ShenTu: Processing Multi-Trillion Edge Graphs on
Millions of Cores in Seconds

Heng Lin!2, Xiaowei Zhu!?, Bowen Yu!, Xiongchao Tang"5 , Wei Xue!, Wenguang Chen',
Lufei Zhang3, Torsten Hoefler*, Xiaosong Ma’, Xin Liu®, Weimin Zhengl, and Jingfang Xu’

Abstract—Graphs are an important abstraction used in many
scientific fields. With the magnitude of graph-structured data
constantly increasing, effective data analytics requires efficient
and scalable graph processing systems. Although HPC systems
have long been used for scientific computing, people have only
recently started to assess their potential for graph processing,
a workload with inherent load imbalance, lack of locality,
and access irregularity. We propose ShenTu®, the first general-
purpose graph processing framework that can efficiently utilize
an entire Petascale system to process multi-trillion edge graphs in
seconds. ShenTu embodies four key innovations: hardware spe-
cialization, supernode routing, on-chip sorting, and degree-aware
messaging, which together enable its unprecedented performance
and scalability. It can traverse a record-size 70-trillion-edge graph
in seconds. Furthermore, ShenTu enables the processing of a
spam detection problem on a 12-trillion edge Internet graph,
making it possible to identify trustworthy and spam webpages
directly at the fine-grained page level.

Index Terms—Application programming interfaces; Big data
applications; Data analysis; Graph theory; Supercomputers

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

ShenTu enables highly efficient general-purpose graph pro-
cessing with novel use of heterogeneous cores and extremely
large networks, scales to the full TaihuLight, and enables graph
analytics on 70-trillion-edge graphs. It computes PageRank
and TrustRank distributions for an unprecedented 12-trillion-
edge real-world web graph in 8.5 seconds per iteration.

II. PERFORMANCE ATTRIBUTES

Performance Attributes [ Content

Category of achievement
Type of method used
Results reported based on
Precision reported
System scale
Measurement mechanism

Scalability, Time-to-solution
Framework for graph algorithms
Whole application including /0
Mixed precision (Int and Double)

Measured on full-scale system
Timers & Code Instrumentation

ITsinghua University. Email: {xuewei,cwg,zwm-dcs} @tsinghua.edu.cn,
{linhengl1,zhuxwi6,yubwi5,txc13} @mails.tsinghua.edu.cn

2Fma Technology

3State Key Laboratory of Mathematical Engineering and Advanced Comput-
ing. Email: zhang.lufei@meac-skl.cn

4ETH Zurich. Email: htor@inf.ethz.ch

Qatar Computing Research Institute. Email: xma@qforg.qa

National Research Centre of Parallel Computer Engineering and Technology.
Email: yyylx@263.net

7Beijing Sogou Technology Development Co., Ltd.

Email: xujingfang @sogou-inc.com

8ShenTu means “magic graph” in Chinese.

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

III. OVERVIEW OF THE PROBLEM

Graphs are one of the most important tools to model
complex systems. Scientific graph structures range from multi-
billion-edge graphs (e.g., in protein interactions, genomics,
epidemics, and social networks) to trillion-edge ones (e.g., in
connectomics and internet connectivity). Timely and efficient
processing of such large graphs is not only required to advance
scientific progress but also to solve important societal chal-
lenges such as detection of fake content or to enable complex
data analytics tasks, such as personalized medicine.

Improved scientific data acquisition techniques fuel the
rapid growth of large graphs. For example, cheap sequencing
techniques lead to massive graphs representing millions of hu-
man individuals as annotated paths, enabling quick advances in
medical data analytics [1]. For each individual, human genome
researchers currently assemble de Bruijn graphs with over 5
billion vertices/edges [2]. Similarly, connectomics models the
human brain, with over 100 billion neurons and an average of
7,000 synaptic connections each [3].

Meanwhile, researchers face unprecedented challenges in
the study of human interaction graphs. Malicious activities
such as the distribution of phishing emails or fake content, as
well as massive scraping of private data, are posing threats to
human society. It is necessary to scale graph analytics with the
growing online community to detect and react to such threats.
In the past 23 years, the number of Internet users increased
by 164x to 4.2 billion, while the number of domains grew
by nearly 70,000 to 1.7 billion. Sogou, one of the leading
Internet companies in China, crawled more than 271.9 billion
Chinese pages with over 12.3 trillion inter-page links in early
2017 and expects a 4 x size increase with whole-web crawling.

Graph processing and analytics differ widely from tradi-
tional scientific computing: they exhibit significantly more
load imbalance, lack of locality, and access irregularity [4].
Modern HPC systems are designed for workloads that have
some degree of locality and access regularity. It is thus
natural to map regular computations, such as stencil-based
and structured grid-based, to complex architectures achieving
high performance, as recent Gordon Bell Prize winners demon-
strated. However, as witnessed by the set of recent finalists,
very few projects tackle the challenge of completely irregular
computations at largest scale. We argue that the science drivers
outlined above as well as the convergence of data science,
big data, and HPC necessitate serious efforts to enable graph
computations on leading supercomputing architectures.



TABLE I
SUMMARY OF STATE-OF-THE-ART GRAPH FRAMEWORKS AND THEIR REPORTED PAGERANK RESULTS

Year  System In-memory Synthetic or Platform Max. number  Time for one Performance
) or out-of-core  Real-world of edges PageRank iteration (GPEPS)

2010  Pregel In-memory Synthetic 300 servers 127 billion n/a n/a

2015  Giraph In-memory Real-world 200 servers 1 trillion less than 3 minutes  >5.6

2015  GraM In-memory Synthetic 64 servers 1.2 trillion 140 seconds 8.6

2015  Chaos Out-of-core Synthetic 32 servers (480GB SSD each) 1 trillion 4 hours 0.07

2016  G-Store Out-of-core Synthetic 1 server with 8x512GB SSDs 1 trillion 4214 seconds 0.23

2017  Graphene  Out-of-core Synthetic 1 server with 16x500GB SSDs 1 trillion about 1200 seconds  0.83

2017  Mosaic Out-of-core Synthetic 1 server with 6 NVMe SSDs 1 trillion 1247 seconds 0.82

In order to execute trillion-edge graph processing on leading
supercomputers, one needs to map the imbalanced, irregular,
and non-local graph structure to a complex and rather regular
machine. In particular, naive domain partitioning would suffer
from extreme load imbalance due to the power-law degree
distribution of vertices in real-world graphs [5]. For example,
the in-degrees in the Sogou web graph vary from zero to three
billion. This load imbalance can be alleviated by either vertex
randomization or edge partitioning, yet, both techniques in-
crease inter-process communication in many graph algorithms.
The challenge is further compounded by system features
not considered by widely used distributed graph processing
frameworks, including the high core counts, complex memory
hierarchy, and heterogeneous processor architecture within
each node on modern supercomputers.

Data scientists tweak algorithms in agile development
frameworks and require quick turnaround times to evolve their
experiments with ever growing data volumes. We squarely
address all these challenges with ShenTu, the first general-
purpose graph processing framework to utilize machines with
ten millions of cores. It shares a vertex-centric programming
model with established small-scale graph processing frame-
works [6], [7], allowing data scientists to express arbitrary
graph algorithms via familiar APIs. In particular, as a general-
purpose graph framework, ShenTu is within a factor of two
of the breadth first search (BFS) performance of the current
2nd entry in the Graph500 list. When disabling optimizations
that only apply to the BFS benchmark, ShenTu’s performance
is equal to this highly-optimized record-holding code.

