Slim Graph: Practical Lossy Graph Compression
for Approximate Graph Processing, Storage, and Analytics

Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger,

Andrey Ivanov, Yishai Oltchik, Torsten Hoefler
Department of Computer Science; ETH Zurich

ABSTRACT

We propose Slim Graph: the first programming model and
framework for practical lossy graph compression that fa-
cilitates high-performance approximate graph processing,
storage, and analytics. Slim Graph enables the developer to
express numerous compression schemes using small and pro-
grammable compression kernels that can access and modify
local parts of input graphs. Such kernels are executed in
parallel by the underlying engine, isolating developers from
complexities of parallel programming. Our kernels imple-
ment novel graph compression schemes that preserve numer-
ous graph properties, for example connected components,
minimum spanning trees, or graph spectra. Finally, Slim
Graph uses statistical divergences and other metrics to ana-
lyze the accuracy of lossy graph compression. We illustrate
both theoretically and empirically that Slim Graph accelerates
numerous graph algorithms, reduces storage used by graph
datasets, and ensures high accuracy of results. Slim Graph
may become the common ground for developing, executing,
and analyzing emerging lossy graph compression schemes.

ACM Reference Format:

Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger,
Andrey Ivanov, Yishai Oltchik, Torsten Hoefler. 2019. Slim Graph:
Practical Lossy Graph Compression for Approximate Graph Pro-
cessing, Storage, and Analytics. In The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC '19),
November 17-22, 2019, Denver, CO, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3295500.3356182

Slim Graph website:
https:/ /spcl.inf.ethz.ch/Research/Parallel_Programming/SlimGraph

1 INTRODUCTION

Large graphs are a basis of many problems in machine learn-
ing, medicine, social network analysis, computational sci-
ences, and others [15, 25, 106]. The growing graph sizes, reach-
ing one trillion edges in 2015 (the Facebook social graph [48])
and 12 trillion edges in 2018 (the Sogou webgraph [101]),
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require unprecedented amounts of compute power, storage,
and energy. For example, running PageRank on the Sogou
webgraph using 38,656 compute nodes (10,050,560 cores) on
the Sunway TaihuLight supercomputer [71] (nearly the full
scale of TaihuLight) takes 8 minutes [101]. The sizes of such
datasets will continue to grow; Sogou Corp. expects a ~60
trillion edge graph dataset with whole-web crawling. Lower-
ing the size of such graphs is increasingly important for academia
and industry: It would offer speedups by reducing the number
of expensive I/O operations, the amount of data communi-
cated over the network [19, 21, 29] and by storing a larger
fraction of data in caches.

There exist many lossless schemes for graph compression,
including WebGraph [33], k2-trees [37], and others [24]. They
provide various degrees of storage reductions. Unfortunately,
the majority of these schemes incur expensive decompression
in performance-critical kernels and high preprocessing costs
that throttle performance [33, 37]. Moreover, there also exist
succinct graph representations that approach the associated graph
storage lower bounds [68, 113, 124, 157]. However, they are
mostly theoretical structures with large hidden constants. In
addition, as shown recently, the associated storage reductions
are not large, at most 20-35%, because foday’s graph codes
already come close to theoretical storage lower bounds [31].

In this work, we argue that the next step towards signifi-
cantly higher performance and storage reductions in graph
analytics can be enabled by lossy graph compression and the
resulting approximate graph processing. As the size of graph
datasets grows larger, a question arises: Does one need to
store and process the exact input graph datasets to ensure
precise outcomes of important graph algorithms? We show
that, as with the JPEG compression (see Figure 1), one may
not always need the full precision while processing graphs.

Our analogy between compressing graphs and bitmaps
brings more questions. First, what is the criterion (or crite-
ria?) of the accuracy of lossy graph compression? It is no
longer a simple visual similarity as with bitmaps. Next, what
is the actual method of lossy compression that combines
large storage reductions, high accuracy, and speedups in graph
algorithms running over compressed datasets? Finally, how
to easily implement compression schemes? To answer these
questions, we develop Slim Graph: the first programming
model and framework for lossy graph compression.

The first core idea and element of Slim Graph is a program-
ming model that enables straightforward development of
different compression schemes for graphs. Here, a developer
constructs a simple program called a compression kernel. A
compression kernel is similar to a vertex program in systems
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Figure 1: The comparison of different compression levels of the JPG format and the
resulting file sizes (the photos illustrate Chersky Mountains in Yakutia (North-East
Siberia), in January, with the Moon and an owl caught while flying over taiga forests).
Can one apply a similar approach to storing complex graph structures?

such as Pregel [107] or Galois [116] in that it enables access-
ing local graph elements, such as neighbors of a given vertex.
However, there are two key differences. First, the scope of a
single kernel is more general than a single vertex — it can be
an edge, a triangle, or even an arbitrary subgraph. Second,
the goal of a compression kernel is to remove certain elements
of a graph. The exact elements to be removed are determined
by the body of a kernel. In this work, we introduce kernels
that preserve graph properties as different as Shortest Paths
or Coloring Number while removing significant fractions of
edges; these kernels constitute novel graph compression schemes.
We also illustrate kernels that implement spanners [120] and
spectral sparsifiers [148], established structures in graph the-
ory. These are graphs with edges removed in such a way that,
respectively, the distances between vertices and the graph
spectra are preserved up to certain bounds. Finally, for com-
pleteness, we also express and implement a recent variant
of lossy graph summarization [141]. Based on the analysis of
more than 500 papers on graph compression, we conclude that
Slim Graph enables expressing and implementing all major
classes of lossy graph compression, including sampling, spec-
tral sparsifiers, spanners, graph summarization, and others.
Next, Slim Graph contributes metrics for assessing the
accuracy of lossy graph compression. For algorithms that
assign certain values to each vertex or edge that impose
some vertex or edge ordering (e.g., Brandes Algorithm for
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Betweenness Centrality [36]), we analyze the numbers of ver-
tex or edge pairs that switched their location in the order
after applying compression. Moreover, for graph algorithms
with output that can be interpreted as a probability distri-
bution (e.g., PageRank [117]), we propose to use statistical
divergences, a powerful tool used in statistics to assess the
similarity and difference of two probability distributions. We
analyze a large number of difference divergence measures
and we select the Kullback-Leibler divergence [92] as the most
suitable tool in the context of comparing graph structure.

We conduct a theoretical analysis, presenting or deriv-
ing more than 50 bounds that illustrate how graph properties
change under different compression methods. We also eval-
uate Slim Graph for different algorithms, on both shared-
memory high-end servers and distributed supercomputers.
Among others, we were able to use Slim Graph to compress
Web Data Commons 2012, the largest publicly available graph
that we were able to find (with /3.5 billion vertices and ~128
billion edges), reducing its size by 30-70% using distributed
compression. Slim Graph may become a common ground for devel-
oping, executing, and analyzing emerging lossy graph compression
schemes on shared- and distributed-memory systems.

2 NOTATION AND BACKGROUND
We first summarize the necessary concepts and notation. Ta-
ble 1 presents the used abbreviations.

BFS, SSSP Breadth-First Search, Single Source Shortest Path [51]
MST, PR, CC  Min. Spanning Tree, PageRank [117], Connected Components

BC, TC Betweenness Centrality [36, 145], Triangle Counting [142]
TR, EO, CT, SG Triangle Reduction, Edge Once, Count Triangles, Slim Graph
KL, SVD Kullback-Leibler, Singular Value Decomposition

Table 1: The most important abbreviations used in the paper.

We model an undirected graph G as a tuple (V,E); V is
a set of vertices and E C V x V is a set of edges; |V| = n,
|E| = m. Ny and d,, denote the neighbors and the degree of a
vertex v, respectively. We also consider weighted and directed
graphs and mention this appropriately. The shortest path
length between vertices 1 and v in a graph G is distg(u,v).
G’s maximal degree and diameter are d and D. T is the total
number of triangles in a graph.

We list considered well-known graph problems in Table 1.
Due to space constrains, we describe them in detail in the
extended report (see the link on page 1). Importantly, the
complexity of algorithms (both sequential and parallel) solv-
ing these problems is proportional to m. Thus, removing graph
edges would directly accelerate the considered graph algorithms.

We also clarify naming: we use the term “lossy graph
compression” to refer to any scheme that removes some parts
of graphs: sparsification and sparsifiers [16, 148], sketches [2],
synopses [75], sampling [79, 99, 160], spanners [120], low-rank
approximation [133, 149], bounded-error summarization [115],
lossy compression [78], and reduction [This work].

3 SLIM GRAPH ARCHITECTURE

We now describe the architecture of Slim Graph. An overview
is presented in Figure 2. Slim Graph consists of three key
elements: (1) a programming model, (2) an execution engine,
and (3) an analytics subsystem with accuracy metrics.
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Figure 2: The overview of the architecture of Slim Graph.

3.1 Part One: Programming Model

The first core part of Slim Graph is a programming model for
graph compression. The model provides a developer with a
set of programmable compression kernels that can be used
to express and implement graph compression schemes. Intuitively,
the developer can program the kernel by providing a small
code snippet that uses the information on graph structure
(provided by the kernel arguments) to remove certain parts of
the graph. These kernels are then executed by an underlying
engine, where multiple instances of kernels run in parallel.

Thus, a developer has a “local” view of the input graph [151],

similar to that of vertex-centric processing frameworks such
as Pregel [107] or Galois [116]. Still, Slim Graph enables sev-
eral types of kernels where the “local view of the graph” is (1)
a vertex and its neighbors, but it can also be (2) an edge with
adjacent vertices, (3) a triangle with neighboring vertices, and
(4) a subgraph with a list of pointers to vertices within the
subgraph and pointers to neighboring vertices. As we show
in detail in § 4, each type of kernel is associated with a certain
class of graph compression algorithms. For example, a subgraph
is used to implement spanners while a triangle is associated
with Triangle Reduction, a class proposed in this work. Each
of these classes can be used to reduce the graph size while
preserving different properties; we provide more details in § 6
and § 7. Slim Graph offers multiple compression schemes because
no single compression method can be used to preserve many graph
properties deemed important in today’s graph computations.

The developer can indicate whether different parts of a
compression kernel will execute atomically [135]. The devel-
oper can also specify if a given element should be considered
for removal only once or more than once (i.e., by more than
one kernel instance). This enables various tradeoffs between
performance, scope (i.e., number of removed graph elements),
and accuracy of compression. More details are in § 4.

3.2 Part Two: Execution Engine

Second, Slim Graph'’s processing engine executes compres-
sion kernels over input graphs, performing the actual com-
pression. The engine consists of a two-stage pipeline. In
stage 1, a graph is compressed with a selected method. In
stage 2, a selected graph algorithm is executed on the com-
pressed graph to verify how compression impacts the graph
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structure. Many considered real-world graphs fit in a memory

of a single “fat” server and we use established in-memory

techniques and integrate Slim Graph with high-performance

shared-memory processing infrastructure, namely GAP Bench-
mark Suite [13], to deliver fast graph compression routines

(we extend GAPBS with new graph algorithms whenever

necessary, e.g., to compute matchings, spanning trees, and

others). However, if graphs do not fit into the memory of one

server, we use a separate pipeline with I/O and distributed-
memory tools. Currently, we use a distributed-memory im-
plementation of edge compression kernels, based on MPI

Remote Memory Access [20, 23, 57, 73, 134].

Challenges behind designing fast graph processing engines
were studied thoroughly in the last decade and summarized
in numerous works [11, 22, 26-28, 30, 58, 77, 96, 105, 109,
140, 165, 166]. Thus, in the following, we focus on the novel
contributions, which are (1) kernel abstractions for graph
compression, (2) novel graph compression methods, (3) novel
accuracy metrics, and (4) theoretical and empirical evaluation.

