Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware

Tiziano De Matteis
Department of Computer Science, ETH Zurich
tiziano.dematteis@inf.ethz.ch

Jakub Beranek

IT4Innovations, VSB - Technical University of Ostrava
jakub.beranek@vsb.cz

ABSTRACT

Distributed memory programming is the established paradigm used
in high-performance computing (HPC) systems, requiring explicit
communication between nodes and devices. When FPGAs are de-
ployed in distributed settings, communication is typically handled
either by going through the host machine, sacrificing performance,
or by streaming across fixed device-to-device connections, sacri-
ficing flexibility. We present Streaming Message Interface (SMI), a
communication model and API that unifies explicit message pass-
ing with a hardware-oriented programming model, facilitating
minimal-overhead, flexible, and productive inter-FPGA communica-
tion. Instead of bulk transmission, messages are streamed across the
network during computation, allowing communication to be seam-
lessly integrated into pipelined designs. We present a high-level
synthesis implementation of SMI targeting a dedicated FPGA inter-
connect, exposing runtime-configurable routing with support for
arbitrary network topologies, and implement a set of distributed
memory benchmarks. Using SMI, programmers can implement
distributed, scalable HPC programs on reconfigurable hardware,
without deviating from best practices for hardware design.

KEYWORDS

Distributed Memory Programming, Reconfigurable computing, High-
Level Synthesis Tools

ACM Reference Format:

Tiziano De Matteis, Johannes de Fine Licht, Jakub Beranek, and Torsten
Hoefler. 2019. Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware. In The International
Conference for High Performance Computing, Networking, Storage, and Anal-
ysis (SC °19), November 17-22, 2019, Denver, CO, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3295500.3356201

1 INTRODUCTION

The end of Moore’s law and Dennard scaling causes a major dis-
ruption to the high-performance computing industry. Both require

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6229-0/19/11.

https://doi.org/10.1145/3295500.3356201

Johannes de Fine Licht
Department of Computer Science, ETH Zurich
definelicht@inf.ethz.ch

Torsten Hoefler
Department of Computer Science, ETH Zurich
htor@inf.ethz.ch

NETWORK

Figure 1: Multi-FPGA programming with SMI'.

us to re-think computer architecture in order to reduce data move-
ment and power dissipation on chips, and to use the existing tran-
sistors more efficiently. To address both problems, reconfigurable
architectures with application-specific dataflow as well as com-
pute logic provide a viable option. Many large-scale datacenter
operators, such as Amazon [13] and Microsoft [3], already build
on reconfigurable logic to specialize hardware implementations to
their workloads. Reconfigurable logic can avoid the well-known
architectural von Neumann (load-store) bottleneck, but poses new
challenges in programming these devices. Yet, highly efficient de-
signs with significant performance and energy benefits have shown
that efforts in the area are well spent [14, 26, 27].

Reconfigurable hardware traditionally came in the flavor of fully
configurable logic devices, field-programmable gate arrays (FPGAs),
or devices with a large fraction of hardened logic with flexible dat-
apaths, so-called coarse-grained reconfigurable arrays (CGRAs).
Today, the boundary between FPGAs and CGRAs is vanishing,
with the introduction of high-performance FPGAs that contain
powerful DSP cores, such as Intel’s Stratix 10 (10 TFLOP/s single
precision [24]), and Al Engines in Xilinx Versal devices [25]. Those
high-performance FPGAs become highly attractive for HPC work-
loads if the programming problem can be solved. Recent develop-
ments in high-level synthesis promises to deliver high productivity
on FPGAs replacing the traditional register transfer logic (RTL)
specification with a standard C/C++ code interface integrated with
modern OpenCL frameworks [4, 5].