ShenTu adopts well-known optimizations of parallel graph
frameworks, such as message coalescing, combining, and rout-
ing, randomized vertex assignment, and automatic push/pull
optimizations to large-scale systems. Furthermore, ShenTu
introduces the following key innovations advancing the state
of the art of adopting highly irregular graph computations
to hierarchical Petascale systems such as Sunway Taihu-
Light: hardware specialization selects the best (heterogeneous)
compute unit and memory for each task; supernode routing
adapts the irregular global communication to the machine’s
(supernode) topology; on-chip sorting maps the irregular local
communication to manycore processors; and degree-aware
messaging selects the best communication scheme according
to vertex properties, such as its degree. All those optimizations
enable ShenTu to execute various graph analytics algorithms
for Sogou’s webpage graph with the unprecedented 12-trillion

edges in 8.5 seconds running one iteration
utilizing all nodes of Sunway TaihuLight.

of PageRank

IV. CURRENT STATE OF THE ART

Driven by the increasing significance of data analytics,
numerous graph processing frameworks were introduced in
recent years. Here, we focus on related frameworks that either
aim at high performance or large-scale graphs. We adopt
a simple metric, processed edges per second (PEPS) (see
Section VII for detail), as a pendant to the well-known FLOPS
metric to gauge the performance in graph processing.
Large-scale graph processing: Table I summarizes published
large-scale frameworks and results, based on PageRank, one of
the most important graph algorithms [8]. It has been studied
and optimized in hundreds of research papers and it is the
gold standard for comparing graph processing frameworks.
Among such frameworks, Google Pregel [9] introduced a
vertex-centric abstraction in 2010, computing the PageRank of
a synthetic graph with 127 billion edges on 300 machines. In
2015, Facebook scaled Giraph [10] to complete one PageRank
iteration on a trillion-edge graph in “less than 3 minutes”. In
the same year, GraM [11] uses an RDMA-based communica-
tion stack tuned for multi-core machines to process a similar
graph on an InfiniBand cluster, outperforming the Giraph
result with less than one third of the nodes. The achieved 8.6
GPEPS remains the fastest trillion-edge PageRank throughput
reported to date.! Recently, out-of-core systems, such as
Chaos [13], G-Store [14], Graphene [15], and Mosaic [16]
enable trillion-edge graph processing on small numbers of
nodes, however with more than an order of magnitude lower
performance.

Our work advances the problem scale by one order of mag-
nitude and performance by 2-3 orders of magnitude. ShenTu
enables in-memory processing of synthetic graphs with up to
70 trillion edges. We also demonstrate performance of up to
1,984.8 GPEPS on 38,656 compute nodes. 2 In addition, we
show the first large-scale spam-score study of 271.9 billion
webpages and 12.3 trillion links between them.

Other graph processing systems: For processing moder-
ately sized graphs (billion-edge level), popular shared-memory
frameworks include Galois [17], Ligra [6], Polymer [18], and

'Gemini [7] and STAPL [12] achieved 27.4 GPEPS and 10 GPEPS, respec-
tively, for much smaller graphs (<64 billion edges). Processing larger graphs
increases communication and thus reduces performance.

2ShenTu is able to scale to the whole 40,960 nodes in Sunway TaihuLight,
limited by 38,656 available nodes during test.



storage nodes
(Lustre)

1/0 forwarding
nodes

40,960 nodes, bisection49.2 TB/s
rack 40

B8 LALdy
888 i)
8B B
EjEj Ej lsupernode
8 B 8 (256 nodes).
BB B

"L )
88 B
86-0
B8 B

1 node, 4 core groups, 260 cores

CPE Cluster, 64 cores

DRAM, 28.9 GB/s DRAM, 28.9 GB/s

Core Group 1 Core 2

MC

CPE
Cluster

CPE
Cluster

Core Group 3 Core Groyp 4
E MP!

| CPE

E
Cluster

MC
DRAM, 28.9 GB/s

CPE
Cluster

DRAM, 28.9 GB/s

H—E
am O

Register Buses
(vertical & horizontal)

CPEwith SPM

Fig. 1. TaihuLight System and CPU architecture. The left part shows the I/O system and the right part shows details of the heterogeneous compute elements.

GraphMat [19]. To provide additional capacity or through-
put, researchers typically use (1) out-of-core frameworks,
such as GraphChi [20], X-Stream [21], FlashGraph [22],
and GridGraph [23], or (2) distributed frameworks, such
as GraphLab [24], PowerGraph [25], PowerLyra [26], and
PGX.D [27]. In addition to the inferior performance of out-
of-core systems similar to that shown in Table I, existing
distributed graph systems also suffer from poor performance
or scalability [7]. Even HPC-style frameworks, such as the
Parallel Boost Graph library, fail to scale beyond hundreds of
nodes [28]. ShenTu, on the other hand, efficiently processes
large graphs on 38,656 compute nodes using millions of cores.
Graph benchmarks on supercomputers: Recognizing the
growing importance of high-performance graph processing,
the Graph500 breadth first search (BFS) benchmark ranking
was started in 2010. This competition facilitated the develop-
ment of highly-specialized BFS implementations on cutting-
edge supercomputers [29], [30], [31], often leveraging BFS-
specific characteristics such as idempotent updates and mes-
sage compression that cannot be generalized to general graph
algorithms (such as PageRank or WCC). In contrast, ShenTu
allows users to define arbitrary processing tasks and handles
real-world graphs with significantly higher skewness than
synthetic graphs used in Graph500 tests (cf. Section VII-A).
We conclude that achieving highest performance for graph
processing on large-scale supercomputers remains challenging
and no scalable general-purpose framework has been demon-
strated on millions of cores of a Petascale machine.
Scientific computing programming frameworks: Multiple
recent Gordon Bell finalists present common programming
frameworks that improve user productivity on modern super-
computers, for problems such as adaptive mesh refinement
(AMR) [32], computational fluid dynamics (CFD) [33], N-
Body [34], and stencil-based computation [35]. ShenTu is in
line with such spirit, requiring <20 lines of application code
to implement common tasks such as BFS/PageRank/WCC.
Behind its intuitive and expressive APIs, 22,000 lines of
ShenTu code implement efficient and adaptive optimizations to
obtain massive processing throughput and parallel efficiency.

V. SYSTEM ARCHITECTURE CHALLENGES

Before describing ShenTu’s innovations, we introduce the
Sunway TaihuLight system [36], [37], which is optimized for

traditional scientific computing applications and ever ranked
No.1 in Top500 list during June 2016 to June 2018. Taihu-
Light’s complex architecture is shown in Figure 1; it poses
several challenges to the construction of a scalable, general-
purpose parallel graph processing framework. We design
microbenchmarks to measure ideal peak bandwidths under
laboratory conditions (empty system etc.) and show the results
compared to hardware peak numbers in Table II. We will
later use these ideal measured numbers to show that ShenTu
achieves close-to-peak performance.