3.3 Part Three: Analytics Subsystem

Slim Graph also provides methods and tools for analyzing
the accuracy of graph compression schemes. The proposed
metrics can be used to compare the outcomes of graph al-
gorithms that generate a scalar output (e.g., a number of
Connected Components), a vector (e.g., Betweenness Cen-
trality), or a probability distribution (e.g., PageRank). The
results of this analytics can be used by the Slim Graph user
to provide feedback while implementing graph compression
routines. We discuss these metrics in detail in § 5.

4 SLIM GRAPH: COMPRESSING GRAPHS

We now show how to develop lossy graph compression
schemes using Slim Graph abstraction of compression ker-
nels. Table 2 summarizes schemes considered in this work.
We (1) describe each scheme and (2) provide the pseudocode
of the corresponding kernels and any other required struc-
tures. Throughout this section, we use Figure 3 (overview of
kernels) and Listing 1 (“C++ style” pseudocode). We present
the code of seven key kernels; more examples (a total of
16) can be found in the extended technical report. Finally,
we propose Triangle Reduction, a tunable class of graph
compression schemes, together with corresponding kernels.

4.1 Compression Kernels: Syntax + Semantics

We summarize selected parts of Slim Graph syntax and se-
mantics. To implement a kernel, one first specifies a kernel
name and a single kernel argument x; x can be a vertex, an
edge, a triangle, or a subgraph. Within kernel’s body, x offers
properties and methods that enable accessing and modifying
local graph structure, e.g., edges adjacent to x. Slim Graph
also provides a global container object SG. SG offers various
functions and parameters for accessing or modifying global
graph structure, for example del(a) (delete a graph element
a) or out_edges(X) (return all edges with a source vertex in
a subgraph induced by elements X). SG also contains proper-
ties of the used compression scheme, for example values of
sampling parameters. Finally, Slim Graph syntax includes a
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Input graph: (8 4.3) Triangle Compression Kernels (implementing Triangle Reduction, a novel graph compression method proposed in this work):
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Figure 3: The overview of Slim Graph compression kernels and their impact on various graph properties. Vertex/edge kernels are shown together due to space constraints.
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Compression scheme
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Lossy compression schemes that are a part of Slim Graph.

(§ 4.2.1) Spectral sparsification (“High-conductance” sampling [148])  « max(log %,log n)n m+0O(1) .5 O(m-+n) Graph spectra

(§ 4.2.2) Edge sampling (simple random-uniform sampling) (1—p)m m+O(1) Q. ) O(m+n) Triangle count

(§ 4.3) Triangle reduction (several variants are described in § 4.3) m — pT (more in § 6) O(nd?) or O(m3/2> O, O(m+n) Several (§ 6)

(§ 4.5.3) Spanners (O(k)-spanner [111]) O(n***logk) O(m) ), O(m+n) Distances

(§ 4.5.4) Lossy summarization with Jaccard similarity (SWeG [141]) m + 2em* o(mI)* "Q,@* O(m+n) Count of common neighbors

Past schemes for lossy graph compression (some might be integrated with Slim Graph in future versions):

(§ 4.6) Lossy summarization with the MDL principle (ApxMdI [115]) em*
(§ 4.6) Lossy linearization [108] 2kn*
(§ 4.6) Low-rank approximation (clustered SVD [133, 149]) —

(§ 4.6) Cut sparsification (Benczir-Karger [16])

O(nlogn €?)

O(C?logn + nms)* 9,5 O(m+n) Unknown
O(mdIT)* iQ i@ O(m+n) Unknown
o(n)# O, 0(n?) [High error rates]

O(mlog®n+mlogn/e®)t 5, O(n+m) Cut sizes

Table 2: (§ 4) Considered lossy compression schemes. "W,D indicate support for weighted or directed graphs, respectively. Symbols used in Slim Graph schemes (p, k) are
explained in corresponding sections. *Storage needed to conduct compression. In the SWeG lossy summarization [141], € controls the approximation ratio while I is the number
of iterations (originally set to 80 [141]). *SWeG covers undirected graphs but uses a compression metric for directed graphs. In ApxMdl [115], € controls the approximation
ratio, C € O(m) is the number of “corrections”, mg € O(m) is the number of “corrected” edges. In lossy linearization [108], k € O(n) is a user parameter, I is the number of
iterations of a “re-allocation process” (details in Section V.C.3 in the original work [108]), while T is a number of iterations for the overall algorithm convergence. In clustered SVD
approximation [133, 149], n. < n is the number of vertices in the largest cluster in low-rank approximation. In cut sparsifiers [16], € controls the approximation ratio of the cuts.

/x*xxxxxkxk% Single-edge compression kernels (§ 4.2) *kkkkkkkkkkkkkkx/

1
2 spectral_sparsify(E e) { //More details in § 4.2.1

3 double Y = SG.connectivity_spectral_parameter();

4 double edge_stays = min(1.0, Y / min(e.u.deg, e.v.deg));

5 if(edge_stays < SG.rand(0,1)) atomic SG.del(e);

6 else e.weight = 1/edge_stays;

7}

8 random_uniform(E e) { //More details in § 4.2.2

9 double edge_stays = SG.p;

10 if(edge_stays < SG.rand(@,1)) atomic SG.del(e);

11 3}

12 /*xx%x***xxxxxx* Triangle compression kernels (§ 4.3) #k*kxxxxkkkkkxxx/

13 p-1-reduction(vector<gE> triangle) {

14 double tr_stays = SG.p;

15 if(tr_stays < SG.rand(0,1))

16 atomic SG.del(rand(triangle)); }
17 p-1-reduction-EO(vector<E> triangle) {
18 double tr_stays = SG.p;

19 if(tr_stays < SG.rand(0,1)) {

20 E e = rand(triangle);
21 atomic {if(!e.considered) SG.del(e);
22 else e.considered = true; } } }

23 /x#*xxxxxxxx% Single-vertex compression kernel (§ 4.4) xxxxkkkkxkxxkkx/

24 low_degree(V v) {
25 if(v.deg==0 or v.deg==1) atomic SG.del(v); 1}

26 /**xkxkxkxx%x% Subgraph compression kernels (§ 4.5) xkxkxkkkkxkxkxk*/

27 derive_spanner (vector<V> subgraph) { //Details in § 4.5.3
28 //Replace "subgraph" with a spanning tree

29 subgraph = derive_spanning_tree(subgraph);

30 //Leave only one edge going to any other subgraph.

31 vector<set<V>> subgraphs(SG.sgr_cnt);

32 foreach(E e: SG.out_edges(subgraph)) {

33 if (!subgraphs[e.v.elem_ID].empty()) atomic del(e);

343 )

35 derive_summary (vector<V> cluster) { //Details in § 4.5.4

36 //Create a supervertex "sv" out of a current cluster:

37 V sv = SG.min_id(cluster);

38 SG.summary.insert(sv); //Insert sv into a summary graph

39 //Select edges (to preserve) within a current cluster:

40 vector<E> intra = SG.summary_select(cluster, SG.e€);

41 SG.corrections_plus.append(intra);

42 //Iterate over all clusters connected to "cluster":

43 foreach(vector<V> cl: SG.out_clusters(out_edges(cluster))) {

44 [E, vector<E>] (se, inter) = SG.superedge(cluster,cl,SG.e€);
45 SG.summary.insert(se);

46 SG.corrections_minus.append(inter);

47 3}

48 SG.update_convergence();

49 3

Listing 1: Implementing lossy graph compression schemes with Slim Graph.

keyword atomic (it indicates atomic execution) and opaque
reference types for vertices and edges (V and E, respectively).
Example V fields are deg (degree) and parent_ID (ID of the
containing graph element, e.g., a subgraph). Example E fields
are u (source vertex), v (destination vertex), and weight.

4.2 Single-Edge Kernels
We start from a simple kernel where the Slim Graph pro-
gramming model provides the developer with access to each
edge together with the adjacent vertices and their properties,
such as degrees. In Slim Graph, we use this kernel to ex-
press two important classes of compression schemes: spectral
sparsification and random uniform sampling.
4.2.1 Spectral Sparsification with Slim Graph. In spectral
sparsifiction, one removes edges while preserving (with high
accuracy) graph spectrum (i.e., the eigenvalues of graph Lapla-
cian). The graph spectrum determines various properties, for exam-
ple bipartiteness or spectral clustering coefficient, which may
be important for Slim Graph users. All formal definitions
are in the extended report. Now, there exist many works on
spectral sparsifiers [6, 12, 39, 50, 69, 83, 89, 91, 95, 97, 146~
148, 161, 167]. We exhaustively analyzed these works! and we
identified a method that needs only O(m + n) storage and
O(m) time (others require Q(n?) storage or have large hidden
constants). Here, edges are sampled according to probabili-
ties different for each edge. These probabilities are selected
in such a way that every vertex in the compressed graph has edges
attached to it w.h.p.. The fraction Y of remaining edges adja-
cent to each vertex can be proportional to log(n) [148] (Y =
plog(n)) or to the average vertex degree [82] (Y = pm/n); p
is a user parameter. Then, each edge (1, v) stays in the com-
pressed graph with probability p,» = min(1,Y/min(dy, dy)).
If the output graph must be weighted, then we set W(u,v) =
1/pu,n. Now, one can prove that a graph compressed accord-
ing to the presented scheme preserves spectrum well [148].
Slim Graph Implementation In the corresponding kernel
spectral_sparsify (Lines 2-6), each edge e (provided as
the kernel argument) is processed concurrently. edge_stays
(the probability p; ; of sampling e) is derived based on Y (a
parameter maintained in SG and pre-initialied by the user)
and degrees of vertices u and v attached to e. Then, e is either
atomically deleted or appropriately re-weighted.

4.2.2 Uniform Sampling with Slim Graph. We also express
and implement random uniform sampling in Slim Graph.

1Our exhaustive review on lossy graph compression is in an accompanying
survey that will be released upon publication of this work.
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Here, each edge remains in the graph with a probability p.
This simple scheme can be used to rapidly compress a graph
while preserving accurately the number of triangles [156].
Slim Graph Implementation The kernel for this scheme
is shown in Lines 8-10. Its structure is analogous to
spectral_sparsify. The main difference is that the sampling
probability edge_stays (p) is identical for each edge.

4.3 Triangle Kernels for Triangle Reduction
The next class of compression kernels uses triangles (3-cycles)
as the “smallest unit of graph compression”. Triangle kernels
implement Triangle Reduction (TR): a class of compression
schemes that generalizes past work [87]. In TR, a graph is
compressed by removing certain parts of a selected fraction
of triangles, sampled u.a.r. (uniformly at random). Specific
triangle parts to be removed are specified by the developer.
Thus, we “reduce” triangles in a specified way.

We focus on triangles because — as we also show later
(§ 6, § 7) — TR is versatile: removing certain parts of trian-
gles does not significantly impact a surprisingly large number
of graph properties. For example, removing an edge from
each triangle does not increase the number of connected
components, while removing the maximum-weight edge
from each triangle does not change the weight of the min-
imum spanning tree. Second, the relatively low computa-
tional complexity of mining all the triangles (O(m%/2) or
O(nd?)), combined with the existing bulk of work on fast
triangle listing [54, 74, 80, 123, 142, 155, 159, 162, 164], en-
ables lossy compression of even the largest graphs avail-
able today. Further, numerous approximate schemes find
fractions of all triangles in a graph much faster than O(m>/2) or
O(nd?) [17, 38, 52, 81, 86, 110, 119] [63, 70, 84, 85, 136-138],
further reducing the cost of lossy compression based on TR.

In the basic TR variant, we select pT triangles from a graph
uwa.r, p € (0;1). In each selected triangle, we remove x edges
(x € {1,2}), chosen u.a.r.. We call this scheme Triangle p-x-
Reduction, where p and x are input parameters.

