
ORCS: An Oblivious Routing Congestion Simulator

Timo Schneider, Torsten Hoefler, and Andrew Lumsdaine

{timoschn,htor,lums}@cs.indiana.edu

Open Systems Laboratory, Indiana University

150 S Woodlawn Ave, Bloomington, IN 47405, USA

February 18, 2009

1 Introduction

Bisection Bandwidth, as defined by Hennessy and Pat-

terson in [4] as the bandwidth between the two equal

sized halves of the network for the worst case partition,

is widely used as a theoretical model for network perfor-

mance. This model gives an upper bound for the minimal

bisection bandwidth, as experienced by applications, of a

network, as it does not take the used routing scheme into

account. It has been proven that oblivious static routing,

where there is one fixed path through the network for each

(source, destination) pair, is suboptimal for various net-

work topologies [8]. However, oblivious routing is easy

to implement and delivers low latencies because no com-

putation is needed to route packets, since the routes can be

determined off-line. Therefore, it is used by several high

performance networks [1, 6, 10]. InfiniBand is one of the

interconnection fabrics that use oblivious static routing.

In [5] we showed that the effective bisection bandwidth,

that can be measured for adequate communication pat-

terns, is significantly lower than the bandwidth predicted

by the bisection bandwidth model.

In our experiments none of the examined InfiniBand

networks was able to deliver more than 61% of the bi-

section bandwidth, due to network congestion. Other

effects that would deteriorate performance, for example

flow control mechanisms, have not been taken into ac-

count, we only studied congestion by simulating traffic

patterns and verified the correctness of our model by mea-

surements.

To study the effect of congestion on large scale clusters,

a part of the FASTOS II project1, we developed a frame-

work to simulate the congestion in oblivious destination

based routed networks. In this work, we will explain our

simulator and the related tools that we used. The design

of our simulator framework is modular, so it could be ex-

tended to simulate different traffic patterns (a variety of

them is already predefined as shown in Section 2.4), or us-

ing different approaches to present the data gathered dur-

ing the simulation runs as those described in Section 2.5.

We will continue with a brief explanation of the routing

scheme used by InfiniBand and why networks using such

routing strategies might not deliver full bisection band-

width for applications, even if the network topology is

theoretically capable of doing so. Section 2 documents

how our simulator can be used, and will give examples for

analysis that can be performed with this software pack-

age. In Section 3, we will explain the usage of tools that

enable the user to study the different routing algorithms

supported by OpenSM, the InfiniBand subnet manager,

with our simulator. We conclude with a description of the

simulator implementation that will enable users to gain a

deeper insight on how the simulator works in Section 4.

1.1 InfiniBand Routing

The InfiniBand standard [6] does not define a particular

network topology, switches can be connected in an arbi-

trary way to each other. The switches have a simple static

routing table which is programmed by a central entity, the

1http://www.science.doe.gov/grants/LAB07 23.html

subnet manager (SM). The SM uses special packets to ex-

plore the network topology in the initialization phase. It

then computes the routing table for every switch. These

routing tables are static, which means they do not change

until the SM re-runs the configuration phase, which is

done for example, in case of failing links.

If a hosts wants to send a packet to another host, this

packet is marked with its destination and send to a switch

the sending host is connected to. This switch can deter-

mine which port has to be used to send this packet fur-

ther along with a simple lookup operation on the linear

forwarding table (LFT). This table lists exactly one out-

going port for every destination. If messages to a cer-

tain destination are never routed to a particular switch by

other switches, this switch does not have to list outgo-

ing ports for that destination. Because of the described

structure of the forwarding tables, there is only on path

p = [e1, ...en], where ei are the used physical links (or

edges, in graph terminology), between each sender and

receiver pair (s, r) that is used to send data, even if there

are multiple paths between them in the network. This

means, the bandwidth between two disjoint sets of hosts

is not only determined by the number of links going from

one partition two another, but also by the way the routes

are distributed along the physical links. Researchers have

pointed out that this problem could be mitigated by using

adaptive, non-oblivious routing schemes [9, 3]. However

it has also been shown that the features provided by Infini-

Band to support different paths between a single sender

receiver pair (LMC and Virtual Lanes), where the sending

node determines which one should be used, are not suffi-

cient to improve network performance significantly [2].

Our simulator does not support these InfiniBand features.

If two data streams have to share a physical link, the

bandwidth experienced by each stream is of course lower

than it would have been if each data stream would have

been routed along a disjoint set of edges. This effect is

called congestion. We analyzed the effect of congestion

on bandwidth and latency in [5].