TABLE I
TAIHULIGHT SPECIFICATIONS AND BANDWIDTH MEASURED

Component | Configurations | BW measured (% peak)
MPE 1.45 GHz, 32/256KB L1/L2 DRAM 8.0 GB/s (80%)
CPE 1.45 GHz, 64KB SPM Reg. 630 GB/s (85%)

CG 1 MPE + 64 CPEs DRAM 28.98 GB/s (85%)

Node 1 CPU (4 CGs), 4x8GB RAM Net: 6.04 GB/s (89%)
Super Node 256 nodes, FDR 56 Gbps IB Bisection 1.5 TB/s (72%)
TaihuLight 160 supernodes Bisection 49.2 TB/s (68.6%)
Agg. memory 1.3 PB 4.6 PB/s (85%)
Storage 5.2 PB (Online2) 70 GB/s (54.35%)

Processors and memory hierarchy Each TaihuLight compute
node has a single heterogeneous SW26010 CPU (see right
part of Figure 1), composed by four core groups (CGs)
connected via a low-latency on-chip network (NoC). Each
CG consists of a management processing element (MPE), a
64-core computing processing element (CPE) cluster, and a
memory controller (MC); a total of 260 cores per CPU (node).
The MPE has a 64-bit RISC general-purpose core capable
of superscalar processing, memory management, and interrupt
handling. The CPEs are simplified 64-bit RISC accelerators
for high compute performance at low energy consumption.
Both have single-cycle access latency to their register set.
CPEs do not have caches, but each comes with a 64KB
scratch pad memory (SPM) that requires explicit programmer
control, similar to shared memory in GPUs. Those require a
manual orchestration of all data movement, a challenging task
for irregular random accesses. The CPEs also support direct
DRAM load/store, but the cache-less design makes it rather
inefficient, as every operation accesses a full 256-Byte DRAM
row to move data to/from a single 64-bit register.
On-chip communication SPMs are private, thus CPEs can
only synchronize through inefficient atomic DRAM accesses,
often leading to severe contention. However, the 64 CPEs in
the same cluster are connected with an 8 x8 mesh topology



through register buses (cf. Figure 1). CPEs in the same row or
column can exchange data using fast register communication.
Each can send one 256-bit message each cycle and messages
arrive after 10 cycles at the destination. Switching from row-
direction to column-direction or vice-versa requires software
routing. While this mechanism is extremely fast, programmers
must avoid deadlocks in software.

Interconnection network The TaihuLight compute nodes are
connected via a 2-level InfiniBand network. A single-switch
with full bisection bandwidth connects all 256 nodes within
a supernode, while a fat-tree with 1/4 of the full bisection
bandwidth connects all supernodes (cf. Figure 1). Table II
shows measurements of bisection communication bandwidth at
different levels of the system. To fully utilize this hierarchical
network, our graph framework must adapt to the structure of
the fast intra-supernode network and perform aggressive mes-
sage batching for better small-message and software routing
performance.

I/O system The TaihuLight compute nodes connect to its Lus-
tre file system via a flexible I/O forwarding layer, shown in the
left part of Figure 1. I/O requests from four super nodes (1,024
compute nodes) are currently handled by two I/O forwarding
nodes. ShenTu runs use the Online2 Lustre partition dedicated
to large-scale, I/O-intensive jobs. It is composed by 80 I/O
forwarding nodes, 144 storage nodes (Lustre OSSs) and 72
Sugon DS800 disk arrays, each containing 60 1.2 TB SAS
HDD drives. Limitations of Lustre only allow to reach 70 GB/s
even with ideal access patterns. ShenTu is currently the most
I/O bandwidth intensive application on TaihuLight, reading in
real-world large graphs (total volume up to 100s of TBs) and
demanding efficient and scalable parallel file I/O as well.

VI. INNOVATIONS REALIZED

ShenTu is the first general-purpose graph processing frame-
work targeting the efficient utilization of entire Petascale
systems. On top of HPC technologies such as MPI and
athreads, the Sunway lightweight threading library, we extend
methodologies from distributed graph processing to attack
unique problems. More specifically, to conquer efficiency and
scalability challenges brought by the combination of problem
and machine scale, irregularity in computation, and highly het-
erogeneous compute node architecture, ShenTu realizes four
key innovations: hardware specialization, supernode routing,
on-chip sorting, and degree-aware messaging. Overall, ShenTu
focuses on efficient and adaptive data routing, in different
forms at different levels of the system organization (from
CPE cores to the entire supercomputer), to enable fast parallel
execution of highly irregular graph applications.

ShenTu offers a simple and intuitive programming inter-
face similar to Ligra [6] and Gemini [7] with its two main
functions: mapVertices and mapEdges. Both routines
take input with a subset of active vertices and a user-defined
function for processing vertices or edges, respectively. The
computation advances in bulk synchronous steps until the
active vertex set is empty. This enables scientists to quickly
implement algorithms in tens of lines of code. For example, a

20-line BFS implementation in ShenTu performs within a fac-
tor of two of a 9,000-line highly-specialized not generalizable
implementation [30]. The framework itself has approximately
22,000 lines of code to enable all the optimizations.

A. Key innovations for petascale systems

We first present our four key innovations to high efficiency

for large graph processing on millions of cores. This discussion
assumes a partitioned input graph to all compute nodes, while
we give more details on our partitioning methodology and
optimizations later in Section VI-B.
Innovation 1. Hardware specialization Leading supercom-
puters like TaihuLight increasingly adopt heterogeneous hard-
ware. Within each SW26010 CPU, at the coarsest level we
assign the four core groups into distinct functions as shown
in Figure 2: (A) Generation, (B) Relay, (C1) Coarse sort, and
(C2) Update. The functions, each carried out by one of the
four CPE clusters, are strategically designed to achieve bal-
anced core group utilization and peak-bandwidth processing
of irregular data. This spatially pipelined architecture allows
us to process batched data in a streaming way, obtaining lower
I/O complexity to main memory and higher utilization of the
massive on-chip bandwidth.

At the second level of specialization, we consider the
specific hardware capabilities within each core group. Here
the MPE is well suited for task management, plus network
and disk I/O, while the CPEs are tightly connected through
the register communication feature. This naturally leads us to
execute communication tasks on the MPE and data sorting
and processing tasks on the CPEs. The left part of Figure 2
illustrates the overall specialization and pipelining, with MPEs
1-4 and their corresponding CPE clusters 1-4, respectively. The
aforementioned per-CPE-cluster functions are tuned to stream
graph updates through this pipeline as follows.

Generation: Linearly scans vertex partition assigned to this
node, identifies active vertices, and generates messages
to the destination nodes for the next stage.

Relay: Routes coalesced messages for high-throughput inter-
node communication (cf. Innovation 2).

Coarse sort: Performs the first-stage, approximate sorting, to
organize messages into buckets, each fitting into the fast
SPM to be forwarded to the next stage (cf. Innovation 3).

Update: Performs the last processing stage, the final sorting
within each bucket and updates (now consecutive) desti-
nation vertices with the user-specified function.

In summary, ShenTu specializes not only to the different ca-
pabilities of the heterogeneous processors, but also implements
an innovative spatial pipelining strategy that utilizes heteroge-
neous many-core chips for streaming graph processing.
Innovation 2. Supernode routing This technique targets effi-
cient inter-node communication, extending our heterogeneous
processing pipeline to the full system.

Intuitively, distributed graph applications are plagued by
large numbers of small messages, sent following the graph
topology, often with an all-to-all connectivity among the
partitions. Sending small messages to 10,000s of destinations



A: Generator C: Sort & Update

Supernode X

Supernode Y

unsorted input bucketed (semi-sorted) sorted for processing

CPE Cluster 3
TTTrTrTrTr
r {pH
r

CPE Cluster 4

0 - udu

o2
+
e

+
+
+

ks
.|.
.|.
'I:ihl

5
E
E
|5
F
=
|
|L.

i

+
FLEp
+
+

@ +4ﬂ"‘

_L_L_I.J.J.

L_L_L_L_LJ.J.J.H

On-chip Shuffling Stage 1 On-chip Shuffling Stage 2

UUWUIII

Fig. 2. Supernode routing (left) and on-chip sorting (right).

is inefficient due to static per-message overheads (routing
information, connection state, etc.) ShenTu mitigates this by
factoring all compute nodes into groups, by their supernode af-
filiation. Each node coalesces all messages to nodes within the
same target group into a single message, sent to a designated
node within that group. This so-called relay node unpacks the
received messages and distributes them to appropriate peers.

