We propose COSMA: a parallel matrix-matrix multiplication algorithm that is near communication-optimal for all combinations of matrix dimensions, processor counts, and memory sizes. The key idea behind COSMA is to derive an optimal (up to a factor of 0.03% for 10MB of fast memory) sequential schedule and then parallelize it, preserving I/O optimality. To achieve this, we use the red-blue pebble game to precisely model MMD dependencies and derive a constructive and tight sequential and parallel I/O lower bounds. Compared to 2D or 3D algorithms, which fix processor decomposition upfront and then map it to the matrix dimensions, it reduces communication volume by up to $\sqrt{3}$ times. COSMA outperforms the established ScaLAPACK, CARMA, and CTF algorithms in all scenarios up to 12.8x (2.2x on average), achieving up to 88% of Piz Daint’s peak performance. Our work does not require any hand tuning and is maintained as an open source implementation.

1 INTRODUCTION

Matrix-matrix multiplication (MMM) is one of the most fundamental building blocks in scientific computing, used in linear algebra algorithms [13, 15, 41], machine learning [6], graph processing [4, 8, 18, 36, 43, 51], computational chemistry [21], and others. Thus, accelerating MMM routines is of great significance for many domains. In this work, we focus on minimizing the amount of transferred data in MMM, both across the memory hierarchy (vertical I/O) and between processors (horizontal I/O, aka “communication”)1.

The path to I/O optimality of MMM algorithms is at least 50 years old. The first parallel MMM algorithm is by Cannon [10], which works for square matrices and square processor decompositions. Subsequent works [24, 25] generalized the MMM algorithm to rectangular matrices, different processor decompositions, and communication patterns. PUMMA [17] package generalized previous works to transposed matrices and different data layouts. SUMMA algorithm [55] further extended it by optimizing the communication, introducing pipelining and communication-computation overlap. This is now a state-of-the-art so-called 2D algorithm (it decomposes processors in a 2D grid) used e.g., in ScaLAPACK library [14].

1We also focus only on “classical” MMM algorithms which perform n^3 multiplications and additions. We do not analyze Strassen-like routines [53], as in practice they are often slower [19].

Agarwal et al. [1] showed that in a presence of extra memory, one can do better and introduces a 3D processor decomposition. The 2.5D algorithm by Solomonik and Demmel [52] effectively interpolates between those two results, depending on the available memory. However, Demmel et al. showed that algorithms optimized for square matrices often perform poorly when matrix dimensions vary significantly [22]. Such matrices are common in many relevant areas, for example in machine learning [59, 60] or computational chemistry [44, 48]. They introduced CARMA [22], a recursive algorithm that achieves asymptotic lower bounds for all configurations of dimensions and memory sizes. This evolution for chosen steps is depicted symbolically in Figure 2.

Unfortunately, we observe several limitations with state-of-the-art algorithms. ScaLAPACK [14] (an implementation of SUMMA) supports only the 2D decomposition, which is communication-inefficient in the presence of extra memory. Also, it requires a user to fine-tune parameters such as block sizes or processor grid size. CARMA supports only scenarios when the number of processors is a power of two [22], a serious limitation, as the number of processors is usually determined by the available hardware resources. Cyclops Tensor Framework (CTF) [49] (an implementation of the 2.5D decomposition) can utilize any number of processors, but its decompositions may be far from optimal (§ 9). We also emphasize that asymptotic complexity is an insufficient measure of practical performance. We later (§ 6.2) identify that CARMA performs up to $\sqrt{3}$ more communication. Our observations are summarized in Table 1.
2D [55] | 2.5D [52] | recursive [22] | COSMA (this work)

<table>
<thead>
<tr>
<th>Input</th>
<th>2D [55]</th>
<th>2.5D [52]</th>
<th>recursive [22]</th>
<th>COSMA (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-specified grid</td>
<td>Available memory</td>
<td>Available memory, matrix dimensions</td>
<td>Available memory, matrix dimensions</td>
<td>Available memory, matrix dimensions</td>
</tr>
<tr>
<td>Split m and n</td>
<td>Split m, n, k</td>
<td>Split recursively the largest dimension</td>
<td>Find the optimal sequential schedule</td>
<td>Map matrices to processor grid</td>
</tr>
<tr>
<td>Map matrices to processor grid</td>
<td>Map matrices to processor grid</td>
<td>Map matrices to processor grid</td>
<td>Map matrices to recursion tree</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Intuitive comparison between the COSMA algorithm and the state-of-the-art 2D, 2.5D, and recursive decompositions. C = AB, A ∈ R^{m×k}, B ∈ R^{k×n}.