We advocate the versatility, extensibility, and flexibility of
TR by discussing variants of the basic TR scheme that enable
tradeoffs between compression performance, accuracy in pre-
serving graph properties, and storage reductions. One variant
is Edge-Once Triangle p-x-Reduction (EO p-x-TR). Here, we
consider each edge only once for removal. When a triangle
is selected for reduction for the first time (by some kernel
instance), if a random edge is not removed, it will not be con-
sidered for removal in another kernel instance. This protects
edges that are a part of many triangles (that would otherwise
be considered for deletion more often) and thus may be more
important, e.g., they may be a part of multiple shortest paths.
Another example is EO p-1-Triangle Reduction with a modi-
fication in which we remove an edge with the highest weight.
This preserves the exact weight of the minimum spanning tree.

Certain Slim Graph users may be willing to sacrifice more
accuracy in exchange for further storage reductions. In such
cases, we offer Triangle p-2-Reduction. Finally, we propose
the Triangle p-Reduction by Collapse scheme in which tri-
angles are collapsed to single vertices, each with a probability
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p. This scheme changes the vertex set in addition to the edge
set, offering even more storage reduction.

Slim Graph Implementation The kernel for the basic TR
scheme (for x = 1) is in Lines 13-16; the EO variant is pre-
sented in Lines 17-22. In both cases, the kernel argument
triangle is implemented as a vector of edges. SG.p is a proba-
bility of sampling a triangle. We select an edge to be removed
with rand (an overloaded method that returns — in this case —
a random element of a container provided as the argument).
Here, by selecting an edge for removal in a different way, one
could straightforwardly implement other TR variants. For ex-
ample, selecting an edge with a maximum weight (instead of
using rand(triangle)) would preserve the MST weight. The
deletion is performed with the overloaded SG.del method.

4.4 Single-Vertex Kernels

We enable the user to modify a single vertex. Our example
kernel (Lines 24-25) removes all vertices with degree zero and
one. The code is intuitive and similar to above-discussed edge
kernels. This enables compressing a graph while preserving
the exact values of betweenness centrality, because degree-
1 vertices do not contribute any values to shortest paths
between vertices with degrees higher than one [132].

4.5 Subgraph Kernels

Slim Graph allows for executing a kernel on an arbitrary
subgraph. This enables expressing and implementing different
sophisticated compression schemes, such as spanners (graphs that
preserve pairwise distances) and lossy graph summarization
(graphs that preserve neighborhoods).

4.5.1 Overview of Slim Graph Runtime. To clarify sub-
graph kernels, we first summarize the general Slim Graph
runtime execution, see Listing 2. After initializing SG,
assuming subgraph kernels are used, Slim Graph constructs
SG.mapping, a structure that maps each vertex to its subgraph.
Mappings are discussed in § 4.5.2; they enable versatility
and flexibility in implementing lossy compression schemes
in Slim Graph. Next, a function run_kernels executes each
kernel concurrently. These two steps are repeated until
a convergence condition is achieved. The convergence
condition (and thus executing all kernels more than once)
is only necessary for graph summarization. All other lossy
compression schemes expressed in Slim Graph require only
a single execution of run_kernels.

SG.init(G); //Init the SG object using the input graph G.

/* In addition, here the user can initialize various parameters

related to the selected lossy compression, etc. */

while (!SG.converged) { //"converged" is updated in "run_kernels"
if(SG.kernel == SUBGRAPH) SG.construct_mapping();
SG.run_kernels(); } //Execute all kernels concurrently

SG.free(); //Perform any necessary cleanup.

N O Ul N

Listing 2: Overview of Slim Graph runtime execution for subgraph kernels.

4.5.2 Mappings. While analyzing lossy graph compression,
we discovered that many representative spanner and graph
summarization schemes first decompose a graph into disjoint
subgraphs. Next, these schemes use the obtained intra- and
inter-subgraph edges to achieve higher compression ratios or
to ensure that the compression preserves some graph proper-
ties (e.g., diameter). Details of such graph decompositions are
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algorithm-specific, but they can all be defined by a mapping
that assigns every vertex to its subgraph. Thus, to express
any such compression algorithm in Slim Graph, we enable
constructing arbitrary mappings.

Example Mappings Two important mappings used in Slim
Graph are based on low-diameter decomposition [111] (takes
O(n + m) work) and clustering based on Jaccard similar-
ity [125] (takes O(mN) work; N is #clusters). In the former
(used for spanners), resulting subgraphs have (provably) low
diameters. In the latter (used for graph summarization), re-
sulting subgraphs consist of vertices that are similar to one
another with respect to the Jaccard measure. Both schemes are
extensively researched and we omit detailed specifications.

Implementing Mappings To develop mappings, a user can
use either the established vertex-centric abstraction or sim-
ply access the input graph (maintained as adjacency arrays)
through the SG container. Implementation details are straight-
forward; they directly follow algorithmic specifications of
low-diameter decompositions [111] or clustering [141]. From
populated mappings, the Slim Graph runtime derives sub-
graphs that are processed by kernel instances.

4.5.3 Spanners with Slim Graph. An («, f)-spanner [121] is
a subgraph H = (V,E’) of G = (V,E) such that E' C E and

distg(u,v) < disty(u,v) < a-distg(u,v) +p, Yu,veV.

We exhaustively analyzed works on spanners [3-5, 9, 10, 41,
42,59, 64,98, 111, 118, 120, 122] and we select a state-of-the-
art scheme by Miller et al. [111] that provides best known
work-depth bounds. It first decomposes a graph into low-
diameter subgraphs. An input parameter k > 1 controls how
large these subgraphs are. Then, it derives a spanning tree
of each subgraph; these trees have low diameters (klog(n)
w.h.p.). After that, for each subgraph C and each vertex v
belonging to C, if v is connected to any other subgraph with
edges ey, ..., ¢;, only one of these edges is added to the result-
ing O(k)-spanner that has O(n!*1/k) edges.

Slim Graph Implementation The corresponding kernel is
in Lines 27-33 (Listing 1). First, one derives a spanning tree
of subgraph that is the argument of the compression kernel
derive_spanner. Then, by iterating over edges outgoing from
subgraph, the implementation leaves only one edge between
any two subgraphs (here, we use sgr_cnt, a field of SG that
maintains the number of subgraphs.

4.5.4 Lossy Summaries with Slim Graph. We enable Slim
Graph to support lossy e-summarization (e-summaries).
The general idea behind these schemes is to summarize a
graph by merging specified subsets of vertices into super-
vertices, and merge parallel edges between supervertices
into superedges. A parameter € bounds the error (details
are algorithm-specific). We exhaustively analyzed existing
schemes [14, 40, 47, 61, 67, 93, 103, 104, 115, 126, 130, 141, 152—
154, 168]. We focus on SWeG, a recent scheme [141] that
constructs supervertices with a generalized Jaccard similarity.

Slim Graph Implementation The corresponding kernel is
in Lines 35-48 (Listing 1). It first creates a supervertex sv out
of a processed cluster; sv is added to the summary graph.
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Next, an algorithm-specific summary_select method returns
edges selected from cluster; € determines the scope of lossy
compression (i.e., how many intra-cluster edges are irre-
versibly dropped). The returned edges are kept in a data
structure corrections_plus (they are used to better preserve
neighborhoods). Finally, one iterates over neighboring clus-
ters (using simple predefined methods that appropriately
aggregate edges). For each neighboring cluster, a superedge
may be created inside method SG.superedge. This method
(1) drops certain sampled inter-cluster edges (for lossy com-
pression), (2) returns a newly-created superedge se (or a null
object, if no superedge was created), and (3) a vector inter
with edges that do not belong to the created superedge (assuming
se is created) and thus must be removed whenever one accesses
edges that form superedge se. Thus, edges in inter are added
to corrections_minus, a data structure with corrections.

4.6 Slim Graph vs Other Schemes

Other forms of lossy graph compression could be used in
future Slim Graph versions as new compression kernels. First,
cut sparsifiers [16] only target the problem of graph cuts and
they are a specific case of spectral sparsification: a good spectral
sparsifier is also a good cut sparsifier. Second, other schemes
target specifically dynamic and weighted graphs [78, 102]. Third,
low-rank approximation [133] of clustered Singular Value
Decomposition (SVD) was shown to yield very high error
rates [133, 149]; we confirm this (§ 7). Moreover, it has a
prohibitive time and space complexity of O (n3) and O(n?2)
where 1, is the size of the largest cluster n. € O(n). Finally,
lossy summarization based on the Minimum Description
Length principle [115] and Lossy Linearization [108] have
high time complexities of O(m?logn) and O(mdIT), respec-
tively, making them infeasible for today’s graphs.

4.7 Kernel Strengths: Takeaways

Compression kernels are simple: the “local” (e.g., vertex-
centric) view of the graph simplifies designing compres-
sion algorithms. Slim Graph implementations of compres-
sion schemes based on vertex, edge, or triangle kernels use
3-10x fewer lines of code than the corresponding standard
baselines. Subgraph kernels use up to 5x fewer code lines
(smaller gains are due to the fact that compression schemes
that must be expressed with subgraph kernels are inherently
complex and some part of this complexity must also be im-
plemented within Slim Graph mappings). Second, kernels are
flexible: one easily extends a kernel to cover a different graph
property (e.g., preserving the exact MST weight with TR only
needs removing an edge with the highest weight). Third, dif-
ferent kernels offer a tradeoff in compression speed, simplicity,
and flexibility. Vertex kernels have limited expressiveness (as is
vertex-centric graph processing [131, 163]), but they are sim-
ple to use and reason about, and running all vertex kernels
takes Q)(n) work. Edge kernels are less limited but they take
Q(m) work. Triangle kernels are even more expressive but
take O(m>/2) work. Finally, subgraph kernels are the most
expressive but also complex to use. We recommend using
them if global knowledge of the graph structure is needed.
Currently, we use them with spanners and summarization.
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5 SLIM GRAPH: ACCURACY METRICS

We now establish metrics for assessing the impact of graph
compression on algorithm outcomes. We present the most
interesting metrics and omit simple tools such as relative
scalar changes (full description is in the report). Our metrics
are generic and can be used with any compression methods.

Counts of Reordered Pairs For algorithms that output a
vector of n values associated with vertices (e.g., in PageRank),
we count the number of vertex pairs that are reordered with
respect to the considered score such as rank. This count
equals |Pgg/(5)| where Pgg is the number of vertex pairs
that are reordered after applying compression; we divide it
by the maximum possible number of reordered pairs (3). We
also count reordered neighboring vertices: it is less accurate
but easier to compute (O(m) instead of O (n?)).

Statistical Divergences Some graph properties and results
of algorithms can be modeled with certain probability distribu-
tions. For example, in PageRank, one assigns each vertex (that
models a web page) the probability (rank) of a random surfer
landing on that page. In such cases, we observe that one can use
the concept of a divergence: a statistical tool that measures the dis-
tance between probability distributions. Divergence generalizes
the notion of “distance”: it does not need not be symmetric
and need not satisfy the triangle inequality. There are dozens
of divergences [8, 43]; many belong to two groups: so called
f-divergences and Bregman divergences [8].

In order to develop Slim Graph, we analyzed various diver-
gences to understand which one is best suited for Slim Graph.
We select the Kullback-Leibler (KL) divergence [92], which origi-
nated in the field of information theory. The reasons are as
follows. First, the Kullback-Leibler divergence is generic and
applicable to many problems as it is the only Bregman diver-
gence which is also an f-divergence [92]. Moreover, it has been
used to measure the information loss while approximating
probability distributions [53, 92]. Finally, it has recently been
used to find differences between brain networks by analyzing
distributions of the corresponding graph spectra [150]. Thus,
Kullback-Leibler divergence can be used to analyze the information
loss in graphs compressed by Slim Graph when considering graph
properties such as PageRank distributions.

Formally, Kullback-Leibler divergence measures the devia-
tion of one probability distribution from another one. The de-
viation of distribution Q from P is defined as }_; P(i) log, %
The Kullback-Leibler divergence is a non-negative number,
equal to zero if and only if P and Q are identical. The lower
Kullback-Leibler divergence between probability distribu-
tions is, the closer a compressed graph is to the original one,
regarding the considered probability distribution.

