communication ker-
nels is deployed. In the latter, 4 CKS/CKR kernels are used, leading
to additional interconnect logic. In either case, we consider one
application endpoint attached per CKS/CKR pair.

The the number of used resources grows slightly faster than
linear. This is due to the fact that the number of input/output
channels that the communication kernels must handle increases
with the number of used QSFPs. In all cases, the resource overhead
of SMI is insignificant, amounting to less than 2% of the total chip

1 QSFP 4 QSFPs

LUTs FFs M20Ks LUTs FFs M20Ks

Interconn. 144 4,872 0 1,152 39,264 0
C. K. 6,186 7,189 10 30,960 31,072 40

% of max 0.3% 0.7% 0% 1.7% 1.9% 0.3%

Table 1: SMI resource consumption.

resources. Tab. 2 reports the resource consumption of the support
kernels used to implement the collectives evaluated in the following.
These numbers are for 32-bit floating point data, and with SUM as
the Reduce operation.

LUTs FFs M20Ks DSPs

Broadcast 2,560 (0.1%) 3,593 (0.1%) 0 (0%) 0 (0%)
Reduce (FP32 SUM) 10,268 (0.6%) 14,648 (0.4%) 0 (0%) 6 (0.1%)

Table 2: Collectives kernel resource consumption.

5.3 Microbenchmarks
To measure how well our reference implementation can exploit the
experimental setup, we evaluate its key characteristics by using
a set of four microbenchmarks. Communication kernels use R =

8, and an eager transmission protocol is used for point-to-point
communication.

5.3.1 Bandwidth. In this benchmark, a source application streams
a large message to a receiver. To test our routing approach, and
measure the properties of SMI on less connected topologies, we vary
our connection topology so that the two applications are at different
network distances (hops), by disabling other connections as needed.
This is done by changing the connection list used to compute the
routes, so that the 8 FPGAs are treated as being organized along a
linear bus, rather than in a torus (without rebuilding the bitstream).

As a reference comparison for the SMI bandwidth, we consider
a data transfer performed through the host stack, where the ap-
plication writes the message into off-chip DRAM on the device,
transfers it across PCIe to the host, sends it to the remote host
using an MPI_Send primitive. On the receiving host, symmetric
operations are performed. Fig. 9 shows the achieved bandwidth
by varying the message size and considering only the payload as
data exchanged. SMI approaches 91% of the peak bandwidth of-
fered by the QSFP connection, which is 35Gbit/s when taking the
4 B header of each network into account. Because the message is
streamed, larger network distance (in the absence of contention in
the network) does not affect the achieved bandwidth. Despite using
a higher bandwidth interconnect, the host-based implementation
achieves approximately one third of the SMI bandwidth, due to the
long sequence of copies through local device memory, local PCIe,
host network, remote PCIe, and remote device memory.

While this benchmark shows the bandwidth advantage on the
tested PCIe-attached setup, SMI is not coupled to a specific trans-
port layer. For example, in FPGAs with a high bandwidth cache-
coherency bus to the host CPU (e.g., Intel HARP devices), or where a
NIC can write to FPGA memory directly, it could be more beneficial
to use the general purpose interconnect as the transport backend
instead.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

0

10

20

30

40

62

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

QSFP Peak Bandwidth

PCIe Peak Bandwidth

B
a

n
d

w
id

th
[G

b
/s

]

Sent data [Bytes]

SMI - 1 hop
SMI - 4 hops
SMI - 7 hops

QSFP Peak Bandwidth

PCIe Peak BandwidthMPI+OpenCL

Figure 9: Bandwidth comparison between SMI and host-
based communication. Higher is better. Dashed lines indi-
cate peak QSFP and PCIe bandwidths.

5.3.2 Latency. We measure the message latency by implementing
a ping-pong benchmark of a small message between two ranks,
and measure the latency as half the execution time of a single
round-trip. Tab. 3 shows the measured latency. As comparison
reference we implemented the same benchmark by using host based
communications. As expected, SMI is able to obtain a much lower
latency, and the time needed to reach the target increases linearly
with the increase of the network distance.