Most of the HLS research focuses on programming one or mul-
tiple FPGAs attached to a single host. Yet, in HPC systems, single
FPGAs need to be scaled up to clusters containing many devices.
Today, communication is performed through message passing at
the host, where data is usually transported via PCI Express (PCle)

1SMI is publicly available at https://github.com/spcl/SMI

https://doi.org/10.1145/3295500.3356201
https://doi.org/10.1145/3295500.3356201
 https://github.com/spcl/SMI

SC ’19, November 17-22, 2019, Denver, CO, USA

to the main memory, and then through a different PCIe channel to
the network interface. This adds high overheads in terms of latency,
bandwidth, and load on the host’s memory subsystem. Nearly all
modern FPGA chips bear high-performance serial link network
connections. For example, Intel’s Stratix 10 chip has four 40 Gbit/s
connections and Xilinx’ UltraScale+ chips support 30 Gbit/s off-
chip connectivity. These links are often available via proprietary
interfaces for communication among directly connected FPGAs.
Unfortunately, no distributed memory programming model exists
for HLS-programmed devices, and programmers are forced to resort
to licensed IP cores and RTL designs to implement FPGA-to-FPGA
communications [16, 20].

We propose a distributed memory HLS programming model for
FPGAs that provides the convenience of message passing for HLS-
programmed hardware devices. While we cannot simply use the
Message Passing Interface (MPI) API due to the peculiarities of
programmed hardware, we are heavily inspired by MPI’s interface,
to benefit from its proven effectiveness in practice, and maintain
familiarity for programmers. The reason for this specialization is
that high-performance HLS designs are deeply pipelined and vec-
torized. This means that several results are produced at each clock
cycle and shallow buffering along predefined (pipeline) paths is a
necessity for performance. Thus, our Streaming Message Interface
(SMI) does not assume that buffers are first computed and then
communicated—instead, sending a message is integrated into the
pipeline. The key concept of SMI is its streaming nature, where a
send or receive is set up first, and the data is then written or read on
a cycle-by-cycle basis. This concept modifies MPI-style messages
into transient channels, that have similar semantics, but integrate
seamlessly with HLS-programmed pipelines.

The key contributions of our work are:

e We propose the streaming messages communication model, uni-
fying the message passing and streaming models;

We design the Streaming Message Interface (SMI), an HLS com-
munication interface specification for programming streaming
messages in distributed memory multi-FPGA systems;

We implement and benchmark a reference implementation of
SMI that integrates with OpenCL on Intel FPGAs;

We release the reference library and example applications imple-
mented with a modern HLS tool as open source code that does
not rely on additional licensed IP cores.

T. De Matteis et al.

We evaluate our approach on several numerical computations,
showing the performance benefits of distributed memory FPGA pro-
gramming, by increasing available compute resources and memory
bandwidth.

2 PROGRAMMING FPGA COMMUNICATION

To design a suitable communication model for distributed FPGA
programming, we wish to learn from the most prominent model
found in HPC, namely message passing (specifically, MPI), but adapt
it to a form suitable for hardware programming. We call our model
streaming messages, and will introduce it by highlighting the gaps
in existing models, which it has been designed to fill.

Programming FPGAs with high-level synthesis revolves around
designing deep hardware pipelines, exploiting the spatially parallel
nature of the FPGA fabric. Parallelism is achieved by making this
pipeline deeper (pipeline parallelism), by making the pipeline wider
(vector parallelism), or by replicating the pipeline entirely (task
parallelism) [6]. Pipelines are expressed as loops in the HLS code,
designed such that new operands can be accepted every cycle. It is
thus imperative that a communication model is compatible with this
programming model, allowing communication to happen during
pipelined computations.

2.1 Existing Communication Models

2.1.1 Message Passing. The paradigm of message passing uses local
buffers to both send and receive information to/from other pro-
cesses (called ranks). A distributed algorithm will work on a local
subset of data on each rank, then indicate to the communication
layer when a buffer is ready to be sent to another rank, or when it
is ready to receive new data into a buffer. This is illustrated with an
example code in Fig. 2, where a buffer is populated in a loop, then
sent to another rank. To hide communication time, message passing
uses non-blocking calls to overlap communication and computation,
thus letting ranks operate on different data than what is currently
being exchanged.