Their practical implications are shown in Figure 1, where we see that all existing algorithms perform poorly for some configurations.

In this work, we present COSMA (Communication Optimal S-partition-based Matrix Multiplication Algorithm): an algorithm that takes a new approach to multiplying matrices and alleviates the issues above. COSMA is I/O optimal for all combinations of parameters (up to the factor of $\sqrt{S}/(\sqrt{S}+1-\sqrt{S})$, where S is the size of the fast memory2). The driving idea is to develop a general method of deriving I/O optimal schedules by explicitly modeling data reuse in the red-blue pebble game. We then parallelize the sequential schedule, minimizing the I/O between processors, and derive an optimal domain decomposition. This is in contrast with the other discussed algorithms, which fix the processor grid upfront and then map it to a sequential schedule for each processor. We outline the algorithm in § 3. To prove its optimality, we first provide a new constructive proof of a sequential I/O lower bound (§ 5.1), then we derive the communication cost of parallelizing the sequential schedule (§ 6.2), and finally we construct an I/O optimal parallel schedule (§ 6.3). The detailed communication analysis of COSMA, 2D, 2.5D, and recursive decompositions is presented in Table 2. Our algorithm reduces the data movement volume by a factor of up to $\sqrt{3} \approx 1.73x$ compared to the asymptotically optimal recursive decomposition and up to $\max(m,n,k)$ times compared to the 2D algorithms, like Cannon’s [39] or SUMMA [55].

Our implementation enables transparent integration with the ScaLAPACK data format [16] and delivers near-optimal computation throughput. We later (§ 7) show that the schedule naturally expresses communication–computation overlap, enabling even higher speedups using Remote Direct Memory Access (RDMA). Finally, our I/O-optimal approach is generalizable to other linear algebra kernels. We provide the following contributions:

- We propose COSMA: a distributed MMM algorithm that is nearly-optimal (up to the factor of $\sqrt{S}/(\sqrt{S}+1-\sqrt{S})$) for any combination of input parameters (§ 3).
- Based on the red-blue pebble game abstraction [34], we provide a new method of deriving I/O lower bounds (Lemma 2), which may be used to generate optimal schedules (§ 4).
- Using Lemma 2, we provide a new constructive proof of the sequential MMM I/O lower bound. The proof delivers constant factors tight up to $\sqrt{S}/(\sqrt{S}+1-\sqrt{S})$ (§ 5).
- We extend the sequential proof to parallel machines and provide I/O optimal parallel MMM schedule (§ 6.3).
- We reduce memory footprint for communication buffers and guarantee minimal local data reshuffling by using a blocked data layout (§ 7.6) and a static buffer pre-allocation (§ 7.5), providing compatibility with the ScaLAPACK format.
- We evaluate the performance of COSMA, ScaLAPACK, CARMA, and CTF on the CSCS Piz Daint supercomputer for an extensive selection of problem dimensions, memory sizes, and numbers of processors, showing significant I/O reduction and the speedup of up to 8.3 times over the second-fastest algorithm (§ 9).

2 BACKGROUND

We first describe our machine model (§ 2.1) and computation model (§ 2.2). We then define our optimization goal: the I/O cost (§ 2.3).

2.1 Machine Model

We model a parallel machine with p processors, each with local memory of size S words. A processor can send and receive from any other processor up to S words at a time. To perform any computation, all operands must reside in processor local memory. If shared memory is present, then it is assumed that it has infinite capacity. A cost of transferring a word from the shared to the local memory is equal to the cost of transfer between two local memories.

2.2 Computation Model

We now briefly specify a model of general computation; we use this model to derive the theoretical I/O cost in both the sequential and parallel setting. An execution of an algorithm is modeled with the computational directed acyclic graph (CDAG) $G = (V, E)$ [11, 28, 46]. A vertex $v \in V$ represents one elementary operation in the given computation. An edge $(u, v) \in E$ indicates that an operation v depends on the result of u. A set of all immediate predecessors (or successors) of a vertex are its parents (or children). Two selected subsets $I, O \subset V$ are inputs and outputs, that is, sets of vertices that have no parents (or no children, respectively).