Our relaying design needs to meet several requirements.
To maximize utilization of the higher intra-supernode band-
width, we form target groups using supernode boundaries. To
effectively perform message aggregation, each source node
minimizes the number of relay nodes it sends to within a target
group. To achieve load balance, each node in a target group
acts as a relay node.

Due to regular maintenance and failures, some supernodes
contain less than 256 operational nodes. A naive mapping
strategy could lead to relay nodes that receive twice the
“normal” load. Instead, we use a simple stochastic assignment
algorithm that distributes the load evenly among all active
nodes in each supernode. Supernode routing greatly reduces
the number of messages and source-destination pairs. Mes-
sages arriving at the corresponding supernode can quickly be
distributed to the target host due to the full bandwidth in each
supernode.

Figure 2 illustrates this: Node A sends a message to Node

C, relayed via Node B (Nodes B and C are in the same
supernode). CPE cluster 1 on Node A generates messages
and notifies MPE 1 to send. MPE 2 on Node B receives
messages and CPE cluster 2 performs destination-based on-
chip sorting and combining on message. MPE 3 then sends
the resulting coalesced message to Node C. The messages,
targeted at vertices in Node C are received by MPE 4, which
notifies CPE clusters 3 and 4 to sort and update the destination
vertices, respectively. This way, ShenTu’s routing seamlessly
couples with its on-node processing pipeline, orchestrating an
efficient global communication scheme that fully utilizes all
compute elements and their bandwidth at different domains of
the whole system.
Innovation 3. On-chip sorting Most graph computations
are bounded by memory bandwidth and similar to inter-
node communication, small random memory accesses hurt
performance. For each CPE cluster, peak memory bandwidth
can only be achieved if 16 or more CPEs issue at least 256-
Byte DMA transfers between SPM and DRAM. For example,
accessing only 128 Bytes or using only 8 CPEs leads to a
bandwidth drop below 16 GB/s from the peak 28.9 GB/s.

Messages arriving at Node C contain vertex updates in a
random order. ShenTu uses on-chip sorting to assign disjoint
partitions of destination vertices to different CPE cores to
obviate expensive DRAM synchronizations. It also aggregates
messages updating the same vertex, increasing data reuse and
reducing both DRAM traffic and random accesses. To this
end, ShenTu carries its specialization approach further into
each CG: It partitions the homogeneous CPE cores into three
types, shown in the right part of Figure 2: (p) producers for
reading data, (r) routers for sorting data, and (c) consumers
for applying vertex updates or passing data to the MPE for
sending. As shown in the figure, ShenTu assigns square blocks
of 16 CPEs as producers, routers, and consumers, respectively.
This ideal configuration, leaving 16 CPEs for other tasks,
achieves the maximum CG sorting bandwidth of 9.78 GB/s.

The producer CPEs read messages in consecutive 256-Byte
blocks received by the MPE from DRAM. The router CPEs
leverage the fast register communication, receiving unsorted
vertex updates from producers, and sorting them using register
communication. Sorted buckets are sent to the appropriate
consumer CPEs, who in the sort stage write the buckets to
DRAM. The ones in the final (update) stage apply the user-
defined function to their disjoint sets of 8-Byte vertices cached
in their SPMs. Thus the aggregate processing capacity per CG
will be 16 x 64kB/8 B = 217 vertices.

We use two-stage sorting as a CG cannot sort its whole
32GB DRAM in a single pass due to the SPM size (64kB).
The first stage sorts into buckets and the second sorts each
bucket. One bucket buffer in SPM is 256B, to enable fast
DRAM transfer from CPE cluster 3 to cluster 4. This results
in 16 x 64 kB /256 B = 2'2 buckets, where CPEs in cluster
3 read data (p), coarse sort (r), and write buckets to DRAM
(c). Our two-pass sorting supports 2'2 x 217 = 229 vertices
per compute node, enough to fully sort the 32GB DRAM.
Innovation 4. Degree-aware messaging The in and out-
degrees of typical real-world graphs follow a power-law dis-
tribution. Thus, in distributed graph processing, high-degree
vertices send or receive a large number of messages to or
from many neighbors, often covering all compute nodes. For
example, the Sogou graph has 24.4 million vertices (out of
271.9 billion in total, less than 0.001%) that have an in-degree
over 40,960, and these edges cover 60.48% of all the edges in
the graph. This means, when processing it on 40,960 nodes,
those vertices may reach the whole system.

Recognizing this, ShenTu’s design singles out these high-
degree vertices by replicating them across all compute nodes,



creating mirrors vs. the primary copy owned by the compute
node originally assigned to process such a vertex. ShenTu
further differentiates between vertices with high out- and high
in-degrees, denoted as hout and hin vertices, respectively.

With high-degree vertices mirrored at every compute node,
ShenTu handles messages to and from these vertices differ-
ently. Instead of individual hout vertices sending messages to
update their many neighbors, all compute nodes cooperate in a
single MPI_Bcast call to update the mirrors at all nodes. The
mirrors then act as per-node delegates, updating local neigh-
bors of each hout vertex. For hin vertices the process is similar,
except that the mirrors first collect updates to an hin vertex
mirror, using a user-specified combineEdgeMsg function,
similar to local combiners in Pregel or MapReduce. Then they
aggregate mirrors using an MPI_Gather or MPI_Reduce
collective call to update the primary copy.

The respective degree thresholds for the hout or hin lists
are determined by considering the graph and job scale (details
in Section VIII-C). A vertex can be both hin and hout, only
hin, only hout, or regular. Regular vertices have their edges
stored at the source, with messages sent to compute nodes
owning their neighbors using the described intra- and inter-
node pipelines. Unlike with hin or hout vertices, ShenTu does
not attempt message combination with regular ones, as there
is little benefit.

Our degree-aware message passing has several benefits: (1)
it leverages the powerful supercomputer interconnect, highly
optimized for collective operations; (2) it involves all compute
nodes in collective operations for the high-degree vertices,
which further reduces the number of messages; (3) it balances
load because local mirrors distribute or collect updates to high-
degree vertices, which essentially shares the workload of those
vertices among all compute nodes, and (4) it simplifies the
design with its “all-or-none” replication policy (high-degree
vertices are replicated to all compute nodes), which avoids
the space-costly replica lists used in many distributed graph
frameworks [25], [38], [26]. We evaluate the effectiveness of
the load balancing schemes in Section VIII-B.

B. Auxiliary Tasks and Optimizations

In addition to the above key innovations enabling ShenTu’s
efficiency and scalability, it adopts existing techniques, that
were proven at small scales, but require extensions and opti-
mizations to scale them orders of magnitude further.
Direction optimization (push vs. pull) Graph processing
frameworks can choose to propagate updates along edges in
two modes: push (where source vertices send messages to
update their neighbors) or pull (where destination vertices
solicit updates from their neighbors) [39], [40], [6], [7].
Similar to frameworks such as Gemini, ShenTu implements
both modes and automatically switches between them at
runtime. More specifically, ShenTu constantly monitors the
fraction of all edges that are active, i.e., to be visited in the
current iteration. A low fraction of active vertices indicates a
“sparse” iteration, to be processed efficiently with push, while
a high fraction is best processed with pull for high-degree

vertices and configurable push/pull for regular ones according
to application characteristics. Such dual-mode execution leads
to significantly fewer processed edges and update conflicts. A
typical threshold is 1/20 [6], [7], while ShenTu adopts 1/35 as
pull performs better with TaihuLight’s architecture, especially
at large scales. In addition, ShenTu’s push-pull mode is
integrated with the aforementioned degree-aware optimization:
each mode with its specific hin/hout/reg handling.

