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Compilers Machine
Learning

"machine learning for compilers for machine learning"



The cost
● Bad heuristics
● Wasted energy, $$$
● Widening performance gap

Tuning optimizing compilers...

The problem
● 1000s of variables
● Limited by domain expertise
● Compiler / HW keeps changing



Collect examples
(benchmark + empirical measurement)

Learn from 
examples

Update heuristic

Repeat on 
change

"Build an optimizing compiler, your code will be fast for a day.
 Teach a compiler to optimize ... "



Summarize the program

Program IR Features

void LinearAlgebraOp<InputScalar, 
OutputScalar>::AnalyzeInputs(
    OpKernelContext* context, TensorInputs* inputs,
    TensorShapes* input_matrix_shapes, TensorShape* 
batch_shape) {
  int input_rank = -1;
  for (int i = 0; i < NumMatrixInputs(context); ++i) {
    const Tensor& in = context->input(i);
    if (i == 0) {
      input_rank = in.dims();
      OP_REQUIRES(
          context, input_rank >= 2,
          errors::InvalidArgument(

"Input tensor ", i,
" must have rank >= 2"));

(CFG, DFG, AST,...)

#. instructions

loop nest level

arithmetic density

trip counts



Collect examples

Features

Best Param

...

...
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Very successful!
Huge performance gains to be had. Typically outperforms human 

expert. [Wang et. al. 2018]

https://zwang4.github.io/publications/pieee18.pdf


Why aren't our 
compilers full of 

ML?
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Hard to select!



Learning without features
kernel void A(global float* a, const float b) {
  a[get_global_id(0)] *= 3.14 + b;
}

2. Vocab

3. Encoded

Token Index
kernel 0
[space] 1
void 2
A 3
( 4

global 5
float 6
* 7
a 8

Token Index
, 9

const 10
b 11
) 12
{ 13
\n 14
[ 15

get_global_id 16
0 17

0 1 2 1 3 4 5 1

1. Input

181 tokens

Optimization 
Decision

✓
LSTM

(Cummins et al., PACT 17)
"End-to-end Deep Learning of 

Optimization Heuristics"



The problem with code representations
Source code is highly structured

Feature vectors are easy to fool 
(e.g. insert dead code).

A

B C

D

E

F

F

G

Sequential representations fail on
non-linear relations, long-range deps.

void A(int a) {
  int b = init();
  // 
  // ... 1000 lines
  //
  //
  return b - a;
}

It isn't a vector of numbers It isn't a sequence of tokens



Can we make ML 
think like a 
compiler?



Program Graphs for Machine Learning

General-purpose representation of programs for optimization tasks.

Task independent - capture structured relations fundamental to 
program reasoning (i.e. data flow analysis)

Language independent - derived from compiler IRs



Derive IR from input program (here, LLVM)

Why IR?

Language agnostic
(e.g. C, C++, OpenCL, Swift,
 Haskell, Java for LLVM)

We want to improve 
compiler decisions, so
use a compiler's eye view.

Building ProGraML: IR

int Fib(int x) {
 switch (x) {
  case 0: 
   return 0;
  case 1:
   return 1;
  default:
   return Fib(x - 1) 
        + Fib(x - 2);
 }
}

define i32 @Fib(i32) #0 {
 switch i32 %0, label %3 [
   i32 0, label %9
   i32 1, label %2
 ]

; <label>:2:
 br label %9

; <label>:3:
 %4 = add nsw i32 %0, -1
 %5 = tail call i32 @Fib(i32 %4)
 %6 = add nsw i32 %0, -2
 %7 = tail call i32 @Fib(i32 %6)
 %8 = add nsw i32 %7, %5
 ret i32 %8

; <label>:9:
 %10 = phi i32 [ 1, %2 ], [ %0, %1 ]
 ret i32 %10
}



Building ProGraML: Control-flow

Full-flow-graph: represent
each instruction as a vertex.

Vertex label is the instruction name.

Edges are control-flow.

Edge position attribute for
branching control-flow.