2 Our Simulator

To explore the effect of congestion as described in Sec-

tion 1.1 in large real world network topologies, we devel-

oped a simulator program. This simulator takes a network

topology (the used input file format is described in Sec-

tion 2.1) and a traffic pattern (the predefined patterns are

described in Section 2.4) to simulate the communication

described in this pattern as it would happen in the given

InfiniBand network. As a result, the impact of congestion

on this communication pattern can be observed. We use

various different metrics to assess this impact, our met-

rics will be described in Section 2.5. These metrics do

not change the simulation, they describe the way which is

used to reduce the data gathered during the simulation run

into the final result.

2.1 Network Topology Input Format

Networks can be described as directed graphs G = (V, E)
where V is the set of vertices. Each vertex resembles

one node in the network, either a host or a switch. Each

edge (u, v) ∈ E resembles a uni-directional physical link.

Since the physical InfiniBand links are full-duplex there

should be an edge u ← v if, and only if, v ← u exists

in the network topology graph. Note that such a graph

could be a multigraph, since there can be more than one

physical link between two network nodes.

The network topology for the simulated network is

given to the simulator as a directed graph in the dot for-

mat. The dot format is described in detail in [7]. An ex-

ample for a graph in the dot format is given in Listing 1.

Our simulator differentiates between two types of nodes:

hosts and switches. All nodes that have a name starting

with the letter “H” are recognized as hosts, all other nodes

are regarded as switches.

The routing in a network determines the path that traf-

fic between two hosts has to take. So for every pair (u, v)
of vertices in the network graph there is a list of edges

e1, ..., en ∈ E that will be used to get traffic from u to v.

InfiniBand employs distributed static routing, that means

if host H1 sends a packet to H2 there is exactly one path2

that this packet will take. Since the routing is static this

path is determined solely by the sending and receiving

node and is not adapted over time due to congestion or

other factors. The routing is called distributed because a

sending host doesn’t have to compute the complete path

2If LMC is used there can be a fixed number of different paths, se-

lected by the source node for each transmission, usually in a round-robin

scheme. Note that the current version of our simulator does not support

LMC.

2

digraph network {

2 "S1" -> "H1" [comment = "H1"];

"S1" -> "H2" [comment = "H2"];

4 "S1" -> "H3" [comment = "H3"];

"S1" -> "H4" [comment = "H4"];

6

"H1" -> "S1" [comment = "*"];

8 "H2" -> "S1" [comment = "*"];

"H3" -> "S1" [comment = "*"];

10 "H4" -> "S1" [comment = "*"];

12 "S1" -> "S11" [comment = "H5"];

"S1" -> "S11" [comment = "H6"];

14 "S1" -> "S12" [comment = "H7"];

"S1" -> "S12" [comment = "H8"];

16

"S11" -> "S1" [comment = "H1,H2"];

18 "S11" -> "S1" [comment = "H3,H4"];

"S12" -> "S1" [comment = "H1,H2"];

20 "S12" -> "S1" [comment = "H3,H4"];

}

Listing 1: Network topology with routing information

to the receiving host, it just has to determine which out-

going physical link has to be used to get to the next node.

This next node will then continue to send the data to its

destination.

As shown in the example, not only the network topol-

ogy is described in the dot file, but it also contains routing

information. An edge in a dot graph can have arbitrary

information attached. We add the routing information in

comments attached to these edges. For example the defi-

nition for the edge between S11 and S1 in Listing 1 con-

tains the comment string “H1,H2”: this means that pack-

ets that have been routed to S11 are supposed to take this

edge to reach the next hop if and only if their final desti-

nation is one of the hosts H1 or H2. Hosts are commonly

connected to exactly one switch with one physical link.

That means that all traffic emitted by a host has to use

the respective edge in the network graph since there is no

other way to leave the host. In that case all hosts (except

the sending one) would have to be listed in the comment

string for such edges. To reduce the input file size, we in-

troduced the “*” character which matches any host in the

network. This is shown in lines 7–10 in Listing 1.

ibdiagnet -v -o .

ibnetdiscover -s > ibndisc.out

$ get_network_graph ibdiagnet.fdbs

ibndisc.out > topo.dot

Listing 2: Extracting network topology and routing

information from a InfiniBand network and transforming

those into a simulator input file

2.2 Obtaining Network Topology and Rout-

ing from InfiniBand Networks

If one wants to examine an existing InfiniBand installa-

tion with our simulator the network topology and routing

information has to be provided in the format described in

Section 2.1. Writing such files by hand is tiresome and

error prone. Luckily the InfiniBand software stack pro-

vides tools to extract all the needed information from a

working network installation. These tools, ibdiagnet

and ibnetdiscover, can be used in conjunction with

the get_network_graph script in our simulator pack-

age3. An example session to illustrate the usage of these

tools is given in Listing 2.