Graph loading We store all real-world graphs as unsorted
edge lists on disk. For most graph algorithms, in-memory
processing is much faster than loading the terabyte-scale
graphs from disk. To maximize the Lustre I/O bandwidth
utilization, we split the input data into 100,000s of 1 GB files
and coordinate parallel I/O in a grouped manner to reduce
I/O resource contention and I/O synchronization. We further
arrange those files in a balanced directory structure, designed
to ease the load on the Lustre metadata server.

Randomized vertex partitioning Sophisticated partitioning
schemes such as (Par)Metis [41] are more expensive than
many graph analytics because balanced partitioning is itself
an NP-hard graph problem. Complementary to the global
replication of high-degree vertices, ShenTu uses a lightweight
randomized partitioning method for all primary vertices. To
avoid the space and time overheads of vertex-to-node maps, we
store the destination of each edge as the tuple (destination node
id, local vertex id on that node). All-in-all, our partitioning
scheme delivers well-balanced load in all our experiments>.

VII. How PERFORMANCE WAS MEASURED

The performance of many scientific computing applications
can be characterized by the achieved floating point rate (such
as PFLOPS). This makes it simple to compare the achieved
performance with the theoretical maximum (peak) perfor-
mance of a particular computer. In the comparatively young
field of graph analytics, no such simple metric can be applied
because the computation (be integer or floating point) is often
insignificant with respect to the cost of handling the irregular
data. The Graph500 benchmark defines the “traversed edges
per second” (TEPS) metric, which is computed for BFS by
dividing the total number of graph edges by the computation
time. This metric has been debated as for direction-optimizing
BFS, not all edges are traversed [42]. Furthermore, the metric
only applies to label-setting graph traversal algorithms like
BFS. PageRank, e.g., does not “traverse” edges. Thus, we
measure our performance by counting the actual processed
edges per second (PEPS). E.g., in a single PageRank iteration,
each edge is processed exactly once, while a label-correcting
SSSP may process the same edge multiple times and direction-
optimizing BFS may skip many edges.

For both TEPS and PEPS, it remains challenging to define a
peak machine performance due to the fundamentally irregular
data movement. A trivial upper bound is the cumulative
memory bandwidth divided by the storage size of an edge.
In ShenTu’s case, vertex IDs are 8-byte values, resulting in

3Without this technique, nodes ran out of memory during preprocessing.



approximately (4.6 PB/s)/(8 bytes) = 575 TPEPS. However,
this bound is not useful because real-world graphs are strongly
connected and hard to cut for parallel computation [4]. Thus,
we use the bisection bandwidth divided by the graph cut-width
(into the number of distributed memory partitions at the target
machine) as a better upper bound. This upper bound provides
a strong indicator for how well a graph application uses a ma-
chine, with a certain partitioning strategy. To measure the edge
cut, we instrumented ShenTu’s communication subsystem to
collect transmitted data volume.

A. Data sets

We evaluate ShenTu on several real-world and synthetic
large-scale graphs (Table III). We store all real-world graphs
with a compact edge list format on disk, using 48 bits per
vertex. For RMAT and Kronecker generation, ShenTu follows
the Graph500 reference code (version 2.1.4 with parameters
A=0.57, B=0.19, C=0.19, D=0.05) and uses 16 as edge
factor. The Erd8s-Rényi generator uses the G(n,m) rather
than G(n,p) model [43]. As per Graph500 convention, we
use “scale z” to refer to a Graph500 synthetic graph with
2" vertices. our main study object is the 136.9TB Sogou
Chinese web graph with 12.3 trillion edges. As Sogou expects
a 4x graph size increase with full-web crawling, we also
demonstrate a 70-trillion-edge Kronecker graph.

TABLE III
SPECIFICATION OF SHENTU TEST DATASETS
Graph | Vertices | Edges | Size on Disk
Twitter [44] 41.7m 1.47b 16GB
UK-2007 [45] 105.9m 3.74b 41GB
Weibo [46] 349.7m 44.27b 474GB
UK-2014 [45] 747.8m 47.61b 532GB
Clueweb [47] 978.4m 42.57b 476GB
Hyperlink [48] 3.56b 128.7b 1.5TB
Sogou 271.9b | 12,254.0b 136.9TB
Kroneckerl [49] 17.2b 274.9b -
RMat [50] 17.2b 274.9b -
Erd6s [43] 17.2b 274.9b -
Kronecker2 [49] | 4,398.0b | 70,368.7b -

Previous work at large scale [30], [31] was designed and

evaluated with only synthetic graphs. Processing extremely
large-scale real-world graphs poses multiple challenges that
we had to overcome in our work. First, the sheer size of the
graph requires a highly scalable processing system. Second,
the Sogou graph is highly irregular and differs significantly
from synthetic graphs. Third, reading the whole graph from
disk requires a fast and stable I/O orchestration. We briefly
analyze these key challenges in the following.
Extremely large scale: Sogou’s graph has 271,868,983,613
vertices and 12,253,957,290,295 edges. Designing an in-
memory graph processing framework on such large scale
requires all of our key innovations. In addition, to load
such a graph into memory creates a significant challenge by
itself. It requires a large amount of I/O resources, putting
an unprecedented pressure on the distributed file system of
Sunway TaihuLight to load the 136.9 TBs of input data.