MPI+OpenCL SMI-1 SMI-4 SMI-7

36.61 0.801 2.896 5.103

Table 3: Measured latency in µsecs. For SMI, numbers indi-
cate the hops needed to reach destination.

5.3.3 Injection rate. We measure the number of cycles that pass
before a CKS (or CKR) is able to inject another request from the
same application endpoint: i.e., the injection latency of the design.
The injection rate is computed from this according to the clock
frequency of the design. To benchmark this, we use a sender ap-
plication that opens a send channel and sends a message with one
element at every iteration of a pipelined loop (i.e., every clock cy-
cle). Independent of the network, the sender is thus capable of an
injection rate equivalent to the clock frequency of the design.

We benchmark the scenario in which we have 4 communication
channels per FPGA with 4 CKR/CKS pairs and we let the parameter
R vary. We measure the injection rate by dividing the number of
injected messages by the kernel execution time, then multiplying
this by the clock frequency to obtain the injection latency.

R = 1 R = 4 R = 8 R = 16

5 2.5 1.8 1.69

Table 4: Average injection rate in number of cycles.

For the case in which R = 1 we measure 5 clock cycles. This
latency is due to the implemented packet switching protocol (see
Sec. 4.3), where the CKS module polls a different port at every cycle,
corresponding to a latency of 5 cycles (1 from the application, 1
from CKR, 3 from other CKS modules). As long as R increases, the
injection rate decreases as the communication kernels will spend
more time in reading from the same port.

5.3.4 Collective operations. We benchmark the time required to
broadcast and reduce a message of varying size between 4 and 8 FP-
GAs, considering two different connection topologies: a torus, and
a linear bus. The evaluation is done with 32-bit floating point data
and with SUM as the Reduce operation. Results are shown in Fig. 10
and Fig. 11 for broadcast and reduce, respectively. For broadcast,
SMI is able to achieve lower communication time for all the consid-
ered input sizes. SMI achieves similar performance independently
of the considered connection topology. For small to medium-sized
messages, SMI’s Reduce outperforms going over the host using
OpenCL and MPI, but loses its benefit at high message sizes. The
credit-based flow control algorithm implemented by the root is
latency sensitive, therefore the time to completion increases with
the diameter of the network. The SMI reference implementation
does not yet implement tree-based collectives, resulting in a higher
congestion in the root rank.

101

102

103

104

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

T
im

e
[u

se
cs

]

Brodcast size [# elems]

SMI Torus - 8 Ranks
SMI Torus - 4 Ranks
MPI+OpenCL - 8 Ranks

SMI Bus - 8 Ranks
SMI Bus - 4 Ranks

Figure 10: Bcast benchmark comparison between SMI and
host-based communication. Lower is better.

101

102

103

104

105

106

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

T
im

e
[u

se
cs

]

Reduce size [# elems]

SMI Torus - 8 Ranks
SMI Torus - 4 Ranks
MPI+OpenCL - 8 Ranks

SMI Bus - 8 Ranks
SMI Bus - 4 Ranks

Figure 11: Reduce benchmark comparison between SMI and
host-based communication. Lower is better.

5.4 Applications
5.4.1 GESUMMV. Dense linear algebra makes up some of the most
common routines in HPC applications, and are good candidates for
exploiting the spatial parallelism offered by FPGAs. We consider
the GESUMMV routine, which is a part of the Extended BLAS set [2],
which in turn invokes BLAS subroutines. It computes y = αAx +

βBx , where α and β are scalars, x and y are vectors of length N ,
and A and B are matrices of size N ×N . To show the benefit of SMI,
we implement a single chip and a distributed version of the routine.
The single-FPGA implementation consists of two matrix-vector
multiplications (GEMV routines) that compute in parallel, and stream

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

their results to a vector addition module (AXPY routine) producing
the final result (Fig. 12, left). As these routines are memory-bound,
the computation is bottlenecked by memory bandwidth.

