ProGraML.:
Graph-based Deep
Learning for

Program Optimization
and Analysis. .o

‘machine learning for compilers for machine fearning”

Machine
Learning

Tuning optimizing compilers...

The problem The cost
e 1000s of variables e Bad heuristics
e Limited by domain expertise e Wasted energy, $$$

e Compiler / HW keeps changing e Widening performance gap

"Build an optimizing compiler, your code will be fast for a day.
Teach a compiler to optimize ... "

Collect examples

(benchmark + empirical measurement)

Repeat on

Learn from
change

N ES

[Update heuristic]

Summarize the program

Program IR Features

(CFG, DFG, AST,...)

L] L]
#. instructions
void LinearAlgebraOp<InputScalar,
OutputScalar>: :AnalyzeInputs(
OpKernelContext* context, TensorInputs* inputs,
TensorShapes* input_matrix_shapes, TensorShape*
batch_shape) {
int input_rank = -1; loop neSt level
for (int i = @; i < NumMatrixInputs(context); ++i) {
const Tensor& in = context->input(i);
if (i ==0) {
input_rank = in.dims();
OP_REQUIRES(arithmetic density
context, input_rank >= 2,
errors::InvalidArgument(
"Input tensor ", i,
" must have rank >= 2"));

trip counts

Collect examples

Features

Best Param

Learn from examples

Features

Features

Best Param

The model is the heuristic

Features

The model is the heuristic

New Program
Features

Predicted

Features

The model is the heuristic

New Program
Features

Predicted
param

Features

Very succescful!
Huge performance qains to be had. Typically outperforme human

expert. [Wang et. al. 2018]

https://zwang4.github.io/publications/pieee18.pdf

Why aren't our

compilers full of
ML?

The model is the heuristic

Model Predicted

/7~ N\
Param

Features

Learning without features (Cummins et al., PACT 17)

"End-to-end Deep Learning of

1.1 . Optimization Heuristics"
- Input kernel void A(global float* a, const float b) {
alget_global_id(@)] *= 3.14 + b;
3
2.Vocab Token Index Token Index |)
kernel 0 , 9
[space] 1 const 10
void 2 b 11
A 3) 12 \P 181 tokene
(4 { 13
global 5 \n 14
float 6 L 15 .. .
N 7 st global id 16 Optimization
a 8 0 17 Decision

3. Encoded 0 1 2 1 3 4 5 1

=

The problem with code representations
Source code is highly structured

It isn't a vector of numbers It isn't a sequence of tokens
Feature vectors are easy to fool Sequential representations fail on
(e.g. insert dead code). non-linear relations, long-range deps.

void A(int a)

e int b = init();
//
G‘e // ... 1000 lines
//
o -

return b - a;

Can we make ML
think like a
compiler?

Program Graphs for Machine Learning

General-purpose representation of programs for optimization tasks.

Task independent - capture structured relations fundamental to
program reasoning (i.e. data flow analysis)

Language independent - derived from compiler IRs

Building ProGraML.: IR

Derive IR from input program (here, LLVM)

Why IR?

Language agnostic
(e.g. C, C++, OpenCL, Swift,
Haskell, Java for LLVM)

We want to improve
compiler decisions, so

use a compiler's eye view.

int Fib(int x) {
switch (x) {
case 0:
return 0;
case 1:
return 1;
default:
return Fib(x - 1)

+ Fib(x - 2);

d

.
?

efine i32 @Fib(i32) #0 {
switch i32 %0, label %3 [
i32 0, label %9
i32 1, label %2
1

<label>:2:
br label %9

; <label>:3:

%4 = add nsw 132 %0, -1

%5 = tail call i32 @Fib(i32 %4)
%6 = add nsw i32 %0, -2

%7 = tail call i32 @Fib(i32 %6)
%8 = add nsw 132 %7, %5

ret 132 %8

; <label>:9:

3

%10 = phi i32 [1, %2 1, [%0, %1 1]
ret i32 %10

Building ProGraML: Control-flow

Full-flow-graph: represent
each instruction as a vertex.

Vertex label is the instruction name. switch
Edges are control-flow.

Edge position attribute for
branching control-flow.