Algorithm-Specific Measures: BFS BFS is of particular im-
portance in the HPC community as it is commonly used to
test the performance of high-performance systems for irregu-
lar workloads, for example in the Graph500 benchmark [112].
BFS is also a special case for Slim Graph metrics. Its out-
come that is important for Graph500 is a vector of predecessors
of every vertex in the BFS traversal tree. Thus, we cannot
use simple metrics for vector output as they are suitable for
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centrality-related graph problems where a swapped pair of
vertices indicates that a given compression scheme impacts
vertex ordering; no such meaning exists in the context of
vertex predecessors. Moreover, we cannot use divergences
because a vector of predecessors does not form a distribution.

To understand how a given compression scheme impacts
the BFS outcome, we first identify various types of edges
used in BFS. The core idea is to identify how many critical
edges that may constitute the BFS tree are preserved after
sparsification. For a given BFS traversal, the set of critical
edges E; contains the edges from the actual output BFS
traversal tree (tree edges) and the edges that could potentially
be included in the tree by replacing any of the tree edges
(potential edges). We illustrate an example in Figure 4. E., are
critical edges in the compressed graph, for a traversal starting
from the same root. Now, the fraction |Ecy| /|E¢r| indicates
the change in the number of critical edges.

tree root 1st BFS 2nd BFS

edges vertex frontier frontier ?rd ?FS

otential rontier
P - / -

{critical edges} =
{tree edges} u
{potential edges}

{non-critical edges} =
all edges} /
{critical edges}

non-critical
edges

Figure 4: Edge types considered in Slim Graph when analyzing the outcome of BFS.

6 THEORETICAL ANALYSIS

We analyze theoretically how Slim Graph impacts graph
properties. Our main result are novel bounds (more than 20
non-trivial ones) for each combination of 12 graph properties and
7 compression schemes. We show selected results (Table 3); our
report details all bounds omitted from the following text.

6.1 Triangle Kernels: Edge-Once p-1-TR

Edge Count We expect to sample pT triangles. Each triangle
shares an edge with at most 34 other triangles. Thus, an edge
is deleted from at least pT/3d triangles (in expectation).

Shortest Path Length At most one edge is deleted from
every triangle. Thus, the length of the shortest s-t path does
not increase by more than 2x, as we can always use the
two edges remaining in the triangle. Moreover, we can show
that the shortest s-t path (previously of length P) has length
at most P(1+ p/3) in expectation. As we consider each
triangle for deletion at most once, the probability of deleting
an edge along the shortest path is at most 1/3. Thus, we
expect to delete at most p’P /3 edges, increasing the length
of the shortest path by the same amount. We can obtain
high probability concentration bounds by using Chernoff
bounds [35], showing that the shortest path has length at
most P(1+ p) wh.p., if P is larger than a constant times
log n. A similar reasoning gives the bounds for Diameter.

Vertex Degree A vertex of degree d’ is contained in at most
d' /2 edge-disjoint triangles. Hence, TR decreases its degree
by at most d’ /2. As this bound holds for every vertex, it also
holds for the maximum degree and average degree.
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v E| Shortest Average Diamet Average Maximum #Triangl #Connected Coloring Max. indep.  Max. cardinal.
s-t path length  path length tameter degree degree rangles components number set size matching size
Original graph n m P P D d d T c Cg Ts Mc¢
Lossy e-summary n m=+2em 1,...,0 1,...,0 1,...,0 d+ted d+ed T +2em C +2em Cg £2em 75 +2em A7IC +2em
Simple p-sampling n  (1—p)m o0 © o (1—p)d (1-p)d (A—p)T <C+pm > 177;’CG <Is+pm >(1-p)Mc
~ ~ ~ hp.
Spectral e-sparsifier n O(n/e?) <n <n <n O(1/€?) >d/2(1+€) Om3/2/e3) “2re >0 <n >0
— 1-1/k
O(k)-spanner n O(nlt1/k) O(kP) O(kP) O(kD)  O(n'/k) <d Oo(n'+2/k) c o' logn) Q (”107) >0
X v w.h.p. _ pT w.h.p. pT p 1 = 2 o
EO p-1-Triangle Red. n Smed < P+pP <P+ A=) < D+pD e >d/2 <(1- H)T C > §CG <Is+pT > $Mc
remove k deg-1 vertices n —k m—k P Zﬁfk’—? >D-2 >37% d T C >Cc—1 ZIAS*k 21\7IC7k

Table 3: The impact of various compression schemes on the outcome of selected graph algorithms. Bounds that do not include inequalities hold deterministically. If
not otherwise stated, the other bounds hold in expectation. Bounds annotated with w.h.p. hold w.h.p. (if the involved quantities are large enough). Note that since the listed

compression schemes (except the scheme where we remove the degree 1 vertices and e-summaries) return a subgraph of the original graph, m, Cg, d, d, T, and M never increase.

Moreover, P, P,D, C, and Is never decrease during compression. € is a parameter that controls how well a spectral sparsifier approximates the original graph spectrum.

Maximum Cardinality Matching? In every triangle, a
matching [18] of the original graph can contain at most one of
its three edges. Since we delete at most one of the three edges
in a triangle uniformly at random, the probability that an
edge in a particular maximum matching of the original graph
is deleted is at most 1/3. Hence, the expected number of
edges that is deleted from the maximum matching (originally
of size M) is at most 1/3Mc.

Coloring Number In a greedy coloring, vertices are colored
by visiting the vertices in some predetermined ordering. The
coloring number [65] gives the smallest number of colors ob-
tained among all such vertex orderings by a greedy coloring.
This best ordering is closely related to the densest subgraph,
which is characterized by the arboricity [114, 169].

Let m(S) be the number of edges in the subgraph of G
induced by the vertex set S. The arboricity [114] is given by

_ m(S)
= ocscy |S|—1] :

The arboricity relates to the coloring number Cg by the in-
equalities & < Cg < 2a [169].

Now, consider a set S that obtains the maximum value. The
expected number of deleted edges from the subgraph induced
by S is at most m(S) /3. Hence, the expected arboricity (and
coloring number) of the compressed graph is at least %oc,
which is at least %Cg.

Others We observe that all connected components and the
minimum spanning tree are preserved (assuming that con-
sidered triangles are edge-disjoint and (in MST) the removed
edge has maximum weight in the triangle).

6.2 Subgraph Kernels: Spanners
#Triangles A spanner consists of clusters that are trees and
each vertex has an edge to O(n'/¥) clusters (in expecta-
tion) [111]. As clusters are acyclic, a triangle with vertex v has
to contain one or two vertices that are in a different cluster
than v. There are O(n?/¥) possibilities to choose such two
vertices (in expectation). Hence, summing over all vertices,
there are O(n!*2/k) triangles in expectation.

Coloring Number Within each cluster, the edges form a
tree. Any greedy coloring that colors each of these trees

2(11.2019) bound updated

bottom-up uses at most O(n'/*1log ) colors. We prove this
by bounding the number of edges to different clusters.

The probability that a vertex has an edge to more than
I clusters is at most (1 —n~1/%)I=1 [111]. Setting | =
n'/*2logn + 1 and using 1 — x < e¥, we get for the prob-
ability that a fixed vertex has an edge to more than [ clusters:

(1—nVk-1 < e = 2, By a union bound over all
vertices, the probability that a vertex has edges to more than
I = O(n'/*logn) clusters is at most n~!. Hence, there is a
greedy coloring which uses at most O(n'/*logn) colors.

6.3 Discussion and Takeaways

With random uniform sampling, the #connected compo-
nents is not necessarily preserved. Thus, the length of a short-
est path between any two vertices has unbounded expectation.
Yet, it can be shown that if p is large enough, the compressed
graph does preserve #connected components w.h.p. and the
size of a minimum cut also obtains its expected value [88].
All other considered schemes, except graph summarization,
preserve the number of connected components, at least w.h.p..

O(k)-Spanners preserve well lengths of shortest paths and
also the diameter. Spanners compress the edge count to close
to linear in vertex count when a large stretch k is allowed.
Yet, for small k (e.g., k = 2) the graph can have many edges
(up to min(m, n%/2)). Spanners also allow for a coloring with
relatively few colors and have a large independent set.

Edge-Once Triangle p-1-Reduction gives nontrivial
bounds for all considered graph properties (except indepen-
dent sets). Compressed graphs are 2-spanners and, w.h.p.,
a = p,p = O(logn) spanners. Moreover, the compressed
graph approximates the size of the largest matching up to a
factor 2/3 and the coloring number up to a factor 1/3. If there
are many triangles, the scheme can eliminate up to a third
of the number of edges. This is significant because k-spanners
do not guarantee compression for k < 2.

Spectral sparsification preserves the value of minimum
cuts and maximum flows [88, 148]. Moreover, there is a re-
lationship between the maximum degree of a graph and its
Laplacian eigenvalues, meaning that the maximum degree is
preserved up to a factor close to 2. Thus, the compressed
graph admits a coloring with O(d) (d is the maximum degree
of the original graph). Spectral sparsifiers always return a
sparse graph, achieving a number of edges that is close to
linear in the number of vertices.
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e-Summary bounds the size of the symmetric difference
between neighborhoods in the compressed and original graph. Its
bounds are not competitive with others as this scheme can arbitrarily
disconnect the graph and insert new edges, see Table 3.

7 EVALUATION

Lossy graph compression enables tradeoffs in three key as-
pects of graph processing: performance, storage, and accuracy.
We now illustrate several of these tradeoffs. Our goal is not to
advocate a single compression scheme, but to (1) confirm pros and
cons of different schemes, provided in § 6, and (2) illustrate that
Slim Graph enables analysis of the associated tradeoffs.

Algorithms, Schemes, Graphs We consider algorithms and
compression schemes from § 2 and Table 2, and all asso-
ciated parameters. We also consider all large graphs from
SNAP [100], KONECT [94], DIMACS [56], Web Data Com-
mons [1], and WebGraph datasets [33]; see Table 4 for details.
This creates a very large evaluation space and we only summa-
rize selected findings; full data is in the extended report.

Evaluation Methodology For algorithmic execution we use
the arithmetic mean for data summaries. We treat the first 1%
of any performance data as warmup and we exclude it from
the results. We gather enough data to compute the mean and
95% non-parametric confidence intervals.

Machines We use CSCS Piz Daint, a Cray with various
XC* nodes. Each XC50 compute node contains a 12-core HT-
enabled Intel Xeon E5-2690 CPU with 64 GiB RAM. Each
XC40 node contains two 18-core HT-enabled Intel Xeons E5-
2695 CPUs with 64 GiB RAM. We also use high-end servers,
most importantly a system with Intel Xeon Gold 6140 CPU @
2.30GHz, 768GB DDR4-2666, 18 cores, and 24.75MB L3.