SMI

GEMV GEMV

AXPY

DRAM

DRAM

DRAM

DRAM

GEMV

DRAM

DRAM

GEMV

AXPYSMI

Rank 0 Rank 1

Figure 12: GESUMMV implementations.

The distributed implementation is obtained by functional decom-
position, and it is implemented as a MPMD program using two
ranks (Fig. 12, right). Rank 0 computes the first matrix-vector mul-
tiplication and sends the result elements to rank 1 using an SMI
channel. On rank 1, the second matrix-vector multiplication and
the vector addition are performed, receiving data from both local
DRAM and the remote GEMV routine. The full application thus gains
access to twice the memory bandwidth across the two FPGAs. The
implementations of GEMV and AXPY are derived from an open-source
synthesizable library [18].

Fig. 13 shows the expected speedup of ∼2× of the distributed
implementation over the single-chip implementation. Execution
times of the SMI benchmarks are reported on top of the histogram
boxes. Adapting the application required only minimal code modi-
fications to the kernel, with a difference of 8 lines of code: GEMV on
rank 0 is changed to perform an SMI send rather than pushing its
result to a regular FIFO, and the vector addition is modified to read
one of its inputs from an SMI network channel.

 0

 1

 2

 3

2048 4096 8192 16384

S
pe

ed
up

 o
ve

r
S

in
gl

e-
F

P
G

A

Size [NxN]

0.7ms 2.8ms 10.8ms

51.1ms

4096 8192 16384

Size [2048xM]

1.4ms 2.8ms 5.5ms

4096 8192 16384

Size [Nx2048]

1.4ms 2.8ms 5.5ms

Figure 13: GESUMMV benchmark results for different matrix
sizes (square and rectangular).

5.4.2 Stencil. Stencil applications are a suitable target for FPGA
acceleration, as their regular access pattern allows implementing
memory reuse schemes that make highly efficient use of on-chip
memory. Even with perfect reuse across the spatial domain, how-
ever, stencils generally exhibit low computational intensity. Ad-
ditional reuse can be obtained by using time tiling, which is im-
plemented on FPGAs by connecting a linear array of processing
elements in a deep pipeline, executing multiple timesteps in paral-
lel [22, 28]. When parallelizing to multiple FPGAs, Sano et al. [22]

simply extend this array to multiple FPGAs by using serial connec-
tions between them in a streaming model (as conceptually illus-
trated in Fig. 3).

For large stencil domains, FPGA designs must tile the spatial
domain in addition to the time domain, as the required buffer size
grows with the size of the domain. This results in a halo region of
redundant computations, which is proportional to the number of
pipelined timesteps executed in parallel [28]. This puts a hard limit
on the scalability of this approach, as the number of redundant
computations will in the extreme case dominate “useful” compu-
tations. Furthermore, not all stencils require or allow time tiling,
leaving spatial parallelism (e.g., vectorization) as the only option
to speed up the computation, in which case the problem becomes
memory bound. It is thus desirable to parallelize spatially across
multiple FPGAs, exploiting both compute resources and memory
bandwidth of multiple devices.

We implement a SPMD distributed memory FPGA stencil code
using SMI. The spatial domain is scattered tomultiple devices before
execution, and the devices exchange halo regions during computa-
tion. Shift registers are used to achieve perfect spatial reuse within
each FPGA. We decompose the domain in two dimensions, such
that each FPGA communicates to and from a north, west, east, and
south neighbor, shown in Fig. 14. Additional tiling can be employed
for large domains and 3D stencils by further decomposing the do-
main on each rank without affecting the communication pattern.
The communication is naturally expressed with streaming mes-
sages in the pipelined code. A snippet of the communication code
is shown in Lst. 3: at each timestep, channels are opened to adja-
cent ranks using a distinct port for each neighbor, and data is read
from the network during computation using SMI_Pop commands.
Although the west and east halos are not contiguous in memory,
they are expressed as a single message in the streaming messages
model. Due to the transient nature of SMI channels, all ranks will
be configured with the same bitstream, and the rank of adjacent
neighbors is computed at runtime. If no neighbor exists (e.g., the
west and north neighbor for FPGA0 in Fig. 14), the given channel
simply remains unused.