In the context of hardware programming, message passing has
two key shortcomings. First, the model relies on bulk transfers,
which is a poor match to the HLS programming model, as we
wish to communicate during pipelined computation. Second, bulk
transfers imply large buffers required to store intermediate data.
On the CPU, these buffers exist in the global memory space, and

for (int i = @; i < N; i++)
buffer[i] = compute(datalil);
SendMessage (buffer, N, my_rank + 2);

// Channel fixed in the architecture
for (int i = @; i < N; i++)
stream.Push(compute(datalil));

Channel channel(N, my_rank + 2, 0);
for (int i = @; i < N; i++)
channel.Push(compute(datalil));

FPGA 0 FPGA 0

Transport
layer

Transport
layer

FPGA 1

= —

m LS I I
layer

FPGA 3

._TII

FPGA 3

Figure 2: Message passing.

Figure 3: Streaming.

Figure 4: Streaming messages.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware

can dynamically move between cache and DRAM, depending on
their size and the behavior of the program. In contrast, buffers used
when programming for hardware are explicitly instantiated in a
fast memory distributed across the chip, and moving them to an off-
chip memory requires explicit wiring to limited DRAM interfaces,
which are shared among all accesses. Fully adapting this approach
in hardware would thus come with significant disadvantages in
resource utilization, programmability, and performance.

2.1.2 Streaming. A classical way of moving data between FPGAs
is to simply stream it across an inter-FPGA channel in a pipelined
fashion (e.g., the Maxeler dataflow engine architecture [7]), similar
to how data is moved across the chip on a single FPGA. This ap-
proach offers a way of expressing communication that is natural to
the hardware paradigm, by pushing data to the output interface in a
pipelined fashion during processing (see Fig. 3). Streaming relies on
point-to-point connections known at configuration time, suitable
for extending one-dimensional systolic array-style architectures
across multiple chips [22].

The major shortcoming of streaming interfaces in a distributed
memory setting is the lack of flexibility in the implied API and
transport layer. Even if the target platform has the necessary hard-
ware ports, a shell that exposes them, and an API to access them,
moving data from a given source to a given destination requires
the programmer to construct the exact path that the data has to
move across as part of the architecture. This has to be repeated for
every desired communication channel, for every target application;
including forwarding logic when multiple hops are required, and
arbitration between different channels using the same hardware
connection. In the example shown in Fig. 3, data travelling from
FPGA 0 to FPGA 2 must first be sent through FPGA 1, where custom
user logic must take care of forwarding it to the final destination. For
more complicated distributed memory environments, the streaming
interface in its pure form is thus insufficient to productively express
arbitrary communication patterns.

2.2 Streaming Messages

To capture the key ideas of message passing and streaming, while
addressing the gaps in both outlined above, we introduce streaming
messages: an HPC-oriented communication model for hardware
programming, with an implied transport layer. Streaming messages
replace traditional, buffered messages with pipeline-friendly tran-
sient channels, offering a streaming interface to the hardware pro-
grammer, but with the flexibility known from the message passing
paradigm. Knowledge of the interconnect topology is not required
at compile-time: channels between endpoints are transiently es-
tablished, where source and destination ranks can be specified
dynamically. This is illustrated in Fig. 4, where a kernel on rank 0
on FPGA(opens a channel to rank 2 on FPGAj, using port 0 to
distinguish the target application (akin to starting a non-blocking
send in MPI, but without implying that the data is ready), then
pushes data to the channel during processing in a pipelined fashion
(as in the streaming paradigm). Routing data to the destination is
then handled transparently by the transport layer.

In streaming messages, a rank is associated with a coarse hard-
ware entity assigned to dedicated communication logic, connected
to the incoming and outgoing hardware communication ports. A

SC ’19, November 17-22, 2019, Denver, CO, USA

port uniquely identifies an endpoint within a rank, and implements
a hardware streaming interface for every Push and Pop operation
present in the code to/from a matching external port. This implies
that all ports must be known at compile time, such that, within each
rank, the necessary hardware connections between the communi-
cation endpoints and the network can be instantiated. Ports must
be specified both for point-to-point and collective communication
primitives to establish the required hardware. All ports represent
hardware connections, and can thus operate fully in parallel.

Channels can be programmed either in a single program, mul-
tiple data (SPMD) fashion, or in a multiple program, multiple data
(MPMD) fashion. In this work, we assume a single rank per FPGA.
Ranks involved in communication and the total number of ranks
can then be dynamically altered without recompiling the program,
by simply updating the routing configuration at each rank.