Note that ibdiagnet and ibnetdiscover have to be exe-

cuted with superuser privileges. Both tools are part of the

OFED4 software package. The ibdiagnet tool will write a

variety of output files named ibdiagnet.* into the current

working directory, where ibnetdiscover writes to stdout

and therefore its output was redirected to a file called ib-

ndisc.out. Our conversion script has to be called with two

command line arguments, the ibdiagnet output file and the

ibnetdiscover output file. The resulting dot graph is writ-

ten to stdout and can be redirected into a file as shown in

Listing 2.

2.3 Using the Simulator

In this section we will list the different command line op-

tions for our simulator and explain how they change the

simulator’s behaviour. In general, the simulator is invoked

by orcs [OPTIONS]. The following options are valid:

-h, --help List all supported command line

options

3Which can be obtained form http://www.unixer.de/ORCS/
4Which can be obtained from http://www.openfabrics.org/

3

-V, --version Prints the simulators version number

--printptrn Prints the communication pattern for

every level. This is useful to check that the pattern looks

as expected. For each level, the pattern is printed as a list

of “sender → receiver” pairs. Note that the pattern will

stay constant for every simulation iteration, the mapping

is done independently. So it is not useful to use this flag

for more than one iteration.

--printnamelist: Prints the used subset of hosts.

This is only useful if the communicator size is smaller

than the number of hosts in the input file.

-v, --verbose Prints a message for every level that

has been simulated. This can be used to keep track of

lengthy simulations with a large number of iterations or a

big network input file.

-s, --commsize=INT This option controls the

number of hosts that should be used for the simulation.

If this parameter is 0, which is the default, then the

simulator will use all available hosts. Note that some

patterns only work for an even number of nodes. In this

case the given number is diminished by one.

-n, --num_runs=INT With this option you can

control the number of simulation iterations that will be

performed. If the simulator is run with p MPI processes

and is supposed to do c iterations each process will do

⌈ c
p
⌉ iterations. By default the simulator only performs

one simulation run.

-p, --ptrn=STRING Selects the pattern to use for

the simulation. All valid patterns are described in detail

in Section 2.4. If this option is omitted, the “bisect”

pattern is used.

--subset=STRING Available options for this param-

eter are “rand” and “linear bfs”. If the “rand” option

is used and the communicator size is smaller than the

number of hosts in the topology input file, the hosts

are randomly selected from all hosts available. This is

intended to mimic a scenario where jobs of different size

and runtime are assigned to a cluster by the batch system

as soon as enough nodes become available. This will lead

to “fragmentation”—a new job could get a fairly random

selection of nodes. This influences the congestion the

data transfers done by this job will experience since the

probability for two hosts sharing the same leaf switch

(where no congestion will happen) is smaller. With

the “linear bfs” option (the default) the simulator will

perform a breadth-first search and order all nodes in

their exploration order. The first nodes (specified by the

communicator size) will then be used. This ensures that

the minimal number of leaf switches are used.

--metric=STRING This option specifies which metric

is to be used to measure the influence of congestion on

the simulated communication patterns. The available

metrics are described in detail in Section 2.5.

-l, --ptrn_level=INT This parameter can be

used to only simulate a certain level of a particular

pattern. Note that the number and also the amount

of communication inside a level depends on the com-

municator size for most patterns. The different levels

of a communication pattern with a certain number of

participating nodes can be observed with the printptrn

option.

-i, --input_file=STRING This option specifies

the location of the network topology input file. It’s format

is specified in Section 2.1. If the input is to be read from

STDIN, the user can specify - as the input file name

or this option can be omitted completely (since reading

from STDIN is the default behaviour).

-o, --output_file=STRING This option works

similar as the option for the input file and specifies where

simulation results should be written to.

2.4 Communication Patterns

In this section, we will describe the different com-

munication patterns that are available in our current

simulator implementation. The pattern is selected with

the -p, --ptrn=STRING command line option. Valid

parameters are: “rand”, “null”, “bisect”, “bisect fb sym”,

“tree”, “bruck”, “gather”, “scatter”, “ring”, “recdbl”,

“2neighbor”, “4neighbor”, “6neighbor” and “ptrnvsptrn”.

The communication patterns for our simulators can have

multiple levels. Each level is simulated independently,

data transmissions in one level do not influence trans-

missions in other levels. Each level is defined as a set of

sender and receiver pairs, all data transmissions defined in

one level will happen in parallel and all messages in our

simulation are of equal length. So a communication pat-

tern can be defines as a list of sets of sender-receiver pairs,

for example the pattern [{(0, 1), (2, 3)}, {(1, 0), (3, 2)}]
describes a communication between four nodes which

has two levels. In level 0 two nodes send a message to

4

the other two nodes, in level 1 data is sent in the opposite

direction. Note that the numbers in the communication

pattern do not correspond to any particular node in the

network topology input file. The mapping of nodes in the

communication pattern to hosts in the network is done

randomly before every simulation iteration.

