
What if MPI Collective Operations Were Instantaneous?

Rolf Riesen1, Courtenay Vaughan1, and Torsten Hoefler2

1 Sandia National Laboratories?

Albuquerque, NM 87185-1110
rolf@sandia.gov

2 Technical University Chemnitz
htor@tu-chemnitz.edu

Abstract Collective MPI operations are an interesting research topic, since their
implementation is complex and there are many different possible ways to improve
their performance. It is not always obvious how much a given application will
gain from such improvements and some of the methods to improve collective
performance are costly and time-consuming to implement.
In this paper we use a hybrid MPI simulator to run benchmarks and applications
with the cost of collective operations set to zero. This allows us to gather perfor-
mance data that shows how much at most an application could benefit from better
collective operations.

Keywords: MPI, collectives, simulation, performance

1 Introduction

Collective operations in MPI provide complex functionality to applications that lets
them exchange, gather, and distribute data among the nodes the application is running
on. Collective operations are of great interest to system designers because they can be
optimized for a given protocol stack, network interface, and network topology without
changing the application. Examples of such optimizations include using algorithms that
are designed for a specific network topology and off-loading the collective operation
into the network interface. Most optimizations for collective operations are complex,
difficult to implement, and require time to mature to production quality. Sometimes
only a subset of the MPI collective operations are optimized on a given system; e.g.
only MPI_Bcast() .

It is therefore interesting to know how much application performance could be im-
proved through a given optimization before the time and effort is spent implementing it.
In particular, the Cray XT-3 system has a network interface on each node called Seastar.
This interface contains DMA logic, a router, memory, and a CPU. Currently the CPU
inside the Seastar only handles point-to-point messages. The MPI collective operations
are implemented in the host using point-to-point messages.

? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under contract DE-AC04-94AL85000.

The Seastar interface is difficult to program and implementing collective operations
inside it would require some effort. It is therefore interesting to find out beforehand
which applications would benefit from such an effort and by how much. We use a hy-
brid simulation technique briefly described in the next section to run applications as if
collective operations incurred zero cost. Obviously, this is unrealistic but will give us
a bound on how much a given application’s performance might increase. We want to
perform these experiments on several applications and therefore need a measurement
technique that requires no changes to the application source code.

2 Hybrid Simulation

We use a hybrid simulator developed at Sandia National Laboratories to conduct our
experiments. Under this simulator applications run natively as they normally would,
but for each MPI send, receive, and collective operation, an event is sent to a network
simulator that runs on one additional node. This is accomplished by linking the applica-
tion with a wrapper library that makes use of the MPI profiling interface. For each MPI
call the library provides a wrapper that manages events and virtual time on each node,
and then calls the appropriate PMPI function in the MPI library.

For send and collective operations the wrapper library collects the virtual time of the
operation and sends an event to the network simulator. For each receive and collective
operation the wrapper library receives information from the network simulator on how
long in virtual time that operation took to complete. The library then updates the local
virtual time and returns to the application program.

The network simulator can assign arbitrary delay values to each MPI operation.
Since the events contain envelope information such as source, destination, tag, and
whether it is a point-to-point or a specific collective operation, the simulator can assign
different network delays to different types of operations. The application runs in virtual
time and does not observe the overhead introduced by the simulator. The simulator is
described in more detail in [7].

The current model for simulating collective operations is somewhat simplistic. It
does not take into consideration possible congestion in the network and assumes that a
logarithmic fan-out and fan-in is used by the MPI library. We will later see that this is
basically correct, although actual performance for smaller messages can be quite a bit
slower than the model predicts.

The optimistic results reported by the simulator for collective operations limit its
usability until we have developed a better model matching the performance profile of
the target system. However, since we are only interested in how much applications have
to gain if collective operations were completely free of cost, the current model is fine
for the experiments described here.

3 Experiments

For our experiments we chose a mixture of benchmarks and applications that use MPI
collective routines to perform their work. The more an application depends on collective

operations to distribute and collect data, the more performance increase it should see
when we set the cost to do collective operations to zero.