To fully hide communication, the communication volume of the
non-halo region of size (Nx − 2hx) · (Ny − 2hy) must be greater
than the communication volume of the halo regions of size 2 ·

(2hx Ny + 2hyNx) (send and receive), weighted by the memory
bandwidth consumed to read values from memory on each FPGA
(Bmem) and the network bandwidth between two adjacent FPGAs
(Bcomm), respectively (for our system, we consider Bcomm constant.
In larger networks, Bcomm depends on how ranks are mapped to

FPGA4 FPGA5

Nx

Ny

hy

hx

FPGA2 FPGA3

FPGA6 FPGA7

FPGA0 FPGA1

Figure 14: Halo region exchange between FPGAs.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

the network topology). That is, the following inequality must hold:
(Nx − 2hx) · (Ny − 2hy)

Bmem
≥

4
(
Nx · hy + Ny · hx

)
Bcomm

Since the left-hand side grows quadratically with the stencil domain
size, this condition is easily met when tackling large problems.

For benchmarks we use a 4-point stencil (i.e., hx = hy = 1). We
demonstrate the benefit of spatial tiling in a distributed memory
FPGA setting using SMI by showing the strong scaling behavior of
five kernels executed over the same stencil domain: a vectorized
kernel with perfect spatial reuse, reading 16 elements per cycle
from a single DDR bank (1 bank/1 FPGA); a spatially tiled kernel
running on a single node, reading 64 elements per cycle across all
four memory modules of the FPGA (4 banks/1 FPGA); an SMI code
running on four FPGAs, each reading 16 elements per cycle from
a single memory bank per FPGA (1 bank/4 FPGAs); an SMI code
running on four FPGAs, each reading 64 elements per cycle across
all memory banks (4 banks/4 FPGAs); and an SMI implementation
running on 8 FPGAs organized in a 2 × 4 shape, each reading 64
elements per cycle across all memory banks (4 banks/8 FPGAs).
Results are shown in Fig. 15 for a 4096 × 4096 domain, executed for
32 timesteps using the torus connection topology. We executed the
same benchmarks with the FPGAs organized in a bus topology, and
observed this to not affect the execution time.

Exploiting four banks on a single FPGA, and exploiting one bank
per FPGA on four FPGAs, both show a nearly identical speedup
of 3:5×, demonstrating that communication and computation is
fully overlapped. When reading 64 elements on four FPGAs, we
get the exact product 3:5 · 3:5 = 12:3× as speedup over the single
bank version, while 8 FPGAs exhibit a speed of 23:1. In Fig. 16 we
evaluate weak scaling, by reporting the average computation time

1for (int t = 0; t < T; t++) {
2 int num_elems = h_y*(N_x-2*h_x); // Size of halo region
3 int r_x = rank / RY; // Rank coordinates
4 int r_y = rank % RY;
5 SMI_Channel recv_west = SMI_Open_recv_channel(
6 num_elems, SMI_FLOAT, r_x * RY + (r_y - 1), 1,
7 SMI_COMM_WORLD);
8 SMI_Channel recv_east = SMI_Open_recv_channel(
9 num_elems, SMI_FLOAT, r_x * RY + (r_y + 1), 2,
10 SMI_COMM_WORLD);
11 // ...open remaining channels...
12 for (int i = 0; i < N_x; i++) { // Pipelined
13 for (int j = 0; j < N_y; j++) { // region
14 float value;
15 bool on_corner = /* ... */;
16 if (r_y > 0 && j < h_y && !on_corner) { // On left
17 SMI_Pop(&recv_west, &value); // halo
18 } else if (ry < RY - 1 && j >= N_y - h_y &&
19 !on_corner) {
20 SMI_Pop(&recv_east, &value);
21 // ...handle other halos and boundary conditions...
22 } else
23 value = memory[i*N_y + j];
24 write_channel_intel(to_kernel, value); // Stream to
25} } } // compute

Listing 3: Communication in pipelined stencil code.