3 STREAMING MESSAGE INTERFACE

To concretize the concept of streaming messages, we introduce
the Streaming Message Interface (SMI), a communication interface
specification for HLS programs inspired by MPI [19]. SMI is not an
implementation, and merely implies the functionality that must be
supported by the transport layer to support the interface specifica-
tion. The interface exposes primitives for both point-to-point and
collective communications.

3.1 Point-to-Point Communication

Point-to-point communication in SMI codes is based on transient
channels: when established, a streaming interface is exposed at the
specified port at either end, allowing data to be streamed across the
network using FIFO semantics, with an optional finite amount of
buffer space at each endpoint. A streaming message consists of one
or more elements with a specified data type. The communication
endpoints are uniquely identified by their rank. Ranks uniquely
identify FPGA devices, and ports distinguish distinct communica-
tion endpoints within a rank.

void Rank@(const int N, /* ...args... */) {
SMI_Channel chs = SMI_Open_send_channel(// Send to
N, SMI_INT, 1, @, SMI_COMM_WORLD); // rank 1
#pragma ii 1 // Pipelined loop
for (int i = @; i <N; i++) {
int data = /x create or load interesting data */;
SMI_Push(&chs, &data);
T3

void Rankl(const int N, /* ...args... */) {
SMI_Channel chr = SMI_Open_recv_channel(// Receive
N, SMI_INT, @, @, SMI_COMM_WORLD); // from rank ©

#pragma ii 1 // Pipelined loop
for (int i = 0; i <N; i++) {

int data;

SMI_Pop(&chr, &data);

// ...do something useful with data...

33

Listing 1: MPMD program with two ranks.

SC ’19, November 17-22, 2019, Denver, CO, USA

The example in Lst. 1 shows an MPMD application composed of
two ranks implemented with SMI (for code examples, we use the
Intel FPGA OpenCL directive syntax, where pragmas apply to the
following scope). Rank 0 streams a message of N integer elements
to Rank 1 using a send channel. Rank 1 opens a receive channel
to receive the message, and applies a computation on each data
item. Input and output channels are opened before the beginning
of the loop, and messages are received and sent one-by-one during
computation. Channels are thus accessible with a streaming cycle-
by-cycle interface: computations can Push or Pop data to/from a
communication channel, one data element per clock cycle.

3.1.1 Point-to-Point Communication API. The user can declare a
send or receive channel by specifying the number of elements to
send, the data type of the elements, the source or destination rank,
the port, and the communicator. Once established, channels exist
in code in the form of channel descriptors. Channels are implicitly
closed when the specified number of elements have been sent or
received.

SMI_Channel SMI_Open_send_channel(int count, SMI_Datatype
— type, int destination, int port, SMI_Comm comm);
SMI_Channel SMI_Open_recv_channel(int count, SMI_Datatype
— type, int source, int port, SMI_Comm comm);

Analogously to MPI, communicators can be established at run-
time, and allow communication to be further organized into logical
groups. Channels can also be used to communicate between two
applications that exist within the same rank using matching ports.
To send and receive data elements from within the pipelined HLS
code, SMI provides the SMI_Push and SMI_Pop primitives:

void SMI_Push(SMI_Channel* chan, voidx data);
void SMI_Pop(SMI_Channel* chan, void* data);

Both functions operate on a channel descriptor from a previously
opened channel, and a pointer either to the data to be sent, or to
the target at which to store the data. These primitives are blocking,
such that SMI_Push does not return before the data element has
been safely sent to the network, and the sender is free to modify
it, and SMI_Pop returns only after the output buffer contains the
newly received data element.

To respect the streaming message model, SMI_Push and SMI_Pop
must be implemented in such a way that: i) data elements are sent
and received in the same order specified by the user, and ii) calling
them can be pipelined to a single clock cycle, such that they can be
used in pipelined loops without impairing the initiation interval.
Additionally, the type specified by the SMI_Push/SMI_Pop opera-
tions must match the ones defined in the Open_Channel primitives.
With these primitives, communication is programmed in the same
way that data is normally streamed between intra-FPGA modules.

3.2 Collective Communication

Collective communication in MPI is key to develop distributed
applications that can scale to a large number of nodes. In collective
operations, all ranks in a given communicator must be involved
in communicating data. SMI defines the Bcast, Reduce, Scatter,

T. De Matteis et al.

and Gather collective operation primitives analogous to their MPI
counterparts.