Red-Blue Pebble Game

Hong and Kung’s red-blue pebble game [34] models an execution of an algorithm in a two-level memory structure with a small-and-fast as well as large-and-slow memory. A red (or a blue) pebble placed on a vertex of a CDAG denotes that the result of the corresponding elementary computation is inside the fast (or slow) memory. In the initial (or terminal) configuration, only inputs (or outputs) of the CDAG have blue pebbles. There can be at most S red pebbles used at any given time. A complete CDAG calculation is a sequence of moves that lead from the initial to the terminal configuration. One is allowed to: place a red pebble on any vertex with a blue pebble (load), place a blue pebble on any vertex with a red pebble (store), place a red pebble on a vertex whose parents all have red pebbles (compute), remove any pebble, red or blue, from any vertex (free

2Throughout this paper we use the original notation from Hong and Kung to denote the memory size S. In literature, it is also common to use the symbol M [2, 3, 33].
memory). An I/O optimal complete CDAG calculation corresponds to a sequence of moves (called pebbling of a graph) which minimizes loads and stores. In the MMM context, it is an order in which all n^3 multiplications are performed.

2.3 Optimization Goals

Throughout this paper we focus on the input/output (I/O) cost of an algorithm. The I/O cost Q is the total number of words transferred during the execution of a schedule. On a sequential or shared memory machine equipped with small-and-fast and slow-and-big memories, these transfers are load and store operations from and to the slow memory (also called the vertical I/O). For a distributed machine with a limited memory per node, the transfers are communication operations between the nodes (also called the horizontal I/O). A schedule is I/O optimal if it minimizes the I/O cost among all schedules of a given CDAG. We also model a latency cost L, which is a maximum number of messages sent by any processor.

2.4 State-of-the-Art MMM Algorithms

Here we briefly describe strategies of the existing MMM algorithms. Throughout the whole paper, we consider matrix multiplication $C = AB$, where $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, $C \in \mathbb{R}^{m \times n}$, where m, n, and k are matrix dimensions. Furthermore, we assume that the size of each matrix element is one word, and that $S < \min\{mn, mk, nk\}$, that is, none of the matrices fits into single processor’s fast memory.

We compare our algorithm with the 2D, 2.5D, and recursive decompositions (we select parameters for 2.5D to also cover 3D). We assume a square processor grid $\lceil \sqrt{p}, \sqrt{p} \rceil$ for the 2D variant, analogously to Cannon’s algorithm [10], and a cubic grid $\lceil \sqrt[p]{c}, \sqrt[p]{c}, c \rceil$ for the 2.5D variant [52], where c is the amount of the “extra” memory $c = ps/(mk + nk)$. For the recursive decomposition, we assume that in each recursion level we split the largest dimension m, n, or k in half, until the domain per processor fits into memory. The detailed complexity analysis of these decompositions is in Table 2. We note that ScalAPACK or CTF can handle non-square decompositions, however they create different problems, as discussed in § 1. Moreover, in § 9 we compare their performance with COSMA and measure significant speedup in all scenarios.

3 COSMA: HIGH-LEVEL DESCRIPTION

COSMA decomposes processors by parallelizing the near optimal sequential schedule under constraints: (1) equal work distribution and (2) equal memory size per processor. Such a local sequential schedule is independent of matrix dimensions. Thus, intuitively, instead of dividing a global domain among p processors (the top-down approach), we start from deriving a near I/O optimal sequential schedule. We then parallelize it, minimizing the I/O and latency costs Q, L (the bottom-up approach); Figure 3 presents more details.