 0

 4

 8

 12

 16

 20

 24

 28

1 bank/1 FPGA 4 bank/1 FPGA 1 bank/4 FPGA 4 bank/4 FPGA 4 bank/8 FPGA

S
pe

ed
up

 o
ve

r
1

B
an

k/
1

F
P

G
A 4096 x 4096 grid, 32 iterations

1.0x, 254 ms

3.5x, 72 ms 3.5x, 72 ms

12.3x, 20 ms

23.1x, 11 ms

Figure 15: Stencil benchmark with and without SMI.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1024x1024 2048x2048 4096x4096 8192x8192 16384x16384

T
im

e
[n

se
c]

Grid Size

32 iterations 4 Ranks
8 Ranks

Figure 16: Average execution time per stencil point of SMI
for varying grid size with 4 memory banks per FPGA.

per grid point obtained with different grid sizes for the 4 and 8
FPGAs setups. At large grid sizes, 8 FPGAs achieve a 2x speedup
over 4 FPGAs.

With SMI and our reference implementation, we show that we
can execute FPGAprograms in bothMPMDand SPMD fashion, target
any network topology, specialize to the target network topology, and
scale the number of FPGAs using the same bitstream. Adapting to
SMI requires minimal code intervention, as the interface integrates
into the conventional streaming approach taken by pipelined HLS
codes, and is thus nearly equivalent to parallelizing the code on a
single device.

6 RELATEDWORK
In previous work targeting multi-FPGA systems, FPGAs inter-
connected by point-to-point serial connections are typically pro-
grammed according to the streaming model (Fig. 3). The common
approach to scaling to multiple FPGAs is to organize the compu-
tation in a pipeline spanning across multiple chips, in which each
stage communicates only with the previous and the successive
stage (e.g., systolic array approaches). Sato et. al. [22] parallelize
2D and 3D stencils in this way by pipelining a linear array of pro-
cessing elements across multiple FPGAs. Each processing element
performs one time-step, and the results are streamed to the next
one. Zhang et al. [27] propose an implementation of a convolutional
neural network that pipelines 6 FPGA devices connected in a ring
topology. In their solution, a network layer is implemented by a
single stage. Geng et al. [10] addresses a similar problem by propos-
ing a pipelined implementation in which layers are distributed
across multiple pipeline stages. Owaida et al. [20] parallelize the
inference over a decision tree ensemble. They proposed a commu-
nication shell to implement communications between FPGAs either

SC ’19, November 17–22, 2019, Denver, CO, USA T. De Ma�eis et al.

by using serial links or via host intervention. In all the aforemen-
tioned cases, the application programmer is limited to the streaming
model in expressing a distributed computation, constructing the
exact path to move the data across the FPGAs in the system. With
streaming messages and SMI we propose a more flexible solution,
allowing programmers to dynamically exploit arbitrary communi-
cation topologies in the spirit of MPI, while maintaining a streaming
programming model for computations.

Despite accelerators being ubiquitous in supercomputers and
data centers, there is no unified programming model or library for
communicating directly from/to accelerator devices. Traditionally,
programmers have been forced to use a mix of different program-
ming models (e.g, MPI+CUDA or MPI+OpenCL). More recently,
there has been an effort from the HPC community in developing
programming models and libraries that treat accelerators as first-
class citizens: Aji et al. [1] propose MPI-ACC, an accelerator-aware
MPI implementation, to support data transfers in heterogeneous
clusters; Gysi et al. [12] propose dCuda, which combines the CUDA
programming model with a subset of MPI remote memory access
operations; and the authors of IMPACC [15] propose integrating
MPI and OpenACC, by mapping all the available host and device
memories in a node to a single unified node virtual address space.
All these solutions involve intervention of the host to perform
the actual data communication. In SMI, we provide an accelerator-
oriented communication library, and show how this can be used
to exploit a dedicated FPGA interconnect, avoiding costly trips
through the host nodes, saving PCIe, host DRAM, and host network
bandwidth.