=

==
oo
O HFNWAUONOOOR

~~~~~ Kronecker In/Out Degree
----- Sogou In Degree
Sogou Out Degree

MMA lm

10t 102 103 104 10> 105 107 10% 10°
Degree

Fig. 3. In-degree and out-degree vertices comparing a Kronecker graph with

the Sogou graph.

Vertex Count
[
O OOOOOOOOO

o

010°

Asymmetric distribution of in- and out-degree and skewed
in-degree distribution: Like many real-world graphs, but
unlike most synthetic graphs, Sogou’s graph has very dif-
ferent out-degree and in-degree distributions. The out-degree
distribution of the vertices is relatively narrow and balanced
while the in-degree distribution is highly skewed, as shown in
Figure 3. For example, one of the largest in-degree vertices
is http://www.ganji.com/, which has more than 2.7 billion
in-edges, while the vertex with the largest out-degree has
five orders of magnitude fewer out-edges (381 thousand).
Furthermore, 90% of the vertices have an in-degree of under
15, while 90% have an out-degree of under 104.

Small number of in-edge magnets: Another feature of the
Sogou graph (and web graphs in general) not represented by
Graph500 synthetic graphs is that a small number of vertices
are targeted by a large fraction of the edges. For example, the
16,222 (6 x 107%% of total) vertices with an in-degree higher
than 22° account for 1,868,291,370,018 (15.25% of total)
in-edges. Such asymmetry, imbalance, and in-edge magnets
observed in real-world graphs pose significant challenges in
processing load and space consumption, motivating the special
handling of hin and hout vertices as proposed in Section VI-A.

B. Applications and algorithms

We demonstrate four important fundamental graph analytics
applications: PageRank, BFS (Breadth-First Search), WCC
(Weakly Connected Components), BC (Betweenness Central-
ity) and K-Core on the full scale of Sunway TaihuLight. In
our main result, we test a real application that was, according
to Sogou, highly desired but impossible before: we compute
the fine-grained TrustRank [51] to differentiate trustworthy
and spam webpages. TrustRank first selects a small set of
manually identified seed pages, assigning them the trust score
of 1, while all other vertices are given the initial score of
0. TrustRank then runs an algorithm similar to PageRank to
convergence. The result of TrustRank is compared with the
result of PageRank, to identify potential manipulation of page
ranking using methods such as link spam. Section IX validates
the results by comparing known non-spam and spam webpages
with respect to their position in TrustRank and PageRank.

VIII. PERFORMANCE RESULTS

We first present benchmark results showing the impact of
ShenTu optimizations, followed by scalability results to the
whole TaihuLight system. We start with the smaller-scale real-
world graphs widely used in evaluating graph frameworks



(shown in Table IV). We provide these results and the percent-
age of peak bandwidth (computed as outlined in Section VII)
for each graph to enable comparison with other small-scale
systems (analysis omitted due to space limit). These results
demonstrate that the achieved performance heavily depends on
the graph structure and algorithm. ShenTu delivers reasonable
performance across the board.

Meanwhile, our key result is PageRank computation on
the 12-trillion-edge Sogou graph in 8.5 seconds per iteration.
Such performance demonstrates the capability of a cutting-
edge supercomputer for whole-graph processing, potentially
enabling complex analytics not affordable today.

TABLE IV
PERFORMANCE RESULTS (I/O IN GB/s AND GPEPS, WITH % OF PEAK IN
BRACKETS (CF. SECTION VII) FOR PR). MISSING ENTRIES WERE
OMITTED DUE TO BUDGETARY RESTRICTIONS AT FULL SCALE.

Graph (Nodes) 10 PR BFS | WCC BC K-Core
Twitter (16) 0.6 0.7 (28) 0.4 0.5 0.3 0.008
UK-2007 (64) 1.4 4.0 (28) 34 4.0 0.9 0.125
Weibo (100) 3.9 8.2 (41) 2.6 7.1 4.8 0.718
UK-2014 (100) 4.0 4.7 (47) 2.1 3.8 04 0.318
Clueweb (100) 4.0 5.0 (47) 2.5 4.8 11.2 0.407
Hyperlink (256) 5.9 17.2 (60) 3.7 14.5 0.3 0.264
Sogou (38656) 64.3 | 1443 (19) | 30.8 | 2244 - -
Kro.1 (1024) - 72.8 (40) 10.4 62.3 43.1 0.82
RMat (1024) - 82.9 (29) | 345 78.1 44.7 0.25
Erdés (1024) - 52.5 (63) | 479 51.3 40.9 18.6
Kro.2 (38656) - 1984 (40) | 774 1956 - -

A. Performance of on-chip sorting

ShenTu heavily relies on efficient on-chip sorting. To this
end, we implemented multiple algorithms and compare three
variants here: (1) a simple implementation on the MPE,
(2) an implementation using spin-locks on all CPEs, and
(3) our optimized CPE routing implementation described in
Section VI-A. Figure 4 compares the three implementations.

The simple MPE implementation achieves only 1.09 GB/s
due to the limited memory bandwidth of the single MPE
in each CG. The second implementation, called CPE-atomic,
uses all the 64 CPEs for parallel sort, and synchronizes through
an atomic-increment instruction. Although the CPE cluster it-
self can fully utilize its memory bandwidth, the overall sorting
bandwidth is only 0.42 GB/s, due to the DRAM contention
for locks and the random access pattern. Our optimized CPE-
network implementation, on the other hand, performs on-
chip sorting via register communication, eliminates explicit
synchronization among CPEs, and allows memory access
coalescing. As a result, the CPE cluster achieves a 8.96x
performance than the baseline MPE-only implementation.

MPE
CPE-atomic

ShenTu on-chip

0 2 4 6 8 10
Memory Bandwidth (GB/s)
Fig. 4. Memory bandwidth when sorting with the three designs: MPE only,
CPE-atomic, and ShenTu’s on-chip sorting

B. Load balancing

The load imbalance of graph computation comes from the
skewed degree distribution of the input graph and materi-
alizes in two aspects: (1) storage and (2) communication
and processing. For example, the number of edges to be
stored at each node will be highly imbalanced if we evenly
partition the vertices in the Sogou graph. On 38,656 nodes,
the average number of in- and out-edges is approximately 617
million per node. however, one node would have 36 billion
edges, producing a 58x load. Without more intelligent load
balancing, this would both exhaust the single-node memory
and fail the graph assembly. Our optimizations also greatly
reduce the communication volume. For example, after apply-
ing ShenTu’s degree-aware messaging, the number of edges
crossing partitions is reduced by 40% from 12.3 trillion to 4.8
trillion. Furthermore, after separating out hin and hout edges,
the remaining regular edges are balanced among all nodes: the
heaviest node has only 25.7% more edges than average.

l 104

S 103 I Naive
= 10

E=l |

E 102 ShenTu
&0t

sS10Y 1 L RIRTIRIEESER S

#* 1001

10° 1010
Number of Edges of a Partition
Fig. 5. Distribution of numbers of outgoing plus incoming edges per partition

comparing naive vertex-balanced and ShenTu’s partitioning.

108

Figure 5 shows a histogram of edge count per partition,
which reflects the communication volume per node. Note that
the y axis is in log scale. ShenTu’s partitioning does leave
a small fraction of nodes with significantly fewer outgoing
edges, as its optimization targets high-degree vertices. How-
ever, it eliminates the heavily overloaded “tail”, generating a
much higher impact on parallel processing efficiency.

C. Selecting high-degree thresholds

Next, we discuss the configuration of our degree-aware
messaging scheme, by selecting the two threshold parameters,
K;, and K,,;, used to identify the hin and hout vertices,
respectively. Intuitively, if this bar is set too low, too many
vertices will qualify, diminishing the benefits of high-degree
specific optimizations and wasting the rather heavy-weight
collective operations. If it is too high, we cannot achieve
desired balancing results.

We empirically evaluate different combinations of the two
parameters on a Kronecker graph of scale 34 on 4,096 nodes.
Table V summarizes the results. We see that growing both
K;, and K,,; improves performance but quickly saturates
when both exceeds 2048. This is due to the characteristic of
the Kronecker scale-34 generated graph. About 90% of the
vertices’ in-degree and out-degree are lower than 5, thus the
graph is dominated by low-degree vertices.

We also observe that performance is relatively robust with
respect to small changes in Kj;, or K,,;. Thus, we use a
simple threshold-selection heuristic: To determine K;,, each
node counts the number of vertices whose in-degree is larger



TABLE V
ITERATION TIMES (S) FOR PAGERANK ON KRONECKER GRAPH A (|V| =
234 | E| = 238) WITH 4,096 NODES COMPARING K, AND Koyt

Kot Ki 0 1024 2048 4096 8192
0 6.132 4713 4.619 4.081 4.069

1024 3779 2703 1966 2.023 2334
2048 3910 2.020 1921 1957 2.221
4096 4.099 1984 1934 1952 2306
8192 4468 2.038 1942 2.016 2.308

than the total number of nodes as its local hin vertex count, and
K, is the median of all nodes’ local hin vertex count. K ,,; is
determined in the same way. Our dynamic threshold selection
algorithm selects K;, = Ky = 1,722 for this case, the
performance deviation of which is within 3% of the optimal