COSMA is sketched in Algorithm 1. In Line 1 we derive a sequential schedule, which consists of series of $a \times a$ outer products. (Figure 4 b). In Line 2, each processor is assigned to compute b of these products, forming a local domain D (Figure 4 c), that is each D contains $a \times a \times b$ vertices (multiplications to be performed - the derivation of a and b is presented in § 6.3). In Line 3, we find a processor grid G that evenly distributes this domain by the matrix dimensions m, n, and k. If the dimensions are not divisible by a or b, this function also evaluates new values of a_{opt} and b_{opt} by fitting the best matching decomposition, possibly not utilizing some processors (§ 7.1, Figure 4 d-f). The maximal number of idle processors is a tunable parameter δ. In Line 5, we determine the initial decomposition of matrices A, B, and C to the submatrices A_j, B_j, C_j that are local for each processor. COSMA may handle any initial data layout, however, an optimal block-recursive one (§ 6.6) may be achieved in a preprocessing phase. In Line 6, we compute the size of the communication step, that is, how many of b_{opt} outer products assigned to each processor are computed in a single round, minimizing the latency (§ 6.3). In Line 7 we compute the number of sequential steps (Lines 8-11) in which every processor: (1) distributes and updates its local data A_i and B_i among the grid G (Line 9), and (2) multiplies A_i and B_i (Line 10). Finally, the partial results C_l are reduced over G (Line 12).

I/O Complexity of COSMA

Lines 2-7 require no communication (assuming that the parameters m, n, k, p, S are already distributed). The loop in Lines 8-11 executes $\lceil 2ab/(S - a^2) \rceil$ times. In Line 9, each processor receives $|A_i| + |B_i|$ elements. Sending the partial results in Line 12 adds a^2 communicated elements. In § 6.3 we derive the optimal values for a and b, which yield a total of $S + 2 : \frac{mk}{pS^2}, 3 \left(\frac{mk}{p} \right)^{2/3}$ elements communicated.

4 ARBITRARY CDAGS: LOWER BOUNDS

We sketch key concepts and methods for deriving I/O lower bounds for general CDAGs. We extend the S-partition method and the related main lemma by Hong and Kung [34]. That lemma, however, fails to provide a tight I/O bound. In our generalization, the X-partition, we let the constraint X to take any value (not only S, the fast memory size). Our key result here, Lemma 2, allows us to derive a constructive proof of a tight (for large S) I/O lower bound for a sequential execution of the MMM CDAG (§ 5). This method is extended in Section 6 to establish a tight parallel I/O lower bound.
Algorithm 1 COSMA

Input: matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{k \times n}$, number of processors p, memory size S, computation-I/O tradeoff ratio ρ
Output: matrix $C = AB \in \mathbb{R}^{m \times k}$

1. $a \leftarrow $FindSeqSchedule$(S, m, n, k, p)$ \quad \triangleright \ sequence-I/O optimality (§ 5)
2. $b \leftarrow $ParallelizeSchedule$(a, m, n, k, p)$ \quad \triangleright \ parallel-I/O optimality (§ 6)
3. $(G, a_{opt}, b_{opt}) \leftarrow $FitRanks$(m, n, k, a, b, p, \delta)$
4. for all $p_i \in \{1, \ldots, p\}$ do in parallel
5. \hspace{1em} $(A_i, B_i, C_i) \leftarrow $GetDataDecomp$(A, B, p_i)$
6. $s \leftarrow \frac{2|b_{opt}|}{|a_{opt}|}$ \quad \triangleright \ latency-minimizing size of a step (6.3)
7. $t \leftarrow \frac{|b_{opt}|}{|a_{opt}|}$ \quad \triangleright \ number of steps
8. for $j \in \{1, \ldots, t\}$ do
9. \hspace{1em} $(A_i, B_i) \leftarrow $DistrData$(A_i, B_i, G, i, p_i)$
10. $C_i \leftarrow $Multiply$(A_i, B_i)$ \quad \triangleright \ compute locally
11. end for
12. $C \leftarrow $Reduce$(C_i, G)$ \quad \triangleright \ reduce the partial results
13. end for

Due to space constraints, a formal definition of X-partition, proofs of all our lemmas, and a detailed discussion on their derivation and implications, are in an extended technical report \footnote{Available at https://arxiv.org/abs/1908.09606}. Readers interested in practical concerns may proceed directly to Section 6.

Reuse-based Lemma

A proof of the original red-blue pebble lemma \cite{34} is based on the fact that an optimal complete calculation (pebbling) which performs q I/O operations, $hs \leq q < (h + 1)s$ for some h, can be associated with an X-partition for $X = 2S$. Subsets (also called subcomputations) $V_1, \ldots, V_r \in V$ contain vertices that are red-pebbled between every S I/O operations of this calculation (i.e., between every (i, s)-th and $[(i + 1)s]$-th I/O operation, $t \in \{1, \ldots, h-1\}$). We refer the reader to the original paper for details of construction of sets $V_i, i = 1, \ldots, h$. A sketch of this construction is also in the technical report.