Each collective operation defined by SMI implies a distinct chan-
nel type, open channel operation, and communication primitive.
The example in Lst. 2 shows an SPMD application in which the root
rank broadcasts the locally produced elements to the other ranks
in the communicator.

void App(int N, int root, SMI_Comm comm, /* ... x/) {
SMI_BChannel chan = SMI_Open_bcast_channel(
N, SMI_FLOAT, @, root, comm);
int my_rank = SMI_Comm_rank(comm);
for (int i = @; 1 < N; i++) {
int data;
if (my_rank == root)
data = /* create or load interesting data */;
SMI_Bcast(&chan, &data);
// ...do something useful with data...
32

Listing 2: SPMD program with broadcast.

To perform a Bcast, each rank opens a broadcast-specific channel
(SMI_BChannel), indicating the count and data type of the message
elements, the rank of the root, the port, and the communicator:

SMI_BChannel SMI_Open_bcast_channel(
int count, SMI_Datatype type, int port, int root,
— SMI_Comm comm);

To participate in the broadcast operation, each rank will use the
associated primitive (analogous to SMI_Push and SMI_Pop for Send
and Recv, respectively):

void SMI_Bcast(SMI_BChannel* chan, voidx data);

If the caller is the root, it will push the data towards the other ranks.
Otherwise, the caller will pop data elements from the network.
Similarly, to perform a Reduce, the associated channel must be
opened, indicating the reduction operation to perform, such as
SMI_ADD, SMI_MAX, or SMI_MIN:

SMI_RChannel SMI_Open_reduce_channel(int count,
< SMI_Datatype type, SMI_Op op, int port, int root,
— SMI_Comm comm);

Data communication occurs with the primitive:

void SMI_Reduce(SMI_RChannel* chan, voidx data_snd, voidx
— data_rcv);

Each rank sends its contribution (data_snd), while the reduced
result is produced to the root rank (data_rcv).

SMI allows multiple collective communications of the same type
to execute in parallel, provided that they use separate ports. We
leave out the interfaces for Scatter and Gather, as they follow the
same scheme as presented above.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware

3.3 Buffering and Communication Mode

SMI channels are characterized by an asynchronicity degree k > 0,
meaning that the sender can run ahead of the receiver by up to k
data elements. If the sender tries to push the (k + 1)-th element
before an element is popped by the receiver, the sender will stall.
The concrete implementation of these buffers can use any form
of on-chip memory. Because of this asynchronicity, an SMI send
is non-local: it can be started whether or not the receiver is ready
to receive, but its completion may depend on the receiver, if the
message size is larger than k. Correctness of the communication in
a distributed setting must be guaranteed by the user, i.e., ensuring
that there are no cyclic dependencies between sends and receives
that allow deadlocks, and that the program will terminate even if
the system provides no buffering.

If the channel asynchronicity degree is bigger or equal than
the message size, we suggest to use an eager protocol to transfer
data for efficient point-to-point communication: elements can be
pushed into the network without first performing a handshake with
the receiver, aided by buffers at either endpoint. This saves costly
round-trip latencies, improving the efficiency of small messages.
Creating a new channel is thus a zero-overhead operation, as this
merely instructs the transport layer where data should be sent. The
network interfaces must be able to handle stalling and backpres-
sure to safely enable eager communication. On the other hand,
if the buffer size is smaller than the message size, a transmission
protocol with credit-based flow control must be used between the
two application endpoints, to guarantee that the communication
occurring on a transient channel will not block the transmission of
other streaming messages.

For streaming collective operations, even with sufficiently large
buffers, we cannot rely on backpressure and flow control alone to
coordinate senders and receivers. With streaming messages, we
exploit that data is produced, communicated, and consumed in
a pipelined fashion, such that we can rely on small intermediate
storage in the FPGA fast memory to buffer parts of the message
during computation. However, when data can arrive from a dynamic
number of other ranks to a single root FPGA (all-to-one), or when
multiple collectives are used in succession, some ranks can run
ahead of others. In these scenarios, data can arrive at the receiver
side (the root in all-to-one, or any rank in one-to-all) in arbitrary
order. Because of limited buffer space, the root cannot reorder
the data for a dynamic number of ranks and number of elements.
Consider, for example, a Gather without any coordination: rank
i + 1 could send its full contribution to the root before rank i, which
the root would be unable to reorder for arbitrary message sizes.