3.1 NAS Parallel Benchmarks

The NAS parallel benchmarks [1] are well understood and offer a simple and quick
confirmation that our approach works and produces valid results. Although the NAS
parallel benchmarks make use of collective operations, it is mostly to distribute data at
the beginning and collect results at the end. For this reason we do not expect a significant
performance gain for these benchmarks by reducing the cost of collective operations.

Table 1.Number of collectives used by NAS FT

Class A Class B Class C
nodes4 16 64 4 16 6416 64

Reduce 6 6 6 20 20 2020 20
Allreduce2 2 2 2 2 2 2 2
Alltoall 8 8 8 22 22 2222 22
Alltoallv 0 0 0 0 0 0 0 0
Barrier 1 1 1 1 1 1 1 1
Bcast 6 30 126 6 30 12630 126

Table 2.Number of collectives used by NAS MG

Class A Class B Class C
nodes 4 16 64 4 16 64 4 16 64

Reduce 1 1 1 1 1 1 1 1 1
Allreduce88 88 8888 88 8888 88 88
Alltoall 0 0 0 0 0 0 0 0 0
Alltoallv 0 0 0 0 0 0 0 0 0
Barrier 6 6 6 6 6 6 6 6 6
Bcast 18 90 37818 90 37818 90 378

Tables 1 and 2 show the number of collective operations used by the FT and MG
NAS parallel benchmarks for class A, B, and C runs on 4, 16, and 64 nodes. Both
of them use more broadcast operations as the number of nodes being used increases.
However, the increase is not significant and the total number of operations remains
small.

3.2 All-to-All Benchmark

We wrote a simple benchmark to explore the other end of the extreme. In a loop, the
benchmark callsMPI_Alltoall() 100 times for messages starting at a length of 4 bytes (a
single integer) to 4 MB (one million integers).

Since this benchmark does nothing but collective operations, we expect it to perform
significantly better when we set the cost of collective operations to zero.

3.3 Abinit

Abinit [2,3] is a program package which calculates the total energy, charge density and
electronic structure of systems composed of electrons and nuclei. It uses a simplification
of the Density Functional Theory (DFT) and the solution scheme described in [6] to
solve the time independent Schroedinger equation which is in its own an eigenproblem.
The conjugate gradient based method proposed by Teter et. al. [8] is used to solve the
eigenproblem for this specific scenario. An efficient parallelization of this method is
described in [4] and analyzed for its overhead in [5].

The kernel consumes about 98% of the running time and uses MPI-collective oper-
ations (MPI_Alltoall() andMPI_Allreduce()) exclusively to communicate. Work in [5]
showed that the scaling of the application is mainly limited by theMPI_Alltoall() col-
lective operation. Therefore we expect that Abinit will benefit greatly from improved
collective performance.

3.4 Methodology

For each application in the above set we perform three experiments. First we run the
application as is to gain a baseline performance number. For the NAS parallel bench-
marks we did this on 4, 16, and 64 nodes for the class C benchmarks. The all-to-all
benchmark ran on 4, 16, and 64 nodes as well. We ran Abinit on varying numbers of
nodes up to 64 to evaluate its scaling.

For the second stage in our experiments we ran each application again, but this time
linked together with our simulator. The goal of this stage is to show that the simulator
accurately runs the application and that it reports the same (virtual) runtime as in stage
one.

Due to the simplistic approach to simulate the collective operations we expect that
the runtime of those applications that rely heavily on collective operations will report a
better virtual runtime than the actual time reported in stage one.

This limitation means we cannot yet very accurately simulate collectives that have
a given performance profile other than zero. However, if we simulate the cost of collec-
tives to be zero, we will get an absolute lower bound of what a given application could
achieve in the best, impossible to achieve, case.

In the final stage of our experiments we run the applications under our simulator
again and set the cost of collective operations to zero.

These experiments were performed on a Cray XT-3 system named Red Storm at
Sandia National Laboratories.This system with nearly 10,000 AMD Opteron nodes was
not available to us as a dedicated system. In order to keep our experiments as valid

as possible under these circumstances, we used the batch scheduler to allocate nodes
for us and then ran all experiments for a given application on the same set of nodes.
This guarantees that the simulated runs used the same nodes and node allocation as the
baseline runs.