Before we present the lemmas, we need to introduce four more subsets of V, defined for each $V_i, V_{R,i}$ (the reuse set) contains vertices that have red pebbles placed on them just before V_i begins (these vertices stay in the fast memory and are reused during V_i). $V_{R,i}$ (the load set) contains vertices that have blue pebbles placed on them just before V_i begins, and red pebbles placed on them during V_i (for these vertices, we need to load data from the slow to the fast memory). By definition \footnote{A domino set Dom(V_i) is a set of vertices in V, such that every path from any input of a CDAG to any vertex in V_i must contain at least one vertex in $\text{Dom}(V_i)$.}, $\text{Dom}(V_i) = V_{R,i} \cup V_{R,i}$. We define similar subsets $W_{R,i}$ and $W_{R,i}$ for the minimum set \footnote{The minimum set $\text{Min}(V_i)$ is a set of all vertices in V_i with no children in V_i.} $\text{Min}(V_i), W_{R,i}$ (the store set) contains all vertices in V_i that have a blue pebble placed on them during V_i (i.e., the corresponding data must be stored in the slow memory). $W_{R,i}$ (called the cache set) contains all vertices in V_i that have a red pebble at the end of V_i (the data resides in the fast memory after V_i).

Denote an upper bound on $|W_{R,i}|$ and $|W_{R,i}|$ as $R(S)$ ($V_i \text{max}|W_{R,i}, |W_{R,i}|) \leq R(S) \leq S$). Further, denote a lower bound on $|V_{R,i}|$ and $|W_{R,i}|$ as $T(S)$ ($V_i \text{min}|W_{R,i}, |W_{R,i}| \leq T(S) \leq \text{min}(|V_{R,i}, |W_{R,i}|)$). We now use $R(S)$ and $T(S)$ to tighten the bound on Q.

We now use the above definitions and observations to generalize the result of Hong and Kung \cite{34}.

Lemma 1. Denote $H(X)$ as the minimum number of subcomputations in any valid X-partition of a CDAG $G = (V, E)$, for any $X \geq S$.

The minimal number Q of I/O operations for any valid execution of a CDAG $G = (V, E)$ is bounded by

$$Q \geq (X - R(S) + T(S)) \cdot (H(X) - 1)$$

where $R(S)$ is the maximum reuse set size and $T(S)$ is the minimum store set size. Moreover, we have

$$H(X) \geq \frac{|V|}{|V_{max}|}$$

where $V_{max} = \arg \max_{V_i \in S(X)} |V_i|$ is the largest subset of vertices in the CDAG schedule $S(X) = \{V_1, \ldots, V_h\}$.

From this lemma, we derive the following lemma that we use to prove a tight I/O lower bound for MMM (Theorem 1):

Lemma 2. Define the number of computations performed by V_i for one loaded element as the computational intensity $p_i = \frac{|V_i|}{|V_{max}|}$ of the subcomputation V_i. Denote $\rho = \max(p_i) \leq \frac{1}{4\sqrt{2}p S}$ to be the maximal computational intensity. Then, the number of I/O operations Q is bounded by $Q \geq |V|/\rho$.

5 NEAR-OPTIMAL SEQUENTIAL MMM

In this section, we present our main theoretical contribution: a constructive proof of a tight I/O lower bound for classical matrix-matrix multiplication. In § 6, we extend it to the parallel setup (Theorem 2). This result is tight (up to diminishing factor $\sqrt{5}/(\sqrt{5} + 1)$), and therefore may be seen as the last step in the long sequence of improved bounds. Hong and Kung \cite{34} derived an asymptotic bound $O\left(n^3/\sqrt{S}\right)$ for the sequential case. Irony et al. \cite{33} extended the lower bound result to a parallel machine with p processes, each having a fast private memory of size S, proving the \footnote{Due to space constraints, the full proof is omitted.} $\frac{n^3}{4S^2p^2} - S$ lower bound on the communication volume per process. Recently, Smith and van de Gein \cite{47} proved a tight sequential lower bound (up to an additive term) of $2mnk/\sqrt{S} - 2S$. Our proof improves the additive term and extends it to a parallel schedule.