To ensure correctness in collective primitives, we employ differ-
ent synchronization protocols, depending on the type of commu-
nication used. For one-to-all collectives (i.e., Bcast and Scatter),
ranks must communicate to the root when they are ready to receive
before the root starts streaming data across the network, to prevent
mixing of data from subsequently opened transient channels us-
ing the same port. For all-to-one collectives (Reduce and Gather),
the root rank must communicate to each source rank when it is
ready to receive the given sequence of data. For Bcast, Scatter,
and Gather, synchronization is done once per rank, before all data
elements from the given rank can be sent. For Reduce, the root

SC ’19, November 17-22, 2019, Denver, CO, USA

PEOOO®

T @ 1P

o ® S\
N

| SCENEEN
NAANANAAS

- count —— -—— count ——
Figure 5: Order of data elements communication (arrows)
and coordination steps (numbers) for Scatter/Gather and
Reduce, respectively.

synchronizes with all ranks per tile of reduced elements. This is
illustrated for Scatter/Gather and Reduce, respectively, in Fig. 5.
In Gather/Scatter, each rank will send/receive count elements in
sequence, only when allowed by the matching rank (i.e., the root for
Gather or a non-root rank for Scatter). The communication be-
tween the root and the different ranks are performed in sequential
order (shown with arrow and numbers in Fig. 5). For Reduce, the
root must receives the first sequence of element from all ranks (in
any order, given the associativity and commutativity properties of
the reduction operation), before receiving the next sequence from
all ranks. All the ranks can stream their contributions in parallel
(fill columns in Fig. 5) for the current tile being reduced (horizontal
width of columns), to the root. The root communicates to all the
other ranks when they can start sending the data for the next tile.

As participating in collective operations is parallel with the num-
ber of distinct ports, multiple collectives can perform their
rendezvous and communication concurrently.

4 REFERENCE IMPLEMENTATION

We present a proof-of-concept implementation of SMI, where the
transport layer and all communication primitives are implemented
as HLS code, targeting the Intel FPGA SDK for OpenCL [5]. Network
connections are implemented using I/O channels in the SDK, which
are mapped to physical interfaces implemented by the board support
package (BSP) specifying the FPGA shell, provided by the board
vendor. SMI as an interface specification is platform independent,
but as the transport layer relies on many platform-specific features,
we focus on the Intel infrastructure here.

4.1 General Architecture

The SMI implementation resides between applications and the net-
work ports exposed by the FPGA board (see Fig. 6). It is composed
of two components: the interface, which implements the SMI primi-
tives described in Sec. 3, and a transport component, which handles
data transfer between endpoints.

At the SMI application interface, messages are packaged in net-
work packets, which have a size equal to the width of the I/O
interface to the network provided by the BSP (e.g., 32 Bytes for the
experimental platform used). The network packet is the minimal
unit of routing, and it may contain one or more data elements.
The transport component receives network packets both from the

SC ’19, November 17-22, 2019, Denver, CO, USA

m m
T Interface N

Transport \

/ .
EAE3-CaE- CaCs-Cae

Figure 6: SMI implementation.

interface and from the network (through the BSP network inter-
faces). The packet is immediately forwarded onto one of the output
links according to the specified target rank and port. The transport
layer can accept one new network packet, either coming from the
network or from the applications, every clock cycle. With the ex-
ception of the routing metadata, no bulk data needs to be buffered
in the transport layer, and the transmission of a message is fully
pipelined across the network.