The rand pattern: in this communication pattern

every node sends a single datastream to one randomly

selected node and receives a single datastream from

one randomly selected node. So the communication

pattern for a communicator size of n is defined as:

{(s0, r0), ..., (sn−1, rn−1)} where

(si = i) ∧ (0 ≤ ri ≤ n− 1) ∧ (∀i 6= k : ri 6= rk)

The null pattern: this communication pattern is only

useful in conjunction with the ptrnvsptrn communication

pattern. In the null pattern no communication happens. It

is defined as: {} for all communicator sizes.

The bisect pattern splits the hosts in the network in

equally sized halves. Each node in the first half sends a

data stream to a node in the second half. If the number

of hosts in the network is odd, and therefore we can not

form equal sized partitions, one host is ignored. So the

pattern is defined as {(s0, r0), ..., (sk, rk)} where

k = ⌊n
2
⌋ − 1 and si = 2i + 1 and ri = 2i.

The bisect fb sym is similar to the bisect pattern

described before. While the flow of data was unidi-

rectional in that pattern because there was a “sender”

and a “receiver” partition, traffic is send in both direc-

tions in this pattern. The definition of the pattern is

{(s0, r0), ..., (sk, rk), (s′0, r′0), ..., (s′k, r′k)} with

k = ⌊n
2
⌋− 1 and si = 2i + 1 and ri = 2i, where s′i = ri

and r′i = si.

The tree pattern simulates a binomial tree. The pattern

consists of ⌈log2n⌉ levels, where n is the communicator

size. Figure 6 shows an example of a binomial tree with

eight nodes. In each level l ∈ {0, ..., ⌈log2n⌉ − 1} the

communication “distance” is determined by d = 2l.

The pair (i, i + d) is a member of level l if and

only if i + d < n. So the pattern is defined as

[{(s0

0
, r0

0
), ...}, ..., {(s

⌈log2n⌉−1

i , r
⌈log2n⌉−1

i), ...}] with

7 1

6 2

5
3

7 1
0

6

4

2

5
3

7 1
0

6

4

2

5
3

4

0

Level 0 Level 1 Level 2

Figure 1: Bruck pattern with eight nodes

sl
i = i and rl

i = i + 2l for all i, l where i + 2l < n.

The bruck pattern simulates a pattern where each node

is sending and receiving a message in every one of the

0 ≤ l ≤< log
2
n⌉ levels the pattern consists of, where

n is the communicator size. Figure 1 shows an example

of a bruck pattern with 8 nodes. The pattern is defined as

[{(s0

0
, r0

0
), ..., (s0

n, r0

n)}, ..., {(s
⌈log2n⌉−1

i , r
⌈log2n⌉−1

i), ...}]

where s
j
i = i and r

j
i = i + 2jmodn⌋.

In the gather a single node receives a message from

all other n − 1 nodes in the communicator. This pattern

consists of a single level. So the pattern is defined as

{(s1, r1), ..., (sn−1, rn−1)} where si = i and ri = 0.

The scatter pattern is very similar to the gather pattern

described before, this time a single node sends a message

to all other n − 1 nodes in the communicator. All

communication happens in one level. So the pattern is

defined as {(s1, r1), ..., (sn−1, rn−1)} where si = 0 and

ri = i.

The ring pattern describes a communication scheme

where one node sends a message to another node, this

node passes the data to the next node which has not

participated in the communication yet, and so on, until

all nodes received a message. In the last step the node

which received the data most recently sends a message to

the node which started the communication and thereby

closes the ring. Because of the dependencies (we assume

node k can not send the data before it received the

message from node k − 1), each data transfer occurs in a

single level. That means this pattern can never generate

congestion by itself, but it is still useful in conjunction

with the “ptrnvsptrn” pattern which we describe below.

5

0 1 2 3 4 5 6 7

Level 0

Level 1

Level 2

Figure 2: Recursive doubling communication scheme for

a communicator size of eight. The dotted lines indicate

the level in which a certain communication happens.

For a communicator size of n the ring pattern is defined

as [{(s0

0
, r0

0
)}, ..., {(sn−1

0
, rn−1

0
)}] with s

j
0

= j and

r
j
0

= (j + 1)modn.

The recdbl pattern consists of ⌈log
2
n⌉ levels for a

communicator size of n. In every level 0 ≤ l < ⌈log
2
n⌉

hosts k and k + 2l exchange messages if, and only if,

⌈ k
2l ⌉ is even and k + 2l < n. In Figure 2 we give an

example for a recursive doubling communication pattern

on a communicator with eight nodes.

The Xneighbor patterns simulate a communication

scheme where every node sends and receives a message

two or from X of its neighbors. We implemented this

nearest-neighbor scheme for a one-, two-, and three-

dimensional arrays, so there is a 2neighbor pattern as well

as a 4neighbor and 6neighbor pattern. All communication

in this pattern happens in a single level. When construct

a pattern we start at node 0 and connect it to the nodes

1..X + 1 then we go to node 1 and connect it to the next

X nodes that do not have enough neighbors already. We

proceed with this scheme until we can not connect any

two nodes without introducing a node with degree greater

than X .