Building ProGraML: Data-flow

Add graph vertices for 
constants (diamonds) and 
variables (oblongs).

Edges are data-flow.

Edge position attribute for
operand order.



Building ProGraML: Call-flow

Edges are call-flow.

Inbound edge to
function entry instruction.

Outbound edge from
(all) function exit instruction(s).



Building ProGraML: Types

Nodes represent types,
Edges are instances.

Types are composable.
Edge position per field.

struct S {
  char a;
  char b;
  struct S* c;
};



Learning with ProGraML: Node Embeddings

Use vertex labels as embedding keys

Derive vocab from set of unique vertex labels on training graphs.

Separate type/instruction nodes leads to compact vocab,
excellent coverage on unseen programs compared to prior approaches:

inst2vec: combined instruction+operands
CDFG: uses only instructions for vocab, ignores data

br add i320 1 2

i32 <id> = a<id> <int8>

*without types

https://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
https://dl.acm.org/doi/pdf/10.1145/3377555.3377894


Learning with ProGraML: GGNNs

Position gating to differentiate 
control branches and operand order

6 typed weight matrices for 
{forwards,backwards} {control,data,call}

edge types

Message Passing

Readout Head

per-vertex prediction after T 
message-passing steps



inst2vec CDFG ProGraML

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.012 0.998 0.998

Dominance
Forwards control-flow

E.g. global code motion
0.004 0.999 1.000

Data Dependencies
Forwards data-flow

E.g. instruction selection
- - 0.997

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
- - 0.937

Global Common 
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.000 0.009 0.996
++ - ++ -

Deep Data Flow
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores
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inst2vec/CDFG are 
instruction-level representations, 
can't reason about variables



Caveat: limited problem size

<= 30 steps
71.3% of all

<= 60 steps
80.4% of all

<= 28,727 steps
100.0%

Data flow analyses iterate until a fixed point is reached.

GGNNs iterate for a fixed number of timesteps T.

For each example in the train/test sets, we count the
number of steps required for an iterative analysis to solve.

We then filter the train/test set to include only examples
which the iterative analysis required <= T steps to solve.

Previous slide was T=30, excluding 28.7% of examples.

Next slide shows performance models, trained on T=30, 
with different inference steps (T=60, T=200).



30 
timesteps 60 timesteps

200
timesteps

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow

E.g. global code motion
1.000 0.991 0.123

Data Dependencies
Forwards data-flow

E.g. instruction selection
0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
0.937 0.939 0.625

Global Common 
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.996 0.967 0.959
++ - ++ -

Scaling to larger problems
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores
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Consistent results when doubling 
problem size. Models can 
generalize to problems larger than 
they were trained on. :-)

At 6.6x training step count, inference 
deteriorates significantly. :-( No longer 
behaving like fixed point - model 
over-approximates on some problems and 
under-approximates on others.



Downstream tasks

sort bfs topk CPU GPU...

C Program OpenCL 
Program

? ?

1. Algorithm Classification 2. Heterogeneous Device Mapping

1.35× improvement over 
state-of-art

1.20× improvement over 
state-of-art



Further Reading

Preprint
https://arxiv.org/abs/2003.10536

In-browser demo
https://chriscummins.cc/s/program_explorer

Source code + datasets
https://github.com/ChrisCummins/ProGraML

Apache 2.0

https://arxiv.org/abs/2003.10536
https://chriscummins.cc/s/program_explorer
https://github.com/ChrisCummins/ProGraML


Conclusions
Reasoning about programs requires the right combination of representation + model.

ProGraML: combines control-, data-, call-, and type-graphs to model programs at IR level.

When processed with GGNNs, significantly outperforms prior approaches.

Interesting challenges
1. Processing arbitrary sized graphs.

Idea: Structure the MPNN like an iterative DF solver, self-terminating.

2. Handling unbounded vocabularies, e.g. compound types or MLIR dialects.
Idea: decompose types into tree structure in graph.

3. Representing literal values.
Requires new vocabulary encoding.