Friendships: Friendster (s-frs, 64M, 2.1B), Orkut (s-ork, 3.1M, 117M), LiveJournal (s-1jn, 5.3M,
49M), Flickr (s-flc, 2.3M, 33M), Pokec (s-pok, 1.6M, 30M), Libimseti.cz (s-lib, 220k, 17M),
Catster/Dogster (s-cds, 623k, 15M), Youtube (s-you, 3.2M, 9.3M), Flixster (s-flx, 2.5M, 7.9M),

Hyperlink graphs: Web Data Commons 2012 (h-wdc, 3.5B, 128B), EU domains (2015)

(h-deu, 1.07B, 91.7B), UK domains (2014) (h-duk, 787M, 47.6B), ClueWeb12 (h-clu, 978M, 42.5B),
GSH domains (2015) (h-dgh, 988M, 33.8B), SK domains (2005) (h-dsk, 50M, 1.94B),

IT domains (2004) (h-dit, 41M, 1.15B), Arabic domains (2005) (h-dar, 22M, 639M),
Wikipedia/DBpedia (en) (h-wdb, 12M, 378M), Indochina domains (2004) (h-din, 7.4M, 194M),
Wikipedia (en) (h-wen, 18M, 172M), Wikipedia (it) (h-wit, 1.8M, 91.5M),

Hudong (h-hud, 2.4M, 18.8M), Baidu (h-bai, 2.1M, 17.7M), DBpedia (h-dbp, 3.9M, 13.8M),

Communication: Twitter follows (m-twt, 52.5M, 1.96B), Stack Overflow
interactions (m-stk, 2.6M, 63.4M), Wikipedia talk (en) (m-wta, 2.39M, 5M),

Collaborations: Actor collaboration (I-act, 2.1M, 228M), DBLP co-authorship (I-dbl, 1.82M,
13.8M), Citation network (patents) (I-cit, 3.7M, 16.5M), Movie industry graph (I-acr, 500k, 1.5M)

Various: UK domains time-aware graph (v-euk, 133M, 5.5B), Webbase crawl
(v-wbb, 118M, 1.01B), Wikipedia evolution (de) (v-ewk, 2.1M, 43.2M),
USA road network (v-usa, 23.9M, 58.3M), Internet topology (Skitter) (v-skt, 1.69M, 11M),

Table 4: Considered graphs with n > 2M or m > 10M from established datasets [1,
33,56, 94, 100]. Graph are sorted by m in each category. For each graph, we show
its “(symbol used later, 1, m)”.

7.1 Storage and Performance

We start with storage and performance tradeoffs. Figure 5
shows the impact of different compression parameters on m
and performance (we use smaller graphs to analyze in detail
a large body of parameters). Plotted graphs are selected to
cover different edge sparsity and number of triangles per
vertex (T/n is 1052 (s-cds), 20 (s-pok), and 80 (v-ewk)). In
most cases, spanners and p-1-TR ensure the largest and smallest
storage reductions, respectively. This is because subgraphs in
spanners become spanning trees while p-1-TR removes only
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as many edges as the count of triangles. Uniform and spectral
sampling offer a middle ground — depending on p, they can
offer arbitrarily small or large reductions of m. Moreover,
respective storage reductions entail similar performance effects
(fewer edges indicates faster algorithmic execution). Still, there
are some effects specific to each scheme. Spanners offer mild
performance improvements for small k that increase by a
large factor after a certain threshold of k is reached. Other
schemes steadily accelerate all algorithms with growing p.

We also test TR on weighted graphs (resulted excluded
due to space constraints). For very sparse graphs, such as the
US road network, compression ratio and thus speedups (for
both MST and SSSP) from TR is very low. MST’s performance
is in general not influenced much because it depends mostly
on 7. In other graphs, such as v-ewk, SSSP speedups follow
performance patterns for BFS. For some graphs and roots,
very high p that significantly enlarges diameter (and iteration
count) may cause slowdowns. Changing A can help but needs
manual tuning. Lossy compression may also degrade performance
if a selected scheme is unsuitable for targeted algorithms.

We also analyze variants of proposed Slim Graph com-
pression kernels. Figure 6 shows size reductions in graphs
compressed with spectral sparsification variants, in which
the number of remaining edges is proportional to the average
degree or log(n). We also analyze variants of TR; “CT” is an
additional variant of “EO” in which we not only consider
an edge for removal at most once, but also we remove edges
starting from ones that belong to the fewest triangles. Spectral
variants result in different size reductions, depending on
graphs. Contrarily, the “CT” and “EO” TR variants consistently
deliver smaller m than a simple p-1-TR (for a fixed p = 0.5).

7.2 Accuracy

We use Slim Graph metrics to analyze the accuracy of graph
algorithms after compressing graphs. First, we show that
the Kullback-Leibler divergence can assess information loss
due to compression, see Table 5. In all the cases, the higher
compression ratio is (lower m), the higher KL divergence becomes.

EO EO Uniform  Uniform Spanner Spanner Spanner

Graph (8 1TR 1.0-1TR (p=02) (p=05) (k=2 (k=16) (k= 128)

s-you  0.0121  0.0167 0.1932 0.6019 0.0054  0.2808 0.2993
h-hud  0.0187  0.0271 0.0477 0.1633 0.0340  0.2794 0.3247
il-dbl  0.0459  0.0674 0.0749 0.2929 0.0080  0.1980 0.2005
v-skt  0.0410  0.0643 0.0674 0.2695 0.0311  0.1101 0.2950
v-usa  0.0089  0.0100 0.1392 0.5945 0.0000  0.0074 0.0181

Table 5: Kullback-Leibler divergences between PageRank probability distributions
on the original and compressed graphs, respectively.

Another proposed metric is the number of pairs of neigh-
boring vertices that swapped their order (with respect to a
certain property) after compression. We test this metric for
BC and TC per vertex. Note that this metric should be used
when the compared schemes remove the same number of edges
(possibly in expectation). Otherwise, numbers of reordered ver-
tices may differ simply because one of compared graphs has
fewer vertices left. With this metric, we discover that spectral
sparsification preserves TC per vertex better than other methods.

We also discover that used O(k)-spanners preserve the
accuracy of the BFS traversal trees surprisingly well. For
example, for the s-pok graph, respectively, removing 21%
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Figure 5: Analysis of storage and performance tradeoffs of various lossy compression schemes implemented in Slim Graph (when varying compression parameters).
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Figure 6: Compressmn ratio analy3|s. dlfferent variants of spectral sparsification
(left) and triangle reduction (right), for a fixed p = 0.5. Extending results from Figure 5
(panels “spectral sparsification” and “TR”, argument p = 0.5) to (1) graphs of different
sizes, sparsities, classes, degree distributions, and (2) multiple compression variants.

(k =2), 73% (k = 8), 89% (k = 32), and 95% (k = 128) of
edges preserves 96%, 75%, 57%, and 27% of the critical edges
that constitute the BFS tree. The accuracy is maintained when
different root vertices are picked and different graphs are selected.
We also investigate how triangle count (T) is reduced with
lossy compression. Intuitively, TR should significantly impact
T. While this is true, we also illustrate that almost all schemes,
especially spanners, eliminate a large fraction of triangles, see Ta-
ble 6. This is because spanners, especially for large k, remove
most of cycles while turning subgraphs into spanning trees.
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s-you 11.38 1.544 0.037 0.091 1.416 5.825 7.626 0.071 0.000
s-flx  9.389 0.645 0.017 0.075 1.173 4.802 6.933 0.000 0.070
s-flc 1091 6.845 0.164 8.765 136.6 557.9 250.7 1.327 0.001
s-cds 3157 1856 0.561 25.24 394.8 1615 844.5 45.392 0.001
s-lib 9383 31.51 0.902 7.569 1169 480.2 8259 167.0 5.708
s-pok 59.82 10.25 0.280 0.480 7.494 30.58 41.27 0.362 0.000
h-dbp 6.299 1.158 0.072 0.051 0.822 3.218 2.295 0.440 0.002
h-hud 14.71 1.832 0.083 0.117 1.839 7.538 7.373 0.001 0.000
|-cit 5973 1.994 0.091 0.048 0.747 3.059 5.128 0.240 0.000
I-dbl  45.57 6.144 0.257 0.365 5.671 23.33 22.64 0.033 0.004
v-ewk 2352 14.13 0.422 1.886 29.33 120.3 110.0 0.034 0.000
v-skt  50.88 2.642 0.099 0.395 6.455 26.01 22.24 5777 0.502
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Table 6: (Accuracy) Analysis of the average number of triangles per vertex.

Further tradeoffs between accuracy and size reductions are
related to other graph properties. For example, the MM size
is least affected by TR. Similarly, the MST is preserved best by
TR (assuming a variant that always removes the maximum
weight edge in a triangle), followed by spanners. In SSSP,
spanners best preserve lengths of shortest paths, followed by
TR. Finally, spanners and the “EO” variant of TR maintain
the number of CC. Contrarily, random uniform sampling and
spectral sparsification disconnect graphs. Graph summariza-
tion acts similarly to random uniform sampling (also with
respect to other properties), because it can also arbitrarily

remove edges. However, for a fixed p, the latter generates
significantly fewer (by >10x) components than the former;
this is because used spectral sparsification schemes were designed
to minimize graph disconnectedness.

In Slim Graph, we also analyze the impact of compres-
sion kernels on degree distributions. As degree distributions
determine many structural and performance properties of a
graph, such analysis is a visual method of assessing the impact
of compression on the graph structure. This method is also ap-
plicable to graphs with different vertex counts. We illustrate the
impact from spanners on three popular graphs often used in
graph processing works (Twitter, Friendster, .it domains) in
Figure 7. Interestingly, spanners “strengthen the power law”:
the higher k is, the closer to a straight line the plot is. One
could use such observations to accelerate graph processing frame-
works that process compressed graphs, by navigating the design of
data distribution schemes, load balancing methods, and others.
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Figure 7: Accuracy analysis (varying k): impact of spanners on the degree distri-

bution of popular graph datasets, Twitter communication (m-twt), Friendster social

network (s-frs), and .it domains (h-dit). Extending results from Figure 5 (panel “span-

ners”, arguments k € {2,32}) to degree distribution details.
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7.3 Distributed Compression of Large Graphs
To the best of our knowledge, we present the first results from
distributed lossy graph compression. In a preliminary analysis,
we compressed the five largest publicly available graphs using
edge kernels (random uniform sampling) and we analyze
their degree distributions in Figure 8. Random uniform sam-
pling “removes the clutter”: scattered points that correspond
to specific fractions of vertices with different degrees. This sug-
gests that random uniform sampling could be used as preprocessing
for more efficient investigation into graph power law properties.



SC ’19, November 17-22, 2019, Denver, CO, USA

No compression Sampling (p=0.4) Sampling (p=0.7)
10° N &
108 g |- 0 1 =
g 10 \ \\n \ I
2 10° L .5 L' =
=
o 1072 -
5 10°¢ i T
o 103 | g
§ 10 : . x
2
S 1§+ B T
L 10e- 2
10 °- . L <
1o+ — 7
1078 ‘'t §
10 - ThE
10° 10° 10°  10° 10° 10°  10° 10? 10*

Outdegree
Figure 8: (Accuracy) Impact of random uniform sampling on the degree distribution
of large graphs (the largest, h-wdc, has ~128B edges). #Compute nodes used for
compression: 100 (h-wdc), 50 (h-deu), 20 (h-duk), 13 (h-clu), and 10 (h-dgh).

7.4 Other Analyses

We also compared Slim Graph kernels against low-rank ap-
proximation (of adjacency or Laplacian graph matrix). It en-
tails significant storage overheads (cf. Table 2) and consis-
tently very high error rates. We also timed the compression
routines. The compression time is not a bottleneck and it
follows asymptotic complexity (O(m) for uniform sampling,
spectral sparsification, and spanners, O(Im) for summariza-
tion, and O(m3/ 2) for TR). In all cases, sampling is the fastest;
spectral sparsification is negligibly slower as each kernel must
access degrees of attached vertices. Spanners are >20% slower
due to overheads from low-diameter decomposition (larger
constant factors in O(m)). TR is slower than spanners by
>50% (O(m3/2 vs. O(m)). Summarization is >200% slower
than TR due to large constant factors and a complex design.

7.5 How To Select Compression Schemes?

We summarize our analyses by providing guidelines on se-
lecting a compression scheme for a specific algorithm. Overall,
empirical analyses follow our theoretical predictions. Thus,
as the first step, we recommend to consult Table 3 and select
a compression scheme that ensures best accuracy. Second,
one should verify whether a selected method is feasible, given
the input graph size and graph type, e.g., whether a scheme
supports weighted or directed graphs. Here, we offer Table 2
for overview and Section 7.4 with remarks on empirical per-
formance. Third, to select concrete parameter values, one
should consult Figure 5, key insights from § 7.1-§ 7.3, and —
possibly — the report with more data.