selection.

D. Comparison with specialized Graph500 performance

We now proceed to compare ShenTu’s performance to a
highly-tuned implementation of the Graph500 benchmark on
the same system [30]. This implementation takes advantage
of BFS-specific properties to apply much more aggressive
optimizations to secure the second spot on the Nov. 2017
list. For example, it removes isolated vertices and changes the
vertex numbering to follow the degree distribution. ShenTu
would need to translate user to internal labels, which would
lead to unacceptable memory overheads.

At scale-38 on 9,984 nodes, the optimized Graph500 imple-
mentation traverses only 298.57 billion of the graph’s 4,398.02
billion edges, obtaining 6,664.47 GTEPS and 294.73 GPEPS.
With its degree-aware optimization, ShenTu processes around
70% fewer edges as Graph500 does, resulting in 577.85
GTEPS. When considering the actual traversed edges per
second, ShenTu achieves 180.6 GPEPS, only 38.7% slower
than the specialized Graph500 implementation.

To enable a fair comparison, we disable direction optimiza-
tions in both the Graph500 benchmark and ShenTu. Process-
ing a scale-38 Kronecker graph on 9,984 nodes, Graph500
achieves 69.01 GPEPS while ShenTu achieves 88.02 GPEPS,
demonstrating that ShenTu can even exceed the performance
of a high-performance BFS implementation.

E. Scaling to the full system

We examine both weak and strong scalability of ShenTu
using our four test applications. Because the full Sogou graph
needs at least 10,000 nodes, we performed strong scaling
tests on a synthetic scale-36 Kronecker graph. Figure 6 shows

600

I BFS
I BC

= wccC

4001 3 PR

GPEPS

200 -

1248

2496 4992 9984
#Nodes

Fig. 6. Strong scaling results with a Scale-36 Kronecker graph.

19968 38656

the performance of three key applications using a growing
number of nodes, relative to their respective 2500-node base-
line. We note that the graph cut grows superlinearly when

doubling the input scale. While ShenTu can process the fixed-
size graph at full machine scale, the performance is limited
by the increasing volume of the graph cut and the limited
bisection bandwidth due to static routing in InfiniBand [52].
Our microbenchmarks validate these conjectures.

For weak scalability, we use Kronecker graphs with various
scales ranging from 36 on 1,248 nodes to 40 on 38,656 nodes
shown in Figure 7. ShenTu shows a good weak scalability

1500

Hl BFS
N BC

3 wccC

10001 3 PR

GPEPS

500 1

1248

2496 4992 9984

#Nodes
Fig. 7. Weak scaling results for Kronecker graphs at various scales.
for all algorithms to the full machine scale. The flattening of
the scalability at the last step is also explained by the limited
full-scale bisection bandwidth due to static routing.

The weak scalability test shows that ShenTu can run on full
scale on a heterogeneous extremely large scale super computer.
We also ran BFS and PageRank on the entire system, which
is Scale-42 on 38,656 nodes. It costs 6.5s and 25.3s to finish
one iteration of PageRank and BFS, achieving 1,984.8 GPEPS
and 809.9 GPEPS, respectively.

19968 38656

F. Analyzing TrustRank of the full Sogou graph

Thanks to ShenTu’s unprecedented processing capacity, we
are able to run a variety of graph analytics algorithms at a scale
not attempted before. As one use case, we compare TrustRank
and PageRank in differentiating between non-spam and spam
pages in the Sogou graph. We were able to run both algorithms
to convergence,* requiring 47 iterations in 4 minutes for
TrustRank, and 53 iterations in 8 minutes for PageRank. To
evaluate their effectiveness, we divide the vertices (webpages)
into 20 buckets according to their PageRank values, using
a rank-based partitioning method [51]. It sorts vertices by
their PageRank and divide them into buckets with (nearly)
uniform PageRank sums. We reuse such PageRank bucket size
distribution for TrustRank, to obtain 20 buckets with the same
sizes, but with pages sorted by TrustRank. We then randomly
sampled 100 webpages from each bucket (of both sets of 20)
and requested manual assessment by Sogou engineers. The
result is a per-page quality score, assigned considering factors
such as link validity and presence of spam content.

Figure 8 visualizes the quality score distribution of both al-
gorithms, showing that TrustRank gives more quality-relevant
results than PageRank. Buckets with descending TrustRank
values possess a more consistent trend of declining quality,
with more pages “sinking” to the lower quality bands. Its
difference with PageRank is especially evident in the middle
buckets (9-14), where the PageRank buckets admit a larger
fraction of low-quality pages.

4We stopped when the sum of rank differences between iterations was under
10-5.



This is the first experiment comparing results of exact
PageRank and TrustRank computations on a real-world In-
ternet graph with billions of webpages and trillions of links.
We gathered terabytes of output data which are invaluable for
future analysis by network scientists.

B High

E i

. | ] 1 -1 =

9] g T |

s 1 | R B |

> Mid-high 1 |

= 2

=}

c 1 E 4

© + =

= Mid-low { 1

2

©

SZL L e e e e e e e e e
123456 7 8 91011121314151617181920

PR-/TR-sorted Buckets containing Sampled Webpages
Fig. 8. The quality score distribution of sampled webpages grouped by

corresponding buckets given by TrustRank (blue) and PageRank (orange)
values. The average scores of each bucket are marked by blue and orange
horizontal lines respectively.

IX. IMPLICATIONS

The implications of our work are manyfold. First, we show
a hero-scale computation of the Sogou web graph, which was
previously impossible in reasonable time and cost. Second, and
even more powerful, we demonstrate a graph framework that
can execute arbitrary algorithms at full scale of the fastest su-
percomputer in operation today. This will have a huge impact
on the many scientific fields, such as genomics, connectomics,
or social sciences, where graph processing plays a major
role. Third, we establish principles for transforming irregular
computations to hierarchical streaming regular computations
on heterogeneous compute architectures. These techniques not
only act as blueprint for future graph processing frameworks
on Peta- and Exascale machine but also may influence the
design of other irregular processing approaches such as sparse
linear algebra or unstructured or adaptive grid computations.

The state of the art in large web graph processing uses rather
inefficient methods, either MapReduce [53] or specialized
out-of-core systems, both reading the 100 TBs of graph
data for each iteration leading to excessive time and energy
requirements. Thus, researchers and industry usually resort to
simplified graphs or other approximation methods [54]. For
example, in the production environment of Sogou, PageRank
is currently computed for a reduced graph, merging pages by
URL prefixes. This assumes all webpages under the same
upper level URL share the same PageRank score, which
sacrifices resolution and thus quality of research insights and
search results. It also opens avenues for spammers to place
pages under useful pages, for example in Internet boards.

Processing even the reduced graph takes more than 60
hours on 100 Hadoop server machines at Sogou. ShenTu
runs PageRank on Sogou’s full web graph to convergence
in minutes on Sunway TaihuLight, more than three orders
of magnitude faster than the state of the art for the reduced
graph! Even on a per-server basis, ShenTu achieves more than
an order of magnitude speedup. This allows us to compute
additional features, such as distance, in order to counteract

10

the deceiving efforts of search engine optimization (SEO),
a billion dollar industry [55]. Detecting and ignoring such
ranking manipulation is one of the key issues in providing high
quality search results and can even be used to optimize web
crawling itself. The intuitive idea of such anti-SEO algorithm
is to use page rank to find certain high-profile webpages
(seeds) and then calculate the distances of other webpages
to these seeds. The pages which are too far away from these
seeds are considered less important. The rationale here is that
the SEO industry can boost PageRank of webpages by adding
links from its controlled webpages, but cannot boost them high
enough to become seeds.

In a broader view, ShenTu gives a concrete example on
using the large memories and extreme parallelism of super-
computers to solve real-world data analytics problems on the
ever increasing size of data. The scalable key innovations pro-
posed and discussed in this paper, such as supernode routing,
degree-aware messaging, hardware specialization, and on-chip
sorting can easily be generalized to other supercomputers.
Supernode routing can be generalized to a general routing
scheme for hierarchical network topologies where islands of
higher bandwidth send messages to other such islands to be
distributed inside the high-bandwidth domains. Our degree-