The ptrnvsptrn pattern is different from the ones de-

scribed above, as it is not a single pattern but it enables the

merge of two of the previously described patterns. It does

so by adding the pattern given with the --frstptrn

(or -f) option to the pattern given by the --secptrn

(or -c) option. The communicator size for the first pat-

tern is set with the command line option -z or its long

form --part_commsize. The communicator size for

the second pattern is the usual communicator size (indi-

cated by --commsize), minus the communicator size

weight 1: 14 of the 64 connections

weight 2: 44 of the 64 connections

weight 3: 6 of the 64 connections

BW: 0.593750

Listing 3: Example for the output of a simulation with the

hist max cong metric: all connections established over

the course of the simulation are treated equally and sorted

in histogram bins according to their congestion

for the first pattern. This pattern can be used to study the

influence of two different communication schemes run-

ning simultaneously on the same network.

2.5 Congestion and Performance Metrics

Our simulator has five different ways to interpret the

congestion data obtained by simulation of the traffic

patterns described in the previous section. These different

metrics determine the way output that is generated from

the congestion maps for every simulation run. The

metrics are called “sum max cong”, “hist max cong”,

“hist acc band”, “dep max delay”, and “get cable cong”.

They will be explained in detail in this section.

The sum max cong metric adds the maximal con-

gestion that occurred on any used route in every level

in a communication pattern. This sum of maximal

congestions is recorded as the result for one simulation

run. After the last run a histogram of the results is

printed. This metric is based on the assumption that every

level has to be completed before the next level can start.

Therefore the slowest message in every level determines

the time needed to complete the entire pattern.

The hist max cong metric examines every single

route used by any sender/receiver pair in a pattern. The

maximal congestion along every route is saved in a

histogram, regardless of the level it occurred in. Note,

that in our model, the maximal congestion along a route

determines the bandwidth of the simulated data transfer.

We still simulate the different levels independently of

each other. As a result, this metric prints a histogram of

the congestions observed by every single data transfer

simulated. It also calculates also the fraction of the

6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

Fraction of Peak Bandwidth

Figure 3: A visualization of a simulation with the

hist acc band metric: the probability distribution for the

bandwidth achieved by a bisection bandwidth measure-

ment pattern for a random mapping—it can be observed

that the mapping has a large impact on the resulting per-

formance.

peak bandwidth that was achieved, using a simple linear

congestion model where a congestion of two means half

of the peak bandwidth. For example, if we simulate the

bruck pattern defined above on a communicator with 16

nodes, this pattern will have 4 levels, with 16 message

each. So all together 64 messages are transmitted. There-

fore the results for this metric could look as shown in

Listing 3. In this simulation run 14 of the 64 connections

had been uncongested, while 44 connections experienced

a congestion of two and six connections had two share at

least one link with two other connections that were used

simultaneously. For this simulation, only one iteration,

with one mapping has been performed. If more iterations

would have been done, the results of these would have

been reported in the same histogram. So this metric does

not distinguish between different levels or simulation

runs (and mappings, as every simulation iteration uses

a different mapping)—all established connections are

treated equally.

The hist acc band is similar to the hist max cong

metric described above: It treats all connections in all

levels equally, determines their congestion factor and

computes the fraction of peak bandwidth experienced

by all the connections in one simulation run. However,

the results of different simulation runs are not mixed.

Every simulation run results in one number, the fraction

of peak bandwidth for this particular run. These results

are stored in a histogram and reported at the end. Since

every simulation iteration used a different mapping of

the communication tasks described in the pattern to

the hosts in the network that perform them, this metric

is suitable to analyse the significance of the mapping

for a particular pattern and network. If the histogram

consists only of a single peak, the mapping is rather

insignificant because all mappings resulted in a similar

bandwidth. If the range of observed bandwidth values

is high, it is important to pay attention to the mapping

or to choose a less mapping-sensitive communication

scheme if possible, in order to get good performance.

Figure 3 shows a visualisation of the histogram that

resulted from 10000 simulation runs of the bidirectional

bisection bandwidth measurement pattern, bisect fb sym,

on a 16 node fat-tree with full bisection bandwidth. You

can see the probability distribution for the bandwidth if a

random mapping is simulated. It shows that full bisection

bandwidth can be achieved, but only with a very small

number of mappings, compared to the number of possible

mappings.

The dep max delay metric is intended to be used

together with the ptrnvsptrn communication pattern.