4.2 Data Forwarding

Each data communication to/from the network involves moving the
data between applications and the transport component through
physical hardware connections configured on the FPGA. These
connections are implemented using FIFO buffers, where the inter-
nal buffer size is a compile-time parameter. This buffer size can be
tweaked according to the expected length of the messages that will
be sent, taking available FPGA resources into account. By increasing
the buffer size, a sending rank can commit more data to the network
while continuing computations, which can in some cases improve
the overall runtime. This is considered an optimization parameter,
as programs must not rely on these buffer sizes for correctness (i.e.,
to avoid deadlocks). The ports declared in Open_Channel primitives
are used to uniquely identify the accessed FIFO buffer, and instructs
the HLS compiler to lay down the buffer for connecting the com-
munication endpoint (e.g., a push or a pop) to the transport layer.
The transport component effectively acts as middleware between
the applications and the network ports.

In the Intel FPGA SDK for OpenCL, channels are restricted to a
single reader (for input channels) or writer (for output channels):
for this reason, we create dedicated entities that handle access to
the BSP network I/O channels. We refer to these entities as send
communication kernels (CKs), if they send data to the network,
and receive communication kernels (CKR), if they receive data from
the network, respectively. To perform the actual data transmission
between two remote endpoints, we can follow two approaches:

o Circuit switching: when a CKg accepts the first network packet
that composes a message, it will continue to accept data only
from that application until all the content of the message has
been transferred. The message first transmits a single network
packet containing all meta-information (source and destination
rank, message data type, port, etc.), followed by a sequence of
payload network packets.

T. De Matteis et al.

From To
Applications Applications

Other
CKs

To Net. Port

From Net. Port

Figure 7: Communication kernel (CK) connectivity.

o Packet switching: CKs allows interleaving messages from dif-
ferent endpoints. The message is transmitted as a sequence of
packets in which each packet must contain the meta-information
necessary to route it.

The reference implementation presented here uses the second ap-
proach. Despite being less bandwidth efficient, as part of each net-
work packet is consumed by the message header, it allow us to
easily multiplex different channels, avoiding temporary stalls due
to the transmission of long messages, and all applications can con-
currently send/receive messages.

Concretely, network packets in our implementation are com-
posed of 4Bytes of header data, and a payload of 28 Bytes. The
header contains source and destination ranks (1 B each), the port
(1B), the operation type (e.g., send/receive, 3 bits), and the num-
ber of valid data items contained in the payload (5 bits). We thus
truncate the rank and port information with respect to the SMI
interface to 8 bit each to mitigate the penalty of packet switching.

Packing and unpacking network packets is implemented in the
Push and Pop primitives. Push internally accumulates data items
until a network packet is full. The packet is then forwarded to
CKg, which will forward it towards its destination. Pop internally
unpacks data returned from CKRg, and transmits it to the application
one element at a time, according to the specified data type.

4.3 Routing Management

In our implementation we exploit dedicated interconnection net-
work between FPGAs without using additional network equipment
like routers or switches. Therefore, the transport layer is in charge
of implementing the routing of the data between any pair of ranks.

Each FPGA network interface is managed by a different CKg/CKg
pair. In this way, we avoid a single centralization point that would
have serialized packet transferring. Application endpoints are con-
nected to one CKg or CKR using a FIFO buffer. The communication
kernels are interconnected as shown in Fig. 7. After the kernel
receives a packet, it consults an internal routing table to determine
where to forward the packet. The reference implementation em-
ploys a configurable polling scheme: when a CKs/CKr module
receives a packet from an incoming connection, it keeps reading
from the same connection up to R times (where R is an optimiza-
tion parameter) while data is available, before continuing to poll
other ports. With R = 1, the CKg module polls a different connec-
tion every cycle. Higher values of R increase the bandwidth for
applications with a sparse communication pattern, but increases
the per-connection latency for applications where many incoming
connections are active simultaneously.

Streaming Message Interface: Distributed Programming on Reconfigurable Hardware

The routing information used by the SMI communication ker-
nels can be uploaded dynamically at runtime, allowing it to be
specialized to the interconnect, and even to the application. We
use static routing to determine the optimal paths for routing pack-
ets between any pair of FPGAs: before the application starts, the
paths between FPGAs are computed using a deadlock-free routing
scheme [8], according to the target FPGA interconnection topology.
If the interconnection topology changes, or the programs run on
a different number of FPGAs, the bitstream does not need to be
rebuilt, as the routing scheme merely needs to be recomputed and
uploaded to each device.