aware messaging using HPC techniques such as collective
operations that can be tuned to the specific network architec-
ture shows how those fundamental algorithms can be applied,
even for irregular and unbalanced problems. In fact, our load
balancing strategy that combines this with randomized vertex
assignment and efficient storage enables handling very large
real-world graphs in any parallel computing setting. Hardware
specialization is a necessity to achieve lowest energy consump-
tion in future systems. While we can only guess the specifics of
those systems, we believe that the division of communication
and processing functions will remain. Furthermore, the on-chip
sorting shows how TaihuLight’s innovative register communi-
cation can be exploited in irregular applications. This will not
only influence designers of such applications but also hardware
manufacturers to introduce advanced communication features
into their many-core chips. ShenTu is first to integrate these
and many more innovations into a scalable high-performance
system that maps irregular and unbalanced graph computations
to a heterogeneous Petascale system. With it, we hope to fuel a
new trend to use HPC systems not only for traditional scientific
computing workloads but also for emerging data analytics.

ACKNOWLEDGMENT

We thank Rujun Sun, Ziyu Hao from SKL-MEAC, Huangi
Cao, Miao Wang, Wentao Han, Xu Ji, YuanChao Xu, Guang-
wen Yang from Tsinghua, Xiyang Wang, Zhao Liu, Bin Yang,
Wanliang Li from NSCC-Wuxi, and Yi Li from Beijing Sogou.
This work was partially supported by National Key Research
& Development Plan of China under grant #2017YFA0604500
and #2016 YFA0602100, NSF of China under grant #61525202
and #91530323. The corresponding authors are Wenguang
Chen and Wei Xue.



[1]
[2]

[9]

[10]

(11]

[12]

[13]
[14]
[15]

[16]

[17]
(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L.
Wheeler, “Genbank,” Nucleic acids research, 2005.

H. Mustafa, I. Schilken, M. Karasikov, C. Eickhoff, G. Ratsch, and
A. Kahles, “Dynamic compression schemes for graph coloring,” bioRxiv,
2018.

B. Pakkenberg and H. Gundersen, “Total number of neurons and
glial cells in human brain nuclei estimated by the disector and the
fractionator,” Journal of microscopy, 1988.

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, 2007.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in SIGCOMM, ACM, 1999.

J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in ACM SIGPLAN Notices, ACM, 2013.
X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in OSDI, USENIX, 2016.
X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge
and information systems, 2008.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD, ACM, 2010.

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” VLDB, 2015.
M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and
L. Zhou, “Gram: scaling graph computation to the trillions,” in SoCC,
ACM, 2015.

Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, “An
algorithmic approach to communication reduction in parallel graph
algorithms,” in PACT, IEEE, 2015.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
Scale-out graph processing from secondary storage,” in SOSP, 2015.
P. Kumar and H. H. Huang, “G-store: high-performance graph store for
trillion-edge processing,” in SC, IEEE Press, 2016.

H. Liu and H. H. Huang, “Graphene: Fine-grained io management for
graph computing,” in FAST, USENIX Association, 2017.

S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a trillion-edge graph on a single machine,” in
Proceedings of the Twelfth European Conference on Computer Systems,
pp. 527-543, ACM, 2017.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in SOSP, SOSP, ACM, 2013.

K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-structured ana-
lytics,” in ACM SIGPLAN Notices, ACM, 2015.

N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” VLDB, 2015.

A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc.,” in OSDI, 2012.

A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: edge-centric
graph processing using streaming partitions,” in SOSP, ACM, 2013.
D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “Flashgraph: Processing billion-node graphs on an array
of commodity ssds,” in FAST, 2015.

X. Zhu, W. Han, and W. Chen, “Gridgraph: Large scale graph processing
on a single machine using 2-level hierarchical partitioning,” in USENIX
ATC, 2015.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” VLDB, 2012.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘“Pow-
ergraph: Distributed graph-parallel computation on natural graphs.,” in
0SDI, 2012.

R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph
computation and partitioning on skewed graphs,” in Proceedings of the
Tenth European Conference on Computer Systems, ACM, 2015.

S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten, and
H. Chafi, “Pgx.d: A fast distributed graph processing engine,” in SC,
ACM, 2015.

D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library for
distributed graph computations,” POOSC, 2005.

11

[29]

(30]

(31]

(32]
[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43

[t

[44]
[45]
[46]
[47]
[48]

[49]

[50]
[51]

[52]

(53]

[54]

[55]

F. Checconi and F. Petrini, “Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines,” IPDPS, 2014.

H. Lin, X. Tang, B. Yu, Y. Zhuo, W. Chen, J. Zhai, W. Yin, and
W. Zheng, “Scalable graph traversal on sunway taihulight with ten
million cores,” in IPDPS, 1IEEE, 2017.

K. Ueno, T. Suzumura, N. Maruyama, K. Fujisawa, and S. Matsuoka,
“Extreme scale breadth-first search on supercomputers,” in Big Data,
IEEE, 2016.

C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton,
and L. Wilcox, “Extreme-scale amr,” in SC, IEEE, 2010.

M. Bernaschi, M. Bisson, T. Endo, S. Matsuoka, and M. Fatica, “Petaflop
biofluidics simulations on a two million-core system,” in SC, 2011.

J. Chhugani, C. Kim, H. Shukla, J. Park, P. Dubey, J. Shalf, and H. D.
Simon, “Billion-particle simd-friendly two-point correlation on large-
scale hpc cluster systems,” in SC, IEEE Computer Society Press, 2012.
T. Muranushi, H. Hotta, J. Makino, S. Nishizawa, H. Tomita, K. Nitadori,
M. Iwasawa, N. Hosono, Y. Maruyama, H. Inoue, H. Yashiro, and
Y. Nakamura, “Simulations of below-ground dynamics of fungi: 1.184
pflops attained by automated generation and autotuning of temporal
blocking codes,” in SC, 2016.

H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang,
W. Xue, F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge,
J. Zhang, Y. Wang, C. Zhou, and G. Yang, “The Sunway TaihuLight
supercomputer: system and applications,” Science China Information
Sciences, vol. 072001, 2016.

W. Zhang, J. Lin, W. Xu, H. Fu, and G. Yang, “Scstore: managing scien-
tific computing packages for hybrid system with containers,” Tsinghua
Science and Technology, vol. 22, no. 6, pp. 675-681, 2017.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX : Graph Processing in a Distributed Dataflow
Framework,” in OSDI ’14, 2014.

S. Beamer, K. Asanovic, and D. Patterson, “Searching for a Parent
Instead of Fighting Over Children: A Fast Breadth-First Search Imple-
mentation for Graph500,” Tech Report UCB/EECS-2011-117, 2011.
M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To
push or to pull: On reducing communication and synchronization in
graph computations,” in HPDC’17, ACM, 2017.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM SISC, 1998.

S. Beamer, A. Buluc, K. Asanovic, and D. Patterson, “Distributed mem-
ory breadth-first search revisited: Enabling bottom-up search,” IPDPSW,
2013.

P. Erd6s and A. Rényi, “On the existence of a factor of degree one of
a connected random graph,” Acta Mathematica Hungarica, 2005.

H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” in WWW, ACM, 2010.

P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in WWW, ACM, 2004.

W. Han, X. Zhu, Z. Zhu, W. Chen, W. Zheng, and J. Lu, “Weibo, and
a tale of two worlds,” in ASONAM 2015, ACM, 2015.

The lemur project: Cluewebl2 web graph., “http://www. lemurpro-
ject.org/clueweb12/webgraph.php/.”

WDC - Hyperlink Graphs, “http://webdatacommons.org/hyperlinkgraph/,”
2018.

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Real-
istic, mathematically tractable graph generation and evolution, using
kronecker multiplication,” in ECML-PKDD’05, Springer, 2005.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in SIAM DM’04, SIAM, 2004.

Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in VLDB, VLDB Endowment, 2004.

T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage Switches are
not Crossbars: Effects of Static Routing in High-Performance Networks,”
in Cluster’08, IEEE, Oct. 2008.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova, “Monte
carlo methods in pagerank computation: When one iteration is suffi-
cient,” STAM NA, vol. 45, no. 2, pp. 890-904, 2007.

Search engine optimization marketing spending,
“https://www.statista.com/statistics/269410/advertising-expenditure-
for-seo-marketing/,” 2018.