In the context of FPGA programming, various works address
applying the message passing model to multi-FPGA systems. TMD-
MPI [21] implements a subset of MPI primitives for multi-FPGA
systems. The authors implement a VHDL-based engine that per-
forms communications, exploiting shared memory (if the FPGAs
are attached to the same host) or a specialized network interface
(for remote communications). Shu et al. [23] propose DUA, a com-
munication architecture that provides uniform access for FPGAs
to data center resources like CPUs, GPUs, and disks. The system
is implemented in Verilog, but provides an OpenCL interface, and
targets FPGAs implementing a full network stack in a cloud setting.
The system provides basic message-passing primitives, but does not
go further to address the programming model. Eskandari et al. [9]
propose HUMboldt, a message passing communication layer, sup-
porting messages to be sent among different FPGA kernels and
CPU kernels. In all these works, authors apply the message pass-
ing model directly to program a multi-FPGA system. With SMI,
we explicitly address the issue of programming communication in
a pipelined HLS setting, providing a model and interface that is
familiar to HPC users, yet integrates well into hardware designs.

Finally, George et al. [11] present a network infrastructure for
allowing communication among FPGAs organized in a 3D torus.
In their subsequent work [17], they build an OpenCL abstraction
on top of this network stack to enable inter-FPGA communica-
tions in HLS programs. In contrast to SMI, their solution exploits
the streaming model, without defining a precise communication
interface and with no support for collective communications.

7 CONCLUSION
We propose streaming messages, a communication model for dis-
tributedmemory programming on reconfigurable hardware. Stream-
ing messages unify message passing and traditional streaming
communication, allowing transient channels to be dynamically
established between multiple FPGAs in distributed systems, while
maintaining a programming model that integrates seamlessly into
HLS designs. To capture and expose the semantics of streaming
messages, we introduce SMI, a communication interface specifica-
tion for HLS programs, drawing inspiration from MPI, but designed
to fit the hardware programming model, and release an open source
reference implementation for use with OpenCL-capable Intel FP-
GAs. With the simple and powerful model offered by SMI, we hope
to further the viability of FPGAs as a HPC accelerators, and make
distributed programming on FPGAs more accessible to both HPC
and hardware developers.

ACKNOWLEDGMENTS
We wish to thank the Paderborn Center for Parallel Computing
(PC2), in particular Christian Plessl and Tobias Kenter, for access,
support, maintenance, and upgrades, sometimes on very short no-
tice. We also would like to thank Mohamed Issa (Intel Corporation),
for valuable suggestions. This project has been supported from
the European Research Council (ERC) under the European Union’s
Horizon 2020 programme, Grant Agreement No. 678880 (DAPP),
and Grant Agreement No. 801039 (EPiGRAM-HS). Jakub Beránek
was supported by the European Science Foundation through the
“Sciencewithout borders” project, reg. nr. CZ.02.2.69/0.0./0.0./16_027/
0008463 within the Operational Programme Research, Development
and Education.

REFERENCES
[1] A. M. Aji, L. S. Panwar, F. Ji, K. Murthy, M. Chabbi, P. Balaji, K. R. Bisset, J.

Dinan, W. Feng, J. Mellor-Crummey, X. Ma, and R. Thakur. 2016. MPI-ACC:
Accelerator-Aware MPI for Scientific Applications. IEEE Transactions on Parallel
and Distributed Systems 27, 5 (May 2016), 1401–1414. https://doi.org/10.1109/
TPDS.2015.2446479

[2] Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling,
Greg Henry, Michael Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine
Petitet, Roldan Pozo, Karin Remington, and Clint Whaley. 2002. An Updated
Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math. Softw. 28, 2
(June 2002), 135–151.