This pattern merges two communication patterns by

concatenating them level by level. For example if the

first pattern is consists of (0, 1), (0, 2), (0, 3) (scatter

with four nodes) and the second pattern is (0, 1), (2, 3)
(bisect pattern with four nodes) the concatenation would

be (0, 1), (0, 2), (0, 3), (4, 5), (6, 7). The first pattern is

used unchanged, the node numbers in the second pattern

are increased by the largest node number in the first

pattern, then the second pattern is merged with the first

pattern. See Section 2.4 for usage information for this

pattern. This metric only examines the congestion in

the first pattern, which is defined via the --ptrnfst

command line switch. It simulates the whole pattern.

Than it weights every edge in the communication graph

with the congestion factor of the route used for this

communication. The length (sum of the weights along

the edges) of the longest path through the communication

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 8 10 12 14 16 18 20

F
re

q
u

e
n

c
y

Delay

tree + bisect pattern (noise)
tree + null pattern (no noise)

Figure 4: A simulation with 100 iterations of the tree pat-

tern on 800 hosts in a 1142-host fat-tree network. The

rest of the nodes did not communicate (null pattern) in

the “noiseless” case and used the bisect pattern in the

“noise” case. This additional communication can double

the execution time for the tree pattern.

graph is reported as the result. We call this number the

“delay” the pattern experienced because of congestion.

This yields a single result for every simulation iteration.

All delays are reported as a histogram at the end of the

simulation. By comparing the histogram of a simulation

with a pattern that uses the network to a histogram of

a simulation with the null pattern (as the second part

of the pattern), the influence of the “noise” induced by

the second pattern can be studied. Figure 4 shows a

visualization of the different histograms when this metric

is used for 100 simulation runs of a tree pattern on 800

nodes of a 1142-host fat-tree network. The bisect pattern

was used to generate “noise” on the rest of the hosts. In

the noiseless case we utilized the null pattern. The graph

shows how often a certain delay was observed in both

cases.

The get cong map metrics aim is to help identifying

bottlenecks in the network topology. After a simulation

step is completed the cable congestion map contains the

congestion factor for every edge that was used during this

simulation step. With this metric the cable congestion

map entries will be saved and further congestion entries,

for the next level or simulation run, will be added. So af-

ter all simulation runs are finished we have recorded the

sum of congestions that occurred over the entire simula-

tion for every edge in the network topology graph. Edges

that have never been used will have a congestion sum of

zero. Then we will scale the congestion sums so that

they become a number between zero and one by dividing

them through the maximum of the recorded congestion

sums. As a result this metric will print the network topol-

ogy graph used as an input file, but every edge will be

augmented with an additional property named, the scaled

congestion sum. Also every edge will be given a color

between green and red. The edges with the least relative

congestion will be colored in green, where the edges that

have a comparatively high congestion sum will be colored

in red.

3 Evaluating other routing algo-

rithms

With the tools explained in Section 2.2 one can obtain a

topology graph and also routing information from a work-

ing InfiniBand Network5. However, OpenSM, the sub-

net manager for InfiniBand, currently supports five dif-

ferent routing algorithms. If one seeks to study the con-

gestion behavior of those different algorithms, this could

be done by reconfiguring the network once for each algo-

rithm. This would require exclusive access to the cluster

in question, since the InfiniBand network is not usable

during reconfiguration. This makes it difficult to simulate

large scale InfiniBand networks with different routing al-

gorithms.

Luckily the OFED software stack also includes a tool

called ibsim which simulates an InfiniBand network. It

does so by exchanging the userspace library used by the

subnet manager to send and receive management infor-

mation to hosts and switches with a modified version of

this library which emulates a network that can be spec-

ified by the user. This tool is limited in the amount of

hosts it can emulate in its default configuration, but we

were able to increase these limits with very small changes

to the source code. We included these tools in our sim-

5Note that the tools we describe are Linux specific - they might work

differently or not at all on Windows operating systems.

8

ulator software package, accompanied by some wrapper

scripts that make the installation and usage easier. Note

that the installation and usage of these tools does not need

root privileges. The tools can be installed by executing the

install.sh script. The ibsim tool will automatically

be patched to be able to simulate up to 20480 hosts.

To use the ibsim tool to generate routing information

for a network topology we need the network topology in

a specific format, similar to the output of the ibnetdiscover

tool. Our simulator package comes with a tool to convert

the network topology graphs in the dot format described

in Section 2.1 into the format used by ibsim. This program

is called dot2osm and it can be used in the following way:

$ cd dot2osm

$./dot2osm input.dot output.osm

where input.dot contains the network topology in the

dot format and the output, the same network topology

in the OpenSM specific format, will be written to out-

put.osm. Note that the input graph does not have to

contain routing information. Any directed graph G =
(V, E) with the properties that there is an edge (v, u) ∈
E ∀(u, v) ∈ E and every node in the graph that repre-

sents a host has exactly one outgoing edge can be used.