Building ProGraML: Data-flow

Add graph vertices for [external] ;@

constants (diamonds) and
variables (oblongs).

Edges are data-flow.

Edge position attribute for
operand order.

Building ProGraML: Call-flow

Edges are call-flow. [external] i32 i32 (G
[
Inbound edge to / SWltCh
function entry instruction. // 132
Outbound edge from br ~ phi add
(all) function exit instruction(s). \ =

Mo //’—‘\l

call

132

ret i32

Building ProGraML: Types

[external] 132
Nodes represent types,
Edges are instances. val val (var
switch val
Types are composable. R
Edge position per field. / ¢ \ val
struct S { phi <« br add
char a;
char b; var l l var
struct S* c;
}; ret call
v
i8 i8 add
Y
call var var
struct +
add var

EEeC

var

Learning with ProGraML: Node Embeddings
Use vertex labels as embedding keys “—» 0 “—» 1 @ 2

Derive vocab from set of unique vertex labels on training graphs.

Separate type/instruction nodes leads to compact vocab,
excellent coverage on unseen programs compared to prior approaches:

Vocabulary size

Test coverage

inst2vec [12] 8,565
CDFG [14] 75
PROGRAML 2,230

34.0%
47.5%
98.3% *without types

iInst2vec: combined instruction+operands

i32 <id> = a<id> <int8>

CDFEG: uses only instructions for vocab, ignores data

https://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
https://dl.acm.org/doi/pdf/10.1145/3377555.3377894

Learning with ProGraML: GGNNs

Message Passing

M(hfu_17 e’w’U) — Wtype(ewv) (hfﬂ_l © p(ewv>) + btype(ewv)

f \

6 typed weight matrices for Position gating to differentiate
{forwards,backwards} {control,data,call} control branches and operand order
edge types

Readout Head
R (hy,hy) =0 (f(hy,hy)) - g(hy)

W

per-vertex prediction after T
message-passing steps

Deep Data Flow

Reachability
Trivial forwards control-flow
E.g. dead code elimination

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

Global Common

Subexpressions
Instruction/operand sensitive
E.g. GCS Elimination

KO

o 0 R

Pe o e 1013

inst2vec

0.012

0.004

0.000

F1 scores
CDFG

0.998

0.999

0.009

ProGraML

0.998

1.000

0.997

0.937

0.996

Deep Data Flow F1 scores

inst2vec CDFG ProGraML
Reachability
Trivial forwards control-flow 0.012 0.998 0.998
E.g. dead code elimination
Dominance
Forwards control-flow 0.004 0.999 1.000
E.g. global code motion
Data Dependencies
Forwards data-flow - - 0.997
E.g. instruction selection
inst2vec/CDFG are
Live-out\ instruction-level representations, 0.937
Backwards gontrol 21 can't reason about variables)) :
.g. regist
I
Global Common S
Subexpressions PN) 0.000 0.009 0.996
Instruction/operand sensitive]]

E.g. GCS Elimination

Caveat: limited problem size

Data flow analyses iterate until a fixed point is reached.
GGNNs iterate for a fixed number of timesteps T.

For each example in the train/test sets, we count the

number of steps required for an iterative analysis to solve.

We then filter the train/test set to include only examples
which the iterative analysis required <= T steps to solve.

Previous slide was T=30, excluding 28.7% of examples.

Next slide shows performance models, trained on T=30,
with different inference steps (T=60, T=200).

<= 28,727 steps
100.0%

<= 60 steps
80.4% of all

<= 30 steps

71.3% of all

F1 scores

Scaling to larger problems

30 200
timesteps 60 timesteps timesteps

Reachability

Trivial forwards control-flow } 0.998 0.997 0.943
E.g. dead code elimination
Dominance

Forwards control-flow) 1.000 0.991 0.123
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

0.997 0.993 0.965

) %} 0.937 0.939 0.625

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

o G 57

Global Common

. O CO
Subexpressions I) 0.996 0.967 0.959
Instruction/operand sensitive]]

E.g. GCS Elimination

Scaling to larger problems

30

timesteps

B Consistent results when doubling
TE";'J;’;"(;’E; problem size. Models can

generalize to problems larger than
they were trained on. :-)

0.997

@ 1.000 0

At 6.6x training step count, inference
deteriorates significantly. :-(No longer
behaving like fixed point - model
over-approximates on some problems and
under-approximates on others.