[3] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera, L. Adams, H. Angepat,
C. Boehn, D. Chiou, O. Firestein, A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K.
Holohan, A. El Husseini, T. Juhasz, K. Kagi, R. Kovvuri, S. Lanka, F. van Megen,
D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek,
R. Seera, S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang, R.
Zhao, and D. Burger. 2018. Serving DNNs in Real Time at Datacenter Scale with
Project Brainwave. IEEE Micro 38, 2 (Mar 2018), 8–20. https://doi.org/10.1109/
MM.2018.022071131

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. 2011. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 30, 4 (April 2011),
473–491. https://doi.org/10.1109/TCAD.2011.2110592

[5] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael
Kinsner, David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P Singh.
2012. From OpenCL to high-performance hardware on FPGAs. In 22nd inter-
national conference on field programmable logic and applications (FPL). IEEE,
531–534.

[6] Johannes de Fine Licht, Simon Meierhans, and Torsten Hoefler. 2018. Transfor-
mations of High-Level Synthesis Codes for High-Performance Computing. CoRR
abs/1805.08288 (2018). arXiv:1805.08288 http://arxiv.org/abs/1805.08288

[7] Rob Dimond, Sébastien Racaniere, and Oliver Pell. 2011. Accelerating large-
scale HPC Applications using FPGAs. In 2011 IEEE 20th Symposium on Computer

https://doi.org/10.1109/TPDS.2015.2446479
https://doi.org/10.1109/TPDS.2015.2446479
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1109/TCAD.2011.2110592
http://arxiv.org/abs/1805.08288
http://arxiv.org/abs/1805.08288

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware SC ’19, November 17–22, 2019, Denver, CO, USA

Arithmetic. IEEE, 191–192.
[8] J. Domke, T. Hoefler, and W. E. Nagel. 2011. Deadlock-Free Oblivious Routing for

Arbitrary Topologies. In 2011 IEEE International Parallel Distributed Processing
Symposium. 616–627. https://doi.org/10.1109/IPDPS.2011.65

[9] Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and Paul Chow. 2019. A Mod-
ular Heterogeneous Stack for Deploying FPGAs and CPUs in the Data Cen-
ter. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19). ACM, New York, NY, USA, 262–271.
https://doi.org/10.1145/3289602.3293909

[10] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and M. Herbordt. 2018.
FPDeep: Acceleration and Load Balancing of CNN Training on FPGA Clusters. In
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 81–84.

[11] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and C. Yang. 2016.
Novo-G#: Large-scale reconfigurable computing with direct and programmable
interconnects. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC). 1–7.

[12] T. Gysi, J. BÃďr, and T. Hoefler. 2016. dCUDA: Hardware Supported Overlap
of Computation and Communication. In SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
609–620. https://doi.org/10.1109/SC.2016.51

[13] Amazon EC2 F1 instances. [n. d.]. https://aws.amazon.com/ec2/instance-types/
f1/.

[14] Kaan Kara, Dan Alistarh, Gustavo Alonso, Onur Mutlu, and Ce Zhang. 2017.
FPGA-accelerated dense linear machine learning: A precision-convergence trade-
off. In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 160–167.

[15] Jungwon Kim, Seyong Lee, and Jeffrey S. Vetter. 2016. IMPACC: A Tightly
Integrated MPI+OpenACC Framework Exploiting Shared Memory Parallelism.
In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 189–
201. https://doi.org/10.1145/2907294.2907302

[16] Ryohei Kobayashi, Yuma Oobata, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke
Boku. 2018. OpenCL-ready High Speed FPGA Network for Reconfigurable High
Performance Computing. In Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region (HPC Asia 2018). ACM, New York,
NY, USA, 192–201. https://doi.org/10.1145/3149457.3149479

[17] A. Lawande, A. D. George, and H. Lam. 2016. An OpenCL Framework for
Distributed Apps on a Multidimensional Network of FPGAs. In 2016 6thWorkshop
on Irregular Applications: Architecture and Algorithms (IA3). 42–49. https://doi.
org/10.1109/IA3.2016.012

[18] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. 2019. FBLAS:
Streaming Linear Algebra on FPGA. CoRR (Aug. 2019).