This restriction is a consequence of InfiniBand links be-

ing full duplex. Now that we have a topology input file

for ibsim we can use it to emulate this network:

$./start_ibsim.sh output.osm

wait for the line “Network simulator ready” to appear

before you proceed with the next step, do not terminate

the simulator until the routing information is stored in a

file in the last step. The ibsim tool now uses a special

version of the libumad library, which was preloaded via

LD PRELOAD by the start ibsim script, to emulate an In-

finiBand network with the specified topology. If OpenSM

is started with our start osm.sh script, the same version

of the library will be loaded and OpenSM “thinks” it is

managing this network, even if the machine used for this

process does not have an InfiniBand card built in. Our

startscript takes one parameter, the name of the routing

algorithm that should be used. To use the default algo-

rithm, which is called “minhop” do:

$./start_osm.sh minhop

the other supported routing algorithms are “updn”,

“ftree”, “lash”, and “dor”. OpenSM supports another

routing mechanism, the “file” mode. However, in this

mode the user has to supply the routing information in the

form of linear forwarding tables (lft), so it is of limited

use for our purpose. Note that some routing algorithms,

i.e., ftree only work for special topologies—if OpenSM

detects that the selected routing algorithm does not work

for the network topology it will fall back to the default al-

gorithm (minhop) and a warning message will be emitted.

Wait for OpenSM to print the message ”SUBNET UP”

before you proceed to the next step.

Now OpenSM has routed the simulated network, but

the routing information is stored only in internal data

structures of the network-emulation-library (if we would

have used a real InfiniBand network, this information

would have been stored in the switches). To obtain the

routing information the dump routes.sh script can be

used:

$./dump_routes.sh > routing.lft

This tool dumps the linear forwarding table stored in

every (simulated) switch in the network. These tables are

big, hard to read and do not contain the network topology

information. So to use them for simulations or other ex-

periments we have to convert them into a directed graph

with routing information. This is done with the lfts-

dump2dot script.

This script uses the network topology description in

the OpenSM specific format which was created earlier,

we called it output.osm in our example, together with the

routing information obtained in the last step, which we

called routing.lft, to generate a network topology graph

with routing information as described in Section 2.1. The

script is used in the following way:

$ cd lftsdump2dot

$./lftsdump2dot output.osm routing.lft >

graph.dot

After this step graph.dot will contain a representation

of the network topology contained in output.osm com-

bined with the routing information from routing.lft which

is compatible to our simulator and therefore can be used

for further evaluation.

9

21

H4 H3

H2

H1

Network Topology

and Routing Pattern

Communication

c d

a b

H1 H4

H3 H2

Mapping Pattern

to Hosts

21

H4 H3

H2

H1

Generate Edge

Congestion Map

e1 : 1
e2 : 1
e3 : 2

...

Simulate

Communication

Output

Statistics

Multiple

Iterations

Figure 5: Scheme of our simulator implementation

4 The Implementation of the Simu-

lator

In Figure 5 you can see a simplified scheme of how our

simulator works. The network topology and routing in-

formation is retrieved from the input file. The format of

this file is described in Section 2.1.

The traffic pattern is generated by the function

genptrn_by_name. As explained in Section 2.3, the

simulator offers a wide selection of traffic patterns that

can be simulated. The traffic pattern is represented by

a set of pairs of integers. For example a unidirectional

bisection communication pattern with six modes can

be represented by {(0, 1), (2, 3), (4, 5)}. Every node is

either sending to or receiving from exactly one other

node. All messages are of uniform length in our simula-

tions. All messages in one set are started simultaneously

in our simulations. This is of course unacceptable for

simulating communication patterns with dependencies

or patterns where a single node sends multiple messages

one after another. Therefore, we introduced levels in

2

0

6 4

1

3

7 5

Level 0

Level 1

Level 2

Figure 6: Binomial Tree with eight nodes. Levels are indi-

cated by dotted lines. If a receiving node is in level k the

message to him is sent in this level and does not interfere

with messages sent in other levels.

our communication patterns. A communication pattern

with multiple levels then becomes a list of sets of pairs

of integers. A binomial tree pattern could be modeled as

[{(0, 1)}, {(0, 2), (1, 3)}, {(0, 4), (1, 5), (2, 6), (3, 7)}].
A graphical description of this communication pattern

is given in Figure 6. This pattern has three different

levels as the graph has a degree of three, so there are

three messages send by the root node in a sequential

manner. We assume that level k starts after level k − 1 is

completed. So messages send in different levels do not

interfere with each other.