Theorem 1 (Sequential Matrix Multiplication I/O lower bound). Any pebbling of MMM CDAG which multiplies matrices of sizes $m \times k$ and $k \times n$ by performing mnk multiplications requires a minimum number of $\frac{2mnk}{\sqrt{S}} + mn$ I/O operations.

The proof of Theorem 1 requires Lemmas 3 and 4, which in turn, require a following definition:

Greedy schedule

A schedule $S = \{V_1, \ldots, V_h\}$ is greedy if during every subcomputation V_i every vertex u that will hold a red pebble either has a child in V_i or belongs to V_i. Then, our first result is an I/O lower bound for such schedules:

Lemma 3. Any greedy schedule that multiplies matrices of sizes $m \times k$ and $k \times n$ using mnk multiplications requires a minimum number of $\frac{2mnk}{\sqrt{S}} + mn$ I/O operations.

Intuition: Restricting the analysis to greedy schedules provides explicit information of a state of memory (sets $V_r, V_{R,r}, W_{R,r}$), and to a corresponding CDAG pebbling. Additional constraints (§ 5.1) guarantee feasibility of a derived schedule (and therefore, lower bound tightness).
5.1 Near-Optimal Greedy Schedule
In the technical report, it is proven that an optimal greedy schedule is composed of \(nmnk \) outer product calculations, while loading \(\sqrt{R(S)} \) elements of each of matrices A and B. While the lower bound is achieved for \(R(S) = S \), such a schedule is infeasible, as at least some additional red pebbles, except the ones placed on the reuse set \(V_k,r \), have to be placed on \(2\sqrt{R(S)} \) vertices of A and B.

A direct way to obtain a feasible greedy schedule is to set \(X = S \), ensuring that the dominator set can fit into the memory. Then each subcomputation is an outer-product of column-vector of matrix A and row-vector of B, both holding \(\sqrt{S + 1} \) values. Such a schedule performs \(\frac{2nmk}{\sqrt{S+1}-1} + mn \) I/O operations, a factor of \(\frac{\sqrt{S}}{\sqrt{S+1}-1} \) more than a lower bound, which quickly approach 1 for large S. Listing 1 provides a pseudocode of this algorithm, which is a well-known rank-1 update formulation of MMM.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for (i_1 = 1 : \lfloor m/a \rfloor)</td>
</tr>
<tr>
<td>2</td>
<td>for (j_1 = 1 : \lfloor n/a \rfloor)</td>
</tr>
<tr>
<td>3</td>
<td>for (r = 1 : k)</td>
</tr>
<tr>
<td>4</td>
<td>for (i_2 = i_1 \cdot T : \text{min}(\lfloor i_1 + 1 \rfloor \cdot a, m))</td>
</tr>
<tr>
<td>5</td>
<td>for (j_2 = j_1 \cdot T : \text{min}(\lfloor j_1 + 1 \rfloor \cdot a, n))</td>
</tr>
<tr>
<td>6</td>
<td>(C(r_2,j_2) = C(r_1,j_2) + A(r_1,r_2) \cdot B(r_2,j_2))</td>
</tr>
</tbody>
</table>

Listing 1: Pseudocode of near-optimal sequential MMM, \(a = \sqrt{S + T - 1} \)

5.2 Greedy vs Non-greedy Schedules
Greedy schedules provide means to directly derive near-optimal schedules from the corresponding lower bounds, as shown in § 5.1. However, restricting analysis just to them may not provide correct lower bounds for general CDAGs. In this section, a different approach is used to prove the lower bound for non-greedy schedules - however, without a direct way to retrieve the corresponding schedule. These two bounds match, proving that the derived schedule (Listing 1) is near-optimal.

Lemma 4. Any non-greedy schedule computing classical matrix multiplication performs at least \(\frac{2nmk}{\sqrt{S}} + mn \) I/O operations.

Proof of Theorem 1:
Lemma 3 establishes that the I/O lower bound for any greedy schedule is \(Q = 2mnk/\sqrt{S} + mn \). Lemma 4 establishes that no other schedule can perform less I/O operations.