8 RELATED WORK

Lossy graph compression is outlined in § 2, § 4.6, and in Ta-
ble 2. We analyze its feasibility for practical usage and we express
and implement representative schemes as Slim Graph compres-
sion kernels, covering spanners [120], spectral sparsifiers [148],
graph summarization [141], and others [108]. Our TR schemes
generalize past work that removes two edges from triangles
in weighted graphs to preserve exact shortest paths [87]. Most
of the remaining schemes could be implemented as Slim Graph
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kernels. Second, lossless graph compression is summarized
in a recent survey [24]; it is outside the Slim Graph scope.
Third, many approximation graph algorithms have been
develop to alleviate NP-Completeness and NP-Hardness of
graph problems [49, 55, 55, 66, 76, 90, 158]. Contrarily to
Slim Graph, these works are usually hard to use in practice and
they do not compress input graphs. More recently, approximate
graph computations dedicated to a single algorithm were
proposed [7, 32, 34, 44-46, 60, 62, 72, 81, 127-129, 129, 144].
Some works consider general approximate graph process-
ing [82, 139, 143]; they do not focus on lossy compression and they
do not analyze metrics for different algorithm classes.

9 CONCLUSION

We introduce Slim Graph: the first framework and program-
ming model for lossy graph compression. The core element
of this model are compression kernels: small code snippets that
modify a local part of the graph, for example a single edge or
a triangle. Compression kernels can express and implement
multiple methods for lossy graph compression, for example
spectral sparsifiers and spanners. To ensure that Slim Graph
is versatile, we exhaustively analyzed a large body of works
in graph compression theory. Users of Slim Graph could
further extend it towards novel compression methods.

Slim Graph introduces metrics for assessing the quality of
lossy graph compression. Our metrics target different classes
of graph properties, e.g., vectors of numbers associated with
each vertex, or probability distributions. For the latter, we pro-
pose to use statistical divergences, like the Kullback-Leibler
divergence, to evaluate information loss caused by compres-
sion. Slim Graph could be extended with other metrics.

In theoretical analysis, we show how different compression
methods impact different graph properties. We illustrate or
derive more than 50 bounds. For example, we constructively
show that a graph compressed with Triangle Reduction (TR)
has a maximum cardinality matching (MCM) of size at least
half of the size of MCM in the uncompressed graph. TR is
a novel class of compression methods, introduced in Slim
Graph, that generalizes past work and is flexible: one can
easily tune it to preserve accurately various graph properties.

We use Slim Graph to evaluate different schemes in terms
of (1) reductions in graph sizes, (2) performance of algorithms
running over compressed graphs, and (3) accuracy in preserv-
ing graph properties. We also conduct the first distributed
lossy compression of the largest publicly available graphs.
We predict that Slim Graph may become a platform for designing
and analyzing today’s and future lossy graph compression methods,
facilitating approximate graph processing, storage, and analytics.

ACKNOWLEDGMENTS

We thank Mark Klein, Hussein Harake, Colin McMurtrie, and the
whole CSCS team granting access to the Ault and Daint machines,
and for their excellent technical support. We thank David Schmidig
for help with analyzing low-rank approximation, and Timo Schneider
for his immense help with computing infrastructure at SPCL. This
project has received funding from the European Research Council
(ERC) under the European Union’s Horizon2020 programme (grant
agreement DAPP, No.678880).



Slim Graph: Practical Lossy Graph Compression for Approximate Graph Computations

REFERENCES

[1] [n.d.]. Hyperlink Graph 2012. http:/ /webdatacommons.org/
hyperlinkgraph/2012-08/download.html.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing
graph structure via linear measurements. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 459-467.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph
sketches: sparsification, spanners, and subgraphs. In Proceedings of the
31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database
Systems. ACM, 5-14.

[4] Stephen Alstrup, Seren Dahlgaard, Arnold Filtser, Morten Stockel, and
Christian Wulff-Nilsen. 2017. Constructing light spanners deterministi-
cally in near-linear time. arXiv preprint arXiv:1709.01960 (2017).

[5] Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and José
Soares. 1993. On sparse spanners of weighted graphs. Discrete & Compu-
tational Geometry 9, 1 (1993), 81-100.

[6] David G Anderson, Ming Gu, and Christopher Melgaard. 2014. An
efficient algorithm for unweighted spectral graph sparsification. arXiv
preprint arXiv:1410.4273 (2014).

[7] David A Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.
2007. Approximating betweenness centrality. In International Workshop
on Algorithms and Models for the Web-Graph. Springer, 124-137.

[8] Michele Basseville. 2010. Divergence measures for statistical data pro-
cessing. (2010).

[9] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie.
2010. Additive spanners and («, B)-spanners. ACM Transactions on
Algorithms (TALG) 7, 1 (2010), 5.

[10] Surender Baswana and Sandeep Sen. 2007. A simple and linear time ran-
domized algorithm for computing sparse spanners in weighted graphs.
Random Structures & Algorithms 30, 4 (2007), 532-563.

[11] Omar Batarfi, Radwa El Shawi, Ayman G Fayoumi, Reza Nouri, Ahmed
Barnawi, Sherif Sakr, et al. 2015. Large scale graph processing systems:
survey and an experimental evaluation. Cluster Computing 18, 3 (2015),
1189-1213.

[12] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua
Teng. 2013. Spectral sparsification of graphs: theory and algorithms.
Commun. ACM 56, 8 (2013), 87-94.

[13] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).

[14] Maham Anwar Beg, Muhammad Ahmad, Arif Zaman, and Imdadullah
Khan. 2018. Scalable Approximation Algorithm for Graph Summariza-
tion. pacific-asia conference on knowledge discovery and data mining (2018),
502-514.

[15] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas,
Daniel Peter, and Torsten Hoefler. 2019. A Modular Benchmarking
Infrastructure for High-Performance and Reproducible Deep Learning.
arXiv preprint arXiv:1901.10183 (2019).

[16] Andras A Benczir and David R Karger. 1996. Approximating st mini-
mum cuts in O (n 2) time. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing. ACM, 47-55.

[17] Suman K Bera and Amit Chakrabarti. 2017. Towards tighter space
bounds for counting triangles and other substructures in graph streams.
In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[18] Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes De Fine Licht, and
Torsten Hoefler. 2019. Substream-Centric Maximum Matchings on FPGA.
In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 152-161.

[19] Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, Rachata
Ausavarungnirun, Onur Mutlu, and Torsten Hoefler. 2018. Slim NoC: A
low-diameter on-chip network topology for high energy efficiency and
scalability. In ACM SIGPLAN Notices, Vol. 53. ACM, 43-55.

[20] Maciej Besta and Torsten Hoefler. 2014. Fault tolerance for remote mem-
ory access programming models. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM,
37-48.

[21] Maciej Besta and Torsten Hoefler. 2014. Slim fly: A cost effective low-
diameter network topology. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE
Press, 348-359.

[22] Maciej Besta and Torsten Hoefler. 2015. Accelerating irregular compu-
tations with hardware transactional memory and active messages. In
Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing. ACM, 161-172.

[23] Maciej Besta and Torsten Hoefler. 2015. Active access: A mechanism for
high-performance distributed data-centric computations. In Proceedings
of the 29th ACM on International Conference on Supercomputing. ACM,

[24

[25

[27

[28

[29

133

[34

136

[37

[38

[39

[40

[41

[43

[44

[45

]

SC ’19, November 17-22, 2019, Denver, CO, USA

155-164.

Maciej Besta and Torsten Hoefler. 2018. Survey and Taxonomy of Lossless
Graph Compression and Space-Efficient Graph Representations. arXiv
preprint arXiv:1806.01799 (2018).

Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail
Karasikov, Gunnar Ratsch, Torsten Hoefler, and Edgar Solomonik. 2019.
Communication-Efficient Jaccard Similarity for High-Performance Dis-
tributed Genome Comparisons. arXiv preprint arXiv:1911.04200 (2019).
Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler.
2017. Slimsell: A vectorizable graph representation for breadth-first
search. In 2017 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE, 32-41.

Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michat
Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler.
2019. Demystifying Graph Databases: Analysis and Taxonomy of
Data Organization, System Designs, and Graph Queries. arXiv preprint
arXiv:1910.09017 (2019).

Maciej Besta, Michat Podstawski, Linus Groner, Edgar Solomonik, and
Torsten Hoefler. 2017. To push or to pull: On reducing communica-
tion and synchronization in graph computations. In Proceedings of the
26th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 93-104.

Maciej Besta, Marcel Schneider, Karolina Cynk, Marek Konieczny, Erik
Henriksson, Salvatore Di Girolamo, Ankit Singla, and Torsten Hoefler.
2019. FatPaths: Routing in Supercomputers, Data Centers, and Clouds
with Low-Diameter Networks when Shortest Paths Fall Short. arXiv
preprint arXiv:1906.10885 (2019).

Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun,
and Torsten Hoefler. 2019. Graph Processing on FPGAs: Taxonomy,
Survey, Challenges. arXiv preprint arXiv:1903.06697 (2019).

Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice
Hoerold, and Torsten Hoefler. 2018. Log (graph): a near-optimal high-
performance graph representation. In Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques. ACM, 7.
Paolo Boldi, Marco Rosa, and Sebastiano Vigna. 2011. HyperANF: Ap-
proximating the neighbourhood function of very large graphs on a
budget. In Proceedings of the 20th international conference on World wide web.
ACM, 625-634.

Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I:
compression techniques. In Proceedings of the 13th international conference
on World Wide Web. ACM, 595-602.

Michele Borassi and Emanuele Natale. 2016. KADABRA is an adaptive
algorithm for betweenness via random approximation. arXiv preprint
arXiv:1604.08553 (2016).

Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. 2013. Concentra-
tion inequalities: A nonasymptotic theory of independence. Oxford university
press.

Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal
of mathematical sociology 25, 2 (2001), 163-177.

Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. 2009. k2-Trees
for Compact Web Graph Representation.. In SPIRE, Vol. 9. Springer,
18-30.

Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. 2006. Counting triangles in data
streams. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 253-262.

Daniele Calandriello, Ioannis Koutis, Alessandro Lazaric, and Michal
Valko. 2018. Improved large-scale graph learning through ridge spectral
sparsification. In International Conference on Machine Learning.

Stéphane Campinas, Renaud Delbru, and Giovanni Tummarello. 2013.
Efficiency and precision trade-offs in graph summary algorithms. In
Proceedings of the 17th International Database Engineering and Applications
Symposium on. 38-47.

Keren Censor-Hillel and Michal Dory. 2018. Distributed spanner ap-
proximation. In Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing. ACM, 139-148.

Keren Censor-Hillel, Ami Paz, and Noam Ravid. 2018. The Spars-
est Additive Spanner via Multiple Weighted BFS Trees. arXiv preprint
arXiv:1811.01997 (2018).

Sung-Hyuk Cha. 2007. Comprehensive survey on distance/similarity
measures between probability density functions. City 1, 2 (2007), 1.
Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. 2005. Approx-
imating the minimum spanning tree weight in sublinear time. SIAM
Journal on computing 34, 6 (2005), 1370-1379.

Shiri Chechik, Daniel H Larkin, Liam Roditty, Grant Schoenebeck, Ro-
bert E Tarjan, and Virginia Vassilevska Williams. 2014. Better approxima-
tion algorithms for the graph diameter. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial


http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html

SC ’19, November 17-22, 2019, Denver, CO, USA

and Applied Mathematics, 1041-1052.

[46] Mostafa Haghir Chehreghani, Albert Bifet, and Talel Abdessalem. 2018.
Efficient Exact and Approximate Algorithms for Computing Betweenness
Centrality in Directed Graphs. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 752-764.

[47] Chen Chen, Cindy Xide Lin, Matt Fredrikson, Mihai Christodorescu,
Xifeng Yan, and Jiawei Han. 2009. Mining graph patterns efficiently via
randomized summaries. very large data bases 2, 1 (2009), 742-753.