4 Results

4.1 NAS Parallel Benchmarks

We expected little gain in performance for the NAS parallel benchmarks because these
benchmarks use collective operations mainly for synchronization and gathering of re-
sults at the end of each run. Tables 3, 4, and 5 show the results of running the class C
benchmarks FT, IS, and MG respectively.

We ran each of these three benchmarks on 4, 16, and 64 nodes. On the same set
of nodes we ran the benchmarks 7 times as usual (normal), 7 times with the simulator
(sim), and 7 times with the network simulator set to incur zero cost for the collectives.
The results of the minimum, median, and maximum runtime clearly show that the NAS
parallel benchmarks are not at all sensitive to the performance of collective operations.

Table 3.Runtime for NAS FT

4 nodes 16 nodes 64 nodes

min median max min median max min median max
normal 218.70 218.96 229.30 59.54 59.74 59.83 15.36 15.42 15.62
sim 218.67 218.92 229.18 59.53 59.69 59.82 15.37 15.43 15.70
zero 218.65 218.89 229.18 59.54 59.63 59.78 15.35 15.42 15.74

Table 4.Runtime for NAS IS

4 nodes 16 nodes 64 nodes

min median max min median max min median max
normal 10.99 11.02 15.06 2.73 2.81 4.29 1.45 1.46 2.14
sim 11.00 11.05 15.15 2.77 2.81 4.44 1.45 1.46 2.18
zero 10.98 11.07 15.00 2.77 2.81 4.44 1.41 1.46 2.15

4.2 All-to-All Benchmark

Figure 1 shows the performance of our all-to-all benchmark on 16 nodes, and Figure 2
shows the same benchmark on 64 nodes. The top line shows the irregular performance

Table 5.Runtime for NAS MG

4 nodes 16 nodes 64 nodes

min median max min median max min median max
normal 57.59 57.80 57.81 14.53 14.69 14.70 3.40 3.56 3.56
sim 57.59 57.80 57.81 14.54 14.68 14.70 3.40 3.55 3.56
zero 57.59 57.80 57.81 14.53 14.68 14.71 3.40 3.55 3.57

of the benchmark when run in stand-alone mode. The model built into the simulator for
collective operations is somewhat optimistical and does not follow exactly the charac-
teristics of the real machine. That behavior is shown in the middle curve.

When we set the cost for collectives to zero, the curve becomes impossible to see,
because it is almost level with the x axis.

0 s

0.002 ms

0.004 ms

0.006 ms

0.008 ms

0.01 ms

0.012 ms

0.014 ms

0.016 ms

16 k 32 k 48 k 64 k 80 k 96 k 112 k 128 k

Ti
m

e

Number of ints exchanged

Base run
Simulated run
Zero-cost run

Figure 1. All-to-all on 16 nodes

4.3 Abinit

We show strong scaling results for a smallSiO2 system with 43 atoms, 126 bands, 48728
plane waves and a 61x61x256 FFT grid. (We are currently conducting experiments on a
largerSiO2 system with 86 atoms, 251 bands, 97624 and a 81x81x256 FFT grid, which
we will have in time for the camera ready submission.)

Figure 3 shows the results for that simulation. We use a log scale on the y axis to
emphasize the result. Again, the top line shows the performance of Abinit when run in

0 s

0.01 ms

0.02 ms

0.03 ms

0.04 ms

0.05 ms

0.06 ms

0.07 ms

0.08 ms

0.09 ms

16 k 32 k 48 k 64 k 80 k 96 k 112 k 128 k

Ti
m

e

Number of ints exchanged

Base run
Simulated run
Zero-cost run

Figure 2. All-to-all on 64 nodes

stand-alone mode. The middle line shows the application when run under the simulator
with the optimistic model for collective operations. Finally, the bottom line shows the
performance when collectives are free.

The numbers shown are the runtime of the inner loop of Abinit. The application has
a fairly large serial part that is not interesting to our experiments and is therefore not
shown here.