[19] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Stan-
dard, Version 3.1. Specification. https://www.mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf

[20] M. Owaida and G. Alonso. 2018. Application Partitioning on FPGA Clusters:
Inference over Decision Tree Ensembles. In 2018 28th International Conference on
Field Programmable Logic and Applications (FPL). 295–2955. https://doi.org/10.
1109/FPL.2018.00057

[21] Manuel Saldaña, Arun Patel, Christopher Madill, Daniel Nunes, Danyao Wang,
Paul Chow, Ralph Wittig, Henry Styles, and Andrew Putnam. 2010. MPI As a
Programming Model for High-Performance Reconfigurable Computers. ACM
Trans. Reconfigurable Technol. Syst. 3, 4, Article 22 (Nov. 2010), 29 pages. https:
//doi.org/10.1145/1862648.1862652

[22] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. 2014. Multi-FPGA accel-
erator for scalable stencil computation with constant memory bandwidth. IEEE
Transactions on Parallel and Distributed Systems 25, 3 (2014), 695–705.

[23] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu, Yongqiang Xiong, Derek
Chiou, and Thomas Moscibroda. 2019. Direct Universal Access: Making Data
Center Resources Available to FPGA. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA,
127–140. https://www.usenix.org/conference/nsdi19/presentation/shu

[24] Stratix 10 GX/SX Product Table. [n. d.]. https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf.

[25] Versal ACAP AI Core Series Product Table. [n. d.]. https:
//www.xilinx.com/support/documentation/selection-guides/
versal-ai-core-product-selection-guide.pdf.

[26] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’17). ACM,
New York, NY, USA, 65–74. https://doi.org/10.1145/3020078.3021744

[27] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. 2016.
Energy-Efficient CNN Implementation on a Deeply Pipelined FPGA Cluster. In
Proceedings of the 2016 International Symposium on Low Power Electronics and
Design (ISLPED ’16). ACM, New York, NY, USA, 326–331. https://doi.org/10.1145/

2934583.2934644
[28] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. Combined spa-

tial and temporal blocking for high-performance stencil computation on FPGAs
using OpenCL. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 153–162.

https://doi.org/10.1109/IPDPS.2011.65
https://doi.org/10.1145/3289602.3293909
https://doi.org/10.1109/SC.2016.51
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1145/2907294.2907302
https://doi.org/10.1145/3149457.3149479
https://doi.org/10.1109/IA3.2016.012
https://doi.org/10.1109/IA3.2016.012
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/FPL.2018.00057
https://doi.org/10.1109/FPL.2018.00057
https://doi.org/10.1145/1862648.1862652
https://doi.org/10.1145/1862648.1862652
https://www.usenix.org/conference/nsdi19/presentation/shu
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/2934583.2934644
https://doi.org/10.1145/2934583.2934644

	Abstract
	1 Introduction
	2 Programming FPGA Communication
	2.1 Existing Communication Models
	2.2 Streaming Messages

	3 Streaming Message Interface
	3.1 Point-to-Point Communication
	3.2 Collective Communication
	3.3 Buffering and Communication Mode

	4 Reference Implementation
	4.1 General Architecture
	4.2 Data Forwarding
	4.3 Routing Management
	4.4 Collective Implementation
	4.5 Development Workflow
	4.6 Implementation Portability

	5 Evaluation
	5.1 Experimental Setup
	5.2 FPGA Resource Utilization
	5.3 Microbenchmarks
	5.4 Applications

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