6 OPTIMAL PARALLEL MMM
We now derive the schedule of COSMA from the results from § 5.1. The key notion is the data reuse, that determines not only the sequential execution, as discussed in § 4, but also the parallel scheduling. Specifically, if the data reuse set spans across multiple local domains, then this set has to be communicated between these domains, increasing the I/O cost (Figure 3). We first introduce a formalism required to parallelize the sequential schedule (§ 6.1). In § 6.2, we generalize parallelization strategies used by the 2D, 2.5D, and recursive decompositions, deriving their communication cost and showing that none of them is optimal in the whole range of parameters. We finally derive the optimal decomposition (FindOptimalDomain function in Algorithm 1) by expressing it as an optimization problem (§ 6.3), and analyzing its I/O and latency cost.
Schedule P_{ij} The schedule is parallelized in dimensions i and j. The processor grid is $G_{ij} = \left[\frac{m}{\sqrt{S}}, \frac{n}{\sqrt{S}} \right]$. Because all dependencies are dimension k, there are no dependencies between D_j except for the inputs and the outputs. Because $a < \sqrt{S}$, the corresponding sequential schedule has a reduced computational intensity $\rho_{ij} = \sqrt{S}/2$.

Schedule P_{ijk} The schedule is parallelized in all dimensions. The processor grid is $G_{ijk} = \left[\frac{m}{\sqrt[3]{S}}, \frac{n}{\sqrt[3]{S}}, \frac{k}{\sqrt[3]{S}} \right]$. The computational intensity $\rho_{ijk} = \sqrt[3]{S}/2$ is optimal. The parallelization in k dimension creates dependencies between local domains, requiring communication and increasing the I/O cost.

Schedule P_{cubic} The schedule is parallelized in all dimensions. The grid is $\left[\frac{a}{a_c}, \frac{b}{a_c}, \frac{k}{a_c} \right]$, where $a_c = \min \left(\frac{mnk}{p} \right)^{1/3}, \sqrt[3]{S}$. Because $a_c < \sqrt[3]{S}$, the corresponding computational intensity $\rho_{cubic} < \sqrt[3]{S}/2$ is not optimal. The parallelization in k dimension creates dependencies between local domains, increasing communication.

Schedules of the State-of-the-Art Decompositions

If $m = n$, the P_{ijk} scheme is reduced to the classical 2D decomposition (e.g., Cannon’s algorithm [10]), and P_{ijk} is reduced to the 2.5D decomposition [52]. CARMA [22] asymptotically reaches the P_{cubic} scheme, guaranteeing that the longest dimension of a local cuboidal domain is at most two times larger than the smallest one. We present a detailed complexity analysis comparison for all the schedules in Table 3.

6.3 I/O Optimal Parallel Schedule

Observe that none of those schedules is optimal in the whole range of parameters. As discussed in § 5, in sequential scheduling, intermediate results of C are not stored to the memory: they are consumed (reused) immediately by the next sequential step. Only the final result of C in the local domain is sent. Therefore, the optimal parallel schedule P_{opt} minimizes the communication, that is, sum of the inputs’ sizes plus the output size, under the sequential I/O constraint on subcomputations $Y_{V_i \in D_j} | Dom(V_i) \leq S \land |Min(V_i)| \leq S$.

The local domain D_j is a grid of size $[a \times a \times b]$, containing b outer products of vectors of length a. The optimization problem of finding P_{opt} using the computational intensity (Lemma 2) is formulated as follows:

$$\begin{align*}
\text{maximize } p &= \frac{a^2b}{ab + ab + a^2} \\
\text{subject to: } a^2 &\leq S \text{ (the I/O constraint)} \\
a^2b &= \frac{mnk}{p} \text{ (the load balance constraint)} \\
pS &\geq mn + mk + nk \text{ (matrices must fit into memory)}
\end{align*}$$

The I/O constraint $a^2 \leq S$ is binding (changes to equality) for $p \leq \frac{mnk}{S\sqrt{S}}$. Therefore, the solution to this problem is:

$$a = \min \left\{ \sqrt{S}, \left(\frac{mnk}{p} \right)^{1/3} \right\}, \quad b = \max \left\{ \frac{mnk}{pS}, \left(\frac{mnk}{p} \right)^{1/3} \right\}$$

The I/O complexity of this schedule is:

$$Q \geq \frac{a^2b}{p} \geq \min \left\{ \frac{2mnk}{pS}, S, 3 \left(\frac{mnk}{p} \right)^{1/3} \right\}$$

Theorem 2. The I/O complexity of a classic Matrix Multiplication algorithm