[48] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. 2015. One trillion edges: Graph processing at
facebook-scale. Proceedings of the VLDB Endowment 8, 12 (2015), 1804—
1815.

[49] Nicos Christofides. 1976. Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical Report. Carnegie-Mellon Univ
Pittsburgh Pa Management Sciences Research Group.

[50] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani,
and Junxing Wang. 2018. Graph sparsification, spectral sketches, and
faster resistance computation, via short cycle decompositions. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 361-372.

[51] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2009. Introduction to algorithms. MIT press.

[52] Graham Cormode and Hossein Jowhari. 2017. A second look at counting
triangles in graph streams (corrected). Theoretical Computer Science 683
(2017), 22-30.

[53] Thomas M Cover and Joy A Thomas. 2012. Elements of information theory.
John Wiley & Sons.

[54] Ketan Date, Keven Feng, Rakesh Nagi, Jinjun Xiong, Nam Sung Kim, and
Wen-Mei Hwu. 2017. Collaborative (cpu+ gpu) algorithms for triangle
counting and truss decomposition on the minsky architecture: Static
graph challenge: Subgraph isomorphism. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1-7.

[55] Etienne de Klerk, Dmitrii V Pasechnik, and Joost P Warners. 2004. On
approximate graph colouring and max-k-cut algorithms based on the
O-function. Journal of Combinatorial Optimization 8, 3 (2004), 267-294.

[56] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. 2009. The
Shortest Path Problem: Ninth DIMACS Implementation Challenge. Vol. 74.
American Math. Soc.

[57] Salvatore Di Girolamo, Konstantin Taranov, Andreas Kurth, Michael
Schaffner, Timo Schneider, Jakub Beranek, Maciej Besta, Luca Benini,
Duncan Roweth, and Torsten Hoefler. 2019. Network-accelerated non-
contiguous memory transfers. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. ACM,
56.

[58] Niels Doekemeijer and Ana Lucia Varbanescu. 2014. A survey of parallel
graph processing frameworks. Delft University of Technology (2014), 21.

[59] Michal Dory. 2018. Distributed Approximation of Minimum k-edge-
connected Spanning Subgraphs. In Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing. ACM, 149-158.

[60] Stefania Dumbrava, Angela Bonifati, Amaia Nazabal Ruiz Diaz, and
Romain Vuillemot. 2018. Approximate Evaluation of Label-Constrained
Reachability Queries. arXiv preprint arXiv:1811.11561 (2018).

[61] Cody Dunne and Ben Shneiderman. 2013. Motif simplification: improv-
ing network visualization readability with fan, connector, and clique
glyphs. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. 3247-3256.

[62] Ghizlane ECHBARTHI and Hamamache KHEDDOUCI. 2017. Lasas: an
aggregated search based graph matching approach. In The 29th Interna-
tional Conference on Software Engineering and Knowledge Engineering.

[63] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. 2017. Approximately
counting triangles in sublinear time. SIAM ]. Comput. 46, 5 (2017), 1603—
1646.

[64] Michael Elkin and Ofer Neiman. 2018. Efficient algorithms for construct-
ing very sparse spanners and emulators. ACM Transactions on Algorithms
(TALG) 15, 1 (2018), 4.

[65] Paul Erd6s and Andras Hajnal. 1966. On chromatic number of graphs
and set-systems. Acta Mathematica Hungarica 17, 1-2 (1966), 61-99.

[66] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. 1999. Fast
approximate graph partitioning algorithms. SIAM ]. Comput. 28, 6 (1999),
2187-2214.

[67] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query
preserving graph compression. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 157-168.

[68] Arash Farzan and J Ian Munro. 2008. Succinct representations of arbitrary
graphs. In European Symposium on Algorithms. Springer, 393-404.

[69] Zhuo Feng. 2016. Spectral graph sparsification in nearly-linear time
leveraging efficient spectral perturbation analysis. In Proceedings of the

M. Besta, S. Weber, L. Gianinazzi, R. Gerstenberger, A. Ivanov, Y. Oltchik, T. Hoefler

53rd Annual Design Automation Conference. ACM, 57.

[70] Jacob Fox, Tim Roughgarden, C Seshadhri, Fan Wei, and Nicole Wein.
2018. Finding cliques in social networks: A new distribution-free model.
arXiv preprint arXiv:1804.07431 (2018).

[71] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,

Xiaomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, et al.

2016. The Sunway TaihuLight supercomputer: system and applications.

Science China Information Sciences 59, 7 (2016), 072001.

Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better

approximation of betweenness centrality. In Proceedings of the Meeting on

Algorithm Engineering & Expermiments. Society for Industrial and Applied

Mathematics, 90-100.

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2014. Enabling

highly-scalable remote memory access programming with MPI-3 one

sided. Scientific Programming 22, 2 (2014), 75-91.

[74] Oded Green, Pavan Yalamanchili, and Lluis-Miquel Munguia. 2014. Fast

triangle counting on the GPU. In Proceedings of the 4th Workshop on

Irregular Applications: Architectures and Algorithms. IEEE Press, 1-8.

Sudipto Guha and Andrew McGregor. 2012. Graph synopses, sketches,

and streams: A survey. Proceedings of the VLDB Endowment 5, 12 (2012),

2030-2031.

Magnis M Halld6rsson. 1993. A still better performance guarantee for

approximate graph coloring. Inform. Process. Lett. 45,1 (1993), 19-23.

Safiollah Heidari, Yogesh Simmhan, Rodrigo N Calheiros, and Rajkumar

Buyya. 2018. Scalable graph processing frameworks: A taxonomy and

open challenges. ACM Computing Surveys (CSUR) 51, 3 (2018), 60.

[78] Wilko Henecka and Matthew Roughan. 2015. Lossy compression of
dynamic, weighted graphs. In 2015 3rd International Conference on Future
Internet of Things and Cloud. IEEE, 427-434.

[79] Pili Hu and Wing Cheong Lau. 2013. A survey and taxonomy of graph
sampling. arXiv preprint arXiv:1308.5865 (2013).

[80] Yang Hu, Hang Liu, and H Howie Huang. 2018. High-Performance
Triangle Counting on GPUs. In 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE, 1-5.

[81] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman,

Vladimir Braverman, and Ion Stoica. 2018. {ASAP}: Fast, Approxi-

mate Graph Pattern Mining at Scale. In 13th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 18). 745-761.

Anand Padmanabha Iyer, Aurojit Panda, Shivaram Venkataraman,

Mosharaf Chowdhury, Aditya Akella, Scott Shenker, and Ion Stoica.

2018. Bridging the GAP: towards approximate graph analytics. In Pro-

ceedings of the 1st ACM SIGMOD Joint International Workshop on Graph

Data Management Experiences & Systems (GRADES) and Network Data

Analytics (NDA). ACM, 10.

Arun Jambulapati and Aaron Sidford. 2018. Efficient O (n/epsilon)

Spectral Sketches for the Laplacian and its Pseudoinverse. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms.

SIAM, 2487-2503.

Madhav Jha, Ali Pinar, and C Seshadhri. 2015. Counting triangles in real-

world graph streams: Dealing with repeated edges and time windows.

In 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE,

1507-1514.

Madhav Jha, C Seshadhri, and Ali Pinar. 2015. A space-efficient stream-

ing algorithm for estimating transitivity and triangle counts using the

birthday paradox. ACM Transactions on Knowledge Discovery from Data

(TKDDJ 9, 3 (2015), 15.

[86] Hossein Jowhari and Mohammad Ghodsi. 2005. New streaming algo-

rithms for counting triangles in graphs. In International Computing and

Combinatorics Conference. Springer, 710-716.

Vasiliki Kalavri, Tiago Simas, and Dionysios Logothetis. 2016. The

shortest path is not always a straight line: leveraging semi-metricity in

graph analysis. Proceedings of the VLDB Endowment 9, 9 (2016), 672—683.

David R. Karger. 2000. Minimum cuts in near-linear time. J. ACM 47, 1

(2000), 46-76. https://doi.org/10.1145/331605.331608

[89] Jonathan A Kelner and Alex Levin. 2013. Spectral sparsification in the
semi-streaming setting. Theory of Computing Systems 53, 2 (2013), 243-262.

[90] Subhash Khot and Oded Regev. 2008. Vertex cover might be hard to
approximate to within 2- e. J. Comput. System Sci. 74, 3 (2008), 335-349.

[91] Ioannis Koutis and Shen Chen Xu. 2016. Simple parallel and distributed
algorithms for spectral graph sparsification. ACM Transactions on Parallel
Computing (TOPC) 3, 2 (2016), 14.

[92] Solomon Kullback. 1997. Information theory and statistics. Courier Corpo-
ration.

[93] K. Ashwin Kumar and Petros Efstathopoulos. 2018. Utility-driven graph
summarization. very large data bases 12, 4 (2018), 335-347.

[94] Jérome Kunegis. 2013. Konect: the koblenz network collection. In Proc. of
Intl. Conf. on World Wide Web (WWW). ACM, 1343-1350.

S

[73

[75

[76

[77

[82

(83

[84

%
91

)
N

)
*


https://doi.org/10.1145/331605.331608

Slim Graph: Practical Lossy Graph Compression for Approximate Graph Computations

[95] Rasmus Kyng and Zhao Song. 2018. A Matrix Chernoff Bound for
Strongly Rayleigh Distributions and Spectral Sparsifiers from a few Ran-
dom Spanning Trees. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 373-384.

[96] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and
Bongki Moon. 2012. Parallel data processing with MapReduce: a survey.
AcM sIGMoD Record 40, 4 (2012), 11-20.

[97] Yin Tat Lee and He Sun. 2018. Constructing linear-sized spectral sparsi-
fication in almost-linear time. SIAM ]. Comput. 47, 6 (2018), 2315-2336.

[98] Christoph Lenzen and Reut Levi. 2018. A Centralized Local Algorithm
for the Sparse Spanning Graph Problem. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[99] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs.
In Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 631-636.

[100] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[101] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang
Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, et al. 2018.
ShenTu: processing multi-trillion edge graphs on millions of cores in
seconds. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. IEEE Press, 56.

[102] Wei Liu, Andrey Kan, Jeffrey Chan, James Bailey, Christopher Leckie, Jian
Pei, and Ramamohanarao Kotagiri. 2012. On compressing weighted time-
evolving graphs. In Proceedings of the 21st ACM international conference on
Information and knowledge management. ACM, 2319-2322.

[103] Xingjie Liu, Yuanyuan Tian, Qi He, Wang-Chien Lee, and John McPher-
son. 2014. Distributed Graph Summarization. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge
Management. 799-808.

[104] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph
Summarization Methods and Applications: A Survey. Comput. Surveys
51, 3 (2018), 62.

[105] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-scale
distributed graph computing systems: An experimental evaluation. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 281-292.

[106] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan W. Berry. 2007. Challenges in Parallel Graph Processing. Par.
Proc. Let. 17, 1 (2007), 5-20.

[107] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system
for large-scale graph processing. In Proc. of the ACM SIGMOD Intl. Conf.
on Manag. of Data (SIGMOD ’10). ACM, New York, NY, USA, 135-146.
https:/ /doi.org/10.1145/1807167.1807184

[108] Hossein Maserrat and Jian Pei. 2012. Community Preserving Lossy Com-
pression of Social Networks. In 2012 IEEE 12th International Conference on
Data Mining. 509-518.

[109] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking
like a vertex: a survey of vertex-centric frameworks for large-scale dis-
tributed graph processing. ACM Computing Surveys (CSUR) 48, 2 (2015),
25.

[110] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. 2016. Better
algorithms for counting triangles in data streams. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. ACM, 401-411.

[111] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015.

Improved parallel algorithms for spanners and hopsets. In Proceedings

of the 27th ACM Symposium on Parallelism in Algorithms and Architectures.