To simulate the congestion induced by a certain traffic

pattern we have to map the nodes in the communication

pattern described above to hosts in the network. This is

done in two stages: at first we have to know how many

nodes from the network topology file should be used for

the simulation. This also determines how many nodes the

communication pattern should contain. We call this num-

ber the communicator size. But even if we know how

many nodes to use, if it is desired to use less nodes than

there are in the topology input file we do not know which

we should use. The simulator currently supports two

modes to select nodes: It can randomly choose p nodes

from the n nodes available in the input file. This option

aims to model a situation where jobs of various sizes and

run-times are started by a batch system, after a while this

will lead to fragmentation. The second mode will per-

form a breadth-first search from the first node defined in

the input file and orders all hosts by the time at which the

10

had been found. Then the first p hosts in this list are used

for the simulation. This ensures that we use the minimal

amount of leaf switches possible. Before each simulation

iteration the order of hosts in the list of used hosts is ran-

domized by the function shuffle_namelist. Their

position in this list maps them to nodes in the communi-

cation pattern.

The actual simulation of the communica-

tion pattern is carried out by the function

simulation_with_metric. This function iter-

ates over the communication pattern for each level and

determines the route the traffic between each pair of hosts

has to take by calling the function find_route. This

function returns the list of edges that have been used for

the specific host pair. All these edges are then added to

the cable congestion map. This map counts, for every

edge in the network topology, how often it has been used

in the current level—it determines the congestion along

each edge. The congestion for each edge is set to zero at

the beginning of each level. After the simulation for one

level is completed the cable congestion map contains the

congestion for every edge during this level.

After the cable congestion map is filled at the end

of one level we have to determine the maximal con-

gestion for each route that was taken by a simulated

stream of data. In our model this is the factor that de-

termines the bandwidth with which this particular data-

stream was transmitted. This is done in the func-

tion insert_into_bucket_maxcon2 by simply re-

generating the route for each host pair in the communi-

cation pattern, as described above. Afterwards we iterate

over the used edges and record the maximal congestion

we see for all the used edges in the cable congestion map.

The rest of the statistical analysis process heavily de-

pends on the used metric. The currently implemented

metrics are described in Section 2.5.

The congestion induced by a communication pattern

heavily depends on the mapping of the nodes in the com-

munication pattern to the hosts in the network topology.

Therefore one has to perform a large number of simula-

tions, all of which with different random mappings, and

average the results. Since the single simulation runs are

independent of each other this can be easily parallelized.

This is done with MPI. If the simulator is started with p

MPI processes and has to execute c simulation runs (de-

termined by the --num_runs command line parameter),

every process will perform ⌈ c
p
⌉ simulation iterations and

send the results to the master process which will then pro-

cess all results and generate the appropriate output.

Acknowledgments

This work was supported by the Department of Energy

project FASTOS II (LAB 07-23), a grant from the Lilly

Endowment and a gift the Silicon Valley Community

Foundation on behalf of the Cisco Collaborative Research

Initiative.

References

[1] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Ku-

lawik, C.L. Seitz, J.N. Seizovic, and W.K. Su.

Myrinet: A Gigabit-per-Second Local Area Net-

work. IEEE Micro, 15(1):29–36, 1995.

[2] J. Flich, MP Malumbres, P. Lopez, and J. Duato. Im-

proving Routing Performance in Myrinet Networks.

In Proc. of Int. Parallel and Distributed Processing

Symp, 2000.

[3] P. Geoffray and T. Hoefler. Adaptive Routing Strate-

gies for Modern High Performance Networks. In

16th Annual IEEE Symposium on High Performance

Interconnects (HOTI 2008), pages 165–172. IEEE

Computer Society, Aug. 2008.

[4] J.L. Hennessy, D.A. Patterson, D. Goldberg, and

K. Asanovic. Computer Architecture: A Quantita-

tive Approach. Morgan Kaufmann, 2003.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine. Multi-

stage Switches are not Crossbars: Effects of Static

Routing in High-Performance Networks. In Pro-

ceedings of the 2008 IEEE International Confer-

ence on Cluster Computing. IEEE Computer Soci-

ety, Oct. 2008.

[6] TM InfiniBand. Trade Association, InfiniBand TM

Architecture. Specification Volume 1. Release 1.0,

2000.

[7] E. Koutsofios and S.C. North. Drawing graphs with

dot. AT&T Labs–Research, Murray Hill, NJ, March,

1999.

11

[8] F.T. Leighton. Introduction to Parallel Algorithms

and Architecture. Morgan Kaufmann Publishers.

[9] JC Martinez, J. Flich, A. Robles, P. Lopez, and

J. Duato. Supporting adaptive routing in InfiniBand

networks. In Parallel, Distributed and Network-

Based Processing, 2003. Proceedings. Eleventh Eu-

romicro Conference on, pages 165–172, 2003.

[10] MD Schroeder, AD Birrell, M. Burrows, H. Mur-

ray, RM Needham, TL Rodeheffer, EH Satterth-

waite, and CP Thacker. Autonet: a high-speed, self-

configuring local area network usingpoint-to-point

links. Selected Areas in Communications, IEEE

Journal on, 9(8):1318–1335, 1991.

12