Routing tables are buffered in on-chip memory local to each CKg
and CKg module. The routing tables at sender modules (CKg) are
indexed by the destination rank of the packet: if the destination
rank is the local rank, the packet is forwarded to the connected
CKR; otherwise, the packet is forwarded either to another local
CKg module, or to the associated network interface. At a receiver
module (CKR), if the destination rank is not the local rank, it is
forwarded to the associated CKs module. This situation could occur
when the local rank is an intermediate hop in the route to reach the
destination. Otherwise, the CKg will use the port of the packet as
an index into its routing table. The table instructs it to either send
the packet directly to a connected application, or to forward the
packet to the CKR that is directly connected to the destination port.

By implementing the routing logic in this way, we guarantee
that a rank is reachable from all others, even if there is no physical
direct connection between them, and we allow the communication
topology to be changed without regenerating the FPGA bitstream.

4.4 Collective Implementation

Collective communication requires coordination between involved
ranks (see Sec. 3.2). In our reference implementation, collectives
are implemented using a simple linear scheme. The implemented
SMI transport layer uses a support kernel for coordinating each
collective. Support kernels reside between the application and the
associated CKr/CKs modules, and their logic is specialized to the
specific collective. For this reason they can also be exploited to
offer different implementations of collectives, such as tree-based
schema for Bcast and Reduce. Both the root and non-root behavior
is instantiated at every rank, to allow the root rank to be specified
dynamically. For Bcast and Scatter, the support kernel will wait
at the root for the notification that a receiving rank is ready to
receive before streaming data towards it. For Gather, the root rank
has to receive the data from the ranks in the correct order, which is
coordinated by the support kernel. For Reduce, the support kernel
will be in charge of receiving the elements to reduce, and applying
the relevant reduction operation. The latter implements rendezvous
with a credit-based flow control algorithm with C credits, corre-
sponding to an internal buffer of size C at the root rank holding
accumulation results. When C contributions have been received
from each rank, the reduced result is forwarded to the application,
and new credits are sent to the ranks (C can be considered a tile
size of the Reduce communication, corresponding to the width of
columns in Fig. 5).

SC ’19, November 17-22, 2019, Denver, CO, USA

[User provided SMI_init({
I SMI provided } . i
host.h "

F,
TR
CKR-A1
CKS-A0

iexecute

Routes
generator

dev.cl

} C iler | ‘Bitstream

Figure 8: Development workflow.

4.5 Development Workflow

The development workflow for using SMI is depicted on Fig. 8. The
communication logic of SMI is produced by a code generator. It takes
the description of SMI operations (ports, data types) as an input
and outputs a device source file with all the necessary CKs, CKR,
communication primitives and collective support kernel implemen-
tations that are tailored for the specified set of SMI operations. The
code generator also outputs a host header file that contains support
functions for SMI initialization.

To generate the correct input to the code generator, we provide
a metadata extractor, that parses the user’s device code with Clang,
finds all used SMI operations and extracts their metadata to a file.
After the code generator is executed on this metadata, the code-
generated SMI implementation can be compiled together with the
the user’s code by an FPGA compiler to produce a bitstream. For
SPMD programs, only one instance of the code is generated, and thus
the user only needs to build a single bitstream for any number of
nodes in a multi-FPGA system.

A route generator accepts the network topology of the FPGA
cluster and produces the necessary routing tables that drive the
forwarding logic at runtime. The topology is provided as a JSON file,
which describes connections between FPGA network ports. The
route generator needs to access metadata created by the code gener-
ator, but it doesn’t modify or create any source code and therefore
it can be executed independently from the compilation (crucially,
you can change the routes without recompiling the bitstream).

Finally, the user host program takes the compiled bitstream and
the routing tables as inputs, and uses functions provided by the
generated host header to setup the routing tables, and to start all
of the SMI transport components on the FPGA. We also provide
build system integration for CMake which fully automates the full
workflow with a single function invocation.

4.6 Implementation Portability

The proof-of-concept implementation of SMI discussed here targets
the Intel FPGA SDK for OpenCL, but as SMI is a platform inde-
pendent interface specification, it can be implemented for other
vendors, such as Xilinx FPGAs, as well. The interface, and key con-
cepts of the transport component can be reused, adapt