ACM, 192-201.

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.

2010. Introducing the graph 500. Cray User’s Group (CUG) (2010).

[113] Moni Naor. 1990. Succinct representation of general unlabeled graphs.
Discrete Applied Mathematics 28, 3 (1990), 303-307.

[114] C. S.]. A Nash-Williams. 1961. Edge-disjoint spanning trees of finite
graphs. Journal of the London Mathematical Society 1, 1 (1961), 445-450.

[115] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. 2008. Graph
summarization with bounded error. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 419-432.

[116] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-
weight infrastructure for graph analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 456-471.

[117] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999.
The PageRank citation ranking: Bringing order to the web. Technical Report.
Stanford InfoLab.

[118] Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee.
2018. Local Computation Algorithms for Spanners. In 10th Innovations

[112]

[119
[120
[121
[122

[123

[124

[125

[126

[127

[128

[129

[130

[131

[132

[133

[134

[135

[136

[137

[138

[139

[140

[141

[142

[143

]

]

|

]

]

SC ’19, November 17-22, 2019, Denver, CO, USA

in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Aduri Pavan, Srikanta Tirthapura, et al. 2013. Counting and sampling
triangles from a graph stream. (2013).

David Peleg and Alejandro A Schiffer. 1989. Graph spanners. Journal of
graph theory 13, 1 (1989), 99-116.

David Peleg and Jeffrey D Ullman. 1989. An optimal synchronizer for
the hypercube. SIAM Journal on computing 18, 4 (1989), 740-747.

Seth Pettie. 2010. Distributed algorithms for ultrasparse spanners and
linear size skeletons. Distributed Computing 22, 3 (2010), 147-166.

Adam Polak. 2016. Counting triangles in large graphs on GPU. In 2016
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 740-746.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. 2007. Succinct
indexable dictionaries with applications to encoding k-ary trees, prefix
sums and multisets. ACM Transactions on Algorithms (TALG) 3, 4 (2007),
43.

Raimundo Real and Juan M Vargas. 1996. The probabilistic basis of
Jaccard’s index of similarity. Systematic biology 45, 3 (1996), 380-385.
Matteo Riondato, David Garcia-Soriano, and Francesco Bonchi. 2017.
Graph summarization with quality guarantees. Data Mining and Knowl-
edge Discovery 31, 2 (2017), 314-349.

Matteo Riondato and Evgenios M Kornaropoulos. 2016. Fast approxi-
mation of betweenness centrality through sampling. Data Mining and
Knowledge Discovery 30, 2 (2016), 438—-475.

Matteo Riondato and Eli Upfal. 2018. ABRA: Approximating between-
ness centrality in static and dynamic graphs with rademacher averages.
ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 5 (2018),
61.

Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approx-
imation algorithms for the diameter and radius of sparse graphs. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
ACM, 515-524.

Amin Sadri, Flora D. Salim, Yongli Ren, Masoomeh Zameni, Jeffrey Chan,
and Timos Sellis. 2017. Shrink: Distance preserving graph compression.
Information Systems 69 (2017), 180-193.

Semih Salihoglu and Jennifer Widom. 2014. Optimizing graph algorithms
on Pregel-like systems. Proceedings of the VLDB Endowment 7, 7 (2014),
577-588.

Ahmet Erdem Sariytice, Kamer Kaya, Erik Saule, and Umit V Catalytirek.
2013. Betweenness centrality on GPUs and heterogeneous architectures.
In Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units. ACM, 76-85.

Berkant Savas and Inderjit S Dhillon. 2011. Clustered low rank approxi-
mation of graphs in information science applications. In Proceedings of
the 2011 SIAM International Conference on Data Mining. SIAM, 164-175.
Patrick Schmid, Maciej Besta, and Torsten Hoefler. 2016. High-
performance distributed rma locks. In Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and Distributed Computing.
ACM, 19-30.

Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating
the cost of atomic operations on modern architectures. In 2015 Inter-
national Conference on Parallel Architecture and Compilation (PACT). IEEE,
445-456.

C Seshadhri. 2015. A simpler sublinear algorithm for approximating the
triangle count. arXiv preprint arXiv:1505.01927 (2015).

Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. 2013. Fast triangle
counting through wedge sampling. In Proceedings of the STAM Conference
on Data Mining, Vol. 4. 5.

C Seshadhri, Ali Pinar, and Tamara G Kolda. 2014. Wedge sampling for
computing clustering coefficients and triangle counts on large graphs.
Statistical Analysis and Data Mining: The ASA Data Science Journal 7, 4
(2014), 294-307.

Zechao Shang and Jeffrey Xu Yu. 2014. Auto-approximation of graph
computing. Proceedings of the VLDB Endowment 7, 14 (2014), 1833-1844.
Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo
Liu, and Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey.
ACM Computing Surveys (CSUR) 50, 6 (2018), 81.

Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan.
2019. Sweg: Lossless and lossy summarization of web-scale graphs. In
Proceedings of the 28th International Conference on World Wide Web. ACM,
Vol. 1. 1-2.

Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computa-
tions without tuning. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 149-160.

Somesh Singh and Rupesh Nasre. 2018. Scalable and Performant Graph
Processing on GPUs Using Approximate Computing. IEEE Transactions
on Multi-Scale Computing Systems 4, 3 (2018), 190-203.


http://snap.stanford.edu/data
https://doi.org/10.1145/1807167.1807184

SC ’19, November 17-22, 2019, Denver, CO, USA

[144] George M Slota and Kamesh Madduri. 2014. Complex network analysis
using parallel approximate motif counting. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE, 405-414.

[145] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017.
Scaling betweenness centrality using communication-efficient sparse
matrix multiplication. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 47.

[146] Tasuku Soma and Yuichi Yoshida. 2019. Spectral Sparsification of Hyper-
graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 2570-2581.

[147] Daniel A Spielman and Nikhil Srivastava. 2011. Graph sparsification by
effective resistances. SIAM ]. Comput. 40, 6 (2011), 1913-1926.

[148] Daniel A Spielman and Shang-Hua Teng. 2011. Spectral sparsification of
graphs. SIAM ]. Comput. 40, 4 (2011), 981-1025.

[149] Xin Sui, Tsung-Hsien Lee, Joyce Jiyoung Whang, Berkant Savas, Saral
Jain, Keshav Pingali, and Inderjit Dhillon. 2012. Parallel clustered low-
rank approximation of graphs and its application to link prediction. In
International Workshop on Languages and Compilers for Parallel Computing.
Springer, 76-95.

[150] Daniel Yasumasa Takahashi, Joao Ricardo Sato, Carlos Eduardo Ferreira,
and André Fujita. 2012. Discriminating different classes of biological
networks by analyzing the graphs spectra distribution. PLoS One 7, 12
(2012), e49949.

[151] Adrian Tate, Amir Kamil, Anshu Dubey, Armin Groéfllinger, Brad Cham-
berlain, Brice Goglin, Carter Edwards, Chris ] Newburn, David Padua,
Didem Unat, et al. 2014. Programming abstractions for data locality.
PADAL Workshop 2014, April 28-29, Swiss National Supercomputing
Center.

[152] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. 2011.
Compression of weighted graphs. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. 965-973.

[153] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. 2012.
Network compression by node and edge mergers. Bisociative Knowledge
Discovery (2012), 199-217.

[154] Toanna Tsalouchidou, Francesco Bonchi, Gianmarco De Francisci Morales,
and Ricardo Baeza-Yates. 2018. Scalable Dynamic Graph Summarization.
IEEE Transactions on Knowledge and Data Engineering (2018), 1-1.

[155] Charalampos E Tsourakakis. [n.d.]. Fast Counting of Triangles in Large
Real Networks: Algorithms and Laws. cis. temple. edu ([n. d.]), 608-617.

[156] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Falout-
s50s. 2009. Doulion: counting triangles in massive graphs with a coin. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 837-846.

M. Besta, S. Weber, L. Gianinazzi, R. Gerstenberger, A. Ivanov, Y. Oltchik, T. Hoefler

[157] Gyorgy Turan. 1984. On the succinct representation of graphs. Discrete
Applied Mathematics 8, 3 (1984), 289-294.

[158] Jason TL Wang, Kaizhong Zhang, and Gung-Wei Chirn. 1995. Algorithms
for approximate graph matching. Information Sciences 82, 1-2 (1995), 45—
74.

[159] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D Owens. 2016. A

comparative study on exact triangle counting algorithms on the gpu. In

Proceedings of the ACM Workshop on High Performance Graph Processing.

ACM, 1-8.

Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan

Hui, Beixing Deng, and Xing Li. 2011. Understanding graph sampling

algorithms for social network analysis. In 2011 31st international conference

on distributed computing systems workshops. IEEE, 123-128.

Yongyu Wang and Zhuo Feng. 2017. Towards scalable spectral clustering

via spectrum-preserving sparsification. arXiv preprint arXiv:1710.04584

(2017).

Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond,

and Sivasankaran Rajamanickam. 2017. Fast linear algebra-based triangle

counting with kokkoskernels. In 2017 IEEE High Performance Extreme

Computing Conference (HPEC). IEEE, 1-7.

[163] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014.
Pregel algorithms for graph connectivity problems with performance
guarantees. Proceedings of the VLDB Endowment 7, 14 (2014), 1821-1832.

[164] Abdurrahman Yasar, Sivasankaran Rajamanickam, Michael Wolf,
Jonathan Berry, and Umit V Catalyiirek. 2018. Fast Triangle Counting
Using Cilk. In 2018 IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 1-7.

[165] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui

Zhang. 2015. In-memory big data management and processing: A survey.

IEEE Transactions on Knowledge and Data Engineering 27, 7 (2015), 1920-

1948.

Yunquan Zhang, Ting Cao, Shigang Li, Xinhui Tian, Liang Yuan, Haipeng

Jia, and Athanasios V Vasilakos. 2016. Parallel processing systems for

big data: a survey. Proc. IEEE 104, 11 (2016), 2114-2136.
[167] Ying Zhang, Zhigiang Zhao, and Zhuo Feng. 2018. Towards Scal-

able Spectral Sparsification of Directed Graphs. arXiv preprint
arXiv:1812.04165 (2018).

Fang Zhou, Qiang Qu, and Hannu Toivonen. 2017. Summarisation
of weighted networks. Journal of Experimental and Theoretical Artificial
Intelligence 29, 5 (2017), 1023-1052.

Xiao Zhou and Takao Nishizeki. 1994. Edge-Coloring and f-Coloring for
Various Classes of Graphs. In Algorithms and Computation, 5th International
Symposium, ISAAC '94, Beijing, P. R. China, August 25-27, 1994, Proceedings.
199-207. https://doi.org/10.1007/3-540-58325-4_182

[160

[161

[162

[166

[168

[169


https://doi.org/10.1007/3-540-58325-4_182

	Abstract
	1 Introduction
	2 Notation And Background
	3 Slim Graph Architecture
	3.1 Part One: Programming Model
	3.2 Part Two: Execution Engine
	3.3 Part Three: Analytics Subsystem

	4 Slim Graph: Compressing Graphs
	4.1 Compression Kernels: Syntax + Semantics
	4.2 Single-Edge Kernels
	4.3 Triangle Kernels for Triangle Reduction
	4.4 Single-Vertex Kernels
	4.5 Subgraph Kernels
	4.6 Slim Graph vs Other Schemes
	4.7 Kernel Strengths: Takeaways

	5 Slim Graph: Accuracy Metrics
	6 Theoretical Analysis
	6.1 Triangle Kernels: Edge-Once p-1-TR
	6.2 Subgraph Kernels: Spanners
	6.3 Discussion and Takeaways

	7 Evaluation
	7.1 Storage and Performance
	7.2 Accuracy
	7.3 Distributed Compression of Large Graphs
	7.4 Other Analyses
	7.5 How To Select Compression Schemes?

	8 Related Work
	9 Conclusion
	References