4.4 Results Summary

The NAS parallel benchmarks are not at all sensitive to the performance of collective
operations, while the all-to-all benchmark shows huge performance differences when
we vary the cost of collective operations. These are expected results.

There is clearly an impact of collective performance on the runtime of Abinit. When
reducing the cost of collective operations to zero, the runtime of the inner loop for
our particular atomic simulation is cut in half. However, since Abinit shows such poor
scaling, that improvement does not help much.

Table 6 shows the number of messages of a given size sent by Abinit. These numbers
are for the 43-atom model run on 48 nodes. No messages larger than 64 kB are sent.
75% of the messages are 4 kB or less, and half of all messages, are 16 bytes (or less).

In Figure 2 we see that the collective model of our simulator is a particularly poor
fit for the actual performance of the machine in the range≤ 128 kB (32,000 integers).
Since the Abinit run above is in this range, the model (the middle line in Figure 3) is in-
accurate for this run. However, since we are only interested in the zero-cost collectives,
this does not matter for now.

More work on a better collectives model and more measurements are needed to bet-
ter characterize the impact collectives have on an application like Abinit. Furthermore,

1 s

10 s

100 s

1000 ks

 0 10 20 30 40 50 60 70

Ti
m

e

Number of nodes

Base run
Simulated run
Zero-cost run

Figure 3. Abinit with 43 atoms

Table 6.Message sizes used by Abinit

Size ≤ 16 ≤ 64 ≤ 256 ≤ 1k ≤ 4k ≤ 16k ≤ 64k
Num 9,263,982 4,371 12,972 51,982 5,378,586 4,085,710 1,361,590

Size ≤ 256k≤ 1M ≤ 4M ≤ 16M ≤ 64M ≤ 256M Huge
Num 0 0 0 0 0 0 0

the results shown in this paper may not apply to applications that show better scaling
than Abinit.

5 Conclusions and Future Work

We have shown how a hybrid MPI simulator can be used to evaluate the sensitivity
of benchmarks and applications to the cost of collective operations. This is interesting
because there are many different approaches to improving collective operations. Some
of them are difficult to implement and it is not immediately clear, which applications
might benefit from these efforts.

We expected that a simple all-to-all benchmark which repeatedly callsMPI_Alltoall()
inside a tight loop will benefit greatly when we set the cost of collective operations to
zero. We also expected that the NAS parallel benchmarks will not gain any benefit from
faster collective operations. There was a performance gain for the Abinit application on
the problem we ran. Further work with larger input sets and more scalable applications
is needed to determine the overall effect of collective operations performance.

6 Acknowledgments

George Riley, Georgia Tech, has helped a lot by teaching the lead author about par-
allel discrete event simulation and helping shape ideas for the supercomputer simula-
tion project. Many thanks go to Arun Rodriguez for several insightful discussions. We
would also like to thank Keith Underwood for suggesting the supercomputer simulation
project, and the other team members, Ron Brightwell and Jim Tomkins, for their helpful
comments.

References

1. David Bailey, Tim Harris, William Saphir, Rob Van der Wigngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, December 1995.

2. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic,
M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty,
and D.C. First-principles computation of material properties : the ABINIT software project.
Computational Materials Science 25, 478-492, 2002.

3. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet,
M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty, and Olevano. A brief
introduction to the ABINIT software package.Z. Kristallogr., 220:558, 2005.

4. Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm. Improving the parallel scaling of
abini. InAccepted to be published in ”Science and Supercomputing in Europe”, 2005.

5. Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm. Analyzing the parallel scaling of
teter’s conjugate gradient based minimization forab initio calculations. InSubmitted to the
IEEE Cluster 2006 Conference, 2006.

6. P. Hohenberg and W. Kohn. Inhomogeneous electron gas.Phys. Rev., 136:B864, 1964.
7. Rolf Riesen.In Submission: a hybrid MPI simulator. InIEEE International Conference on

Cluster Computing (CLUSTER’06), 2006.

8. Michael P. Teter, Micheal C. Payne, and Douglas C. Allan. Solution of Schroedinger’s equa-
tion for large systems.Physical Review B, pages 12255–12263, 1989.