Forwards control-flow
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

Global Common
Subexpressions) ﬁ 0.996 0.967 0.959
Instruction/operand sensitive

E.g. GCS Elimination

) 0.937 0.939 0.625

o 0

i.

[

Downstream tasks

1. Algorithm Classification 2. Heterogeneous Device Mapping
OpenCL ’ \
C Program Program \,;‘7\,‘3‘]

sort bfs topk CPU GPU

1.35x improvement over 1.20x improvement over
state-of-art state-of-art

Further Reading

o ChrisCummins | ProGraML Unwatch~ 3
Code Olesues 4 11w
ProGraML Graph —
PROGRAML: GRAPH-BASED DEEP LEARNING FOR P —— ¥ e = P

PROGRAM OPTIMIZATION AND ANALY SIS

node { Fib
text: "<root>"

b
Cheis Commies® Zachaatas V. Piecnes T BeoNun e &
Schani S(Wfeaares Dearceet of Componee Scease Dgertossa) of Conrgures Scioce
o e 10 anch I A Vo

text: "switch"
ealbeRing azin. e features {

x ™ program

= feature { \ Wt party
X Trewan Hnther g Lesiher key: "full_text"
- Oratresel of Curgraxe Sizses Scbeet ol Jafzaratas e \ %2 LI
- ansh v é \
- hiorliel. el v 2 wuzus (ERGELIEE: 2
= value: "switch 132 %0, label %3 [\r
: — Releases
~ 3 —
Ml ¥ env
} N
ABSTRACT) tignore
b
g i node { Packages
Seschle fun ceasnting ol i n text: "br
= Insdecad e eptiaed b block: 1
0P 010 iy R 4 s 0% ekl ovgencs | Fr s
okt 0 s A St 4
gnnimpmsmen o, poatr, 1od gt key: "full text" Contributors
E prirg 3N, 1 o val INSTALL md

bytes_list { e - 5 @ chriscummins

":"u" value: "br label %9"
- README md o on n READM () zecnariasozo
g Conrecals S LLY } — o Lina e
Pa 050 g repeesecpatioy ha squls Seone ¥ “ : ° @
Fencram syl that e Neeraaeal crerleice, o b)
i ive 0 1 car apgere st a1 cavn 4 crreiar iy
Lurs readuanialy, dareredze iree ibda deperikens, Ve lnoaog sl ST s i
e ke o€ 293 LY ey node {
Ragragps, PROOLCAL exbioves oo D seone, signifanlly valpxloosing text: "add"
i W pdy ar ok .
P0G eaxd progsan CHeloRs - saing 3va 546 o€t e RIS 18 burdy Leel 2
features {
feature {
1 Intracuciion: key: "full_text" ProGraML: Program Graphs for Machine Learning
value

The Iaduaape o Conpeelrg eComyaenss 1§ DRTIRG FvEsry comgea:) coes oo T oo s,
Permaprase Moricily - v heretra =am bytes_list {

B R e re——

cpazm . 1 value: "%4 = add nsw 32 %9, -1
Pecratze v roe gun desrabie, thes e 19761, Dl 18ls 2334 a3EmiEwice beenatze e bare on eceee .)
1
b
+
}
node {
text: "call"

Preprint In-browser demo Source code + datasets

https://arxiv.org/abs/2003.10536 https://chriscummins.cc/s/program_explorer https://github.com/ChrisCummins/ProGraML
Apache 2.0

https://arxiv.org/abs/2003.10536
https://chriscummins.cc/s/program_explorer
https://github.com/ChrisCummins/ProGraML

Conclusions

Reasoning about programs requires the right combination of representation + model.
ProGraML: combines control-, data-, call-, and type-graphs to model programs at IR level.
When processed with GGNNs, significantly outperforms prior approaches.

Interesting challenges

1. Processing arbitrary sized graphs.
Idea: Structure the MPNN like an iterative DF solver, self-terminating.

2. Handling unbounded vocabularies, e.g. compound types or MLIR dialects.
Idea: decompose types into tree structure in graph.

3. Representing literal values.
Requires new vocabulary encoding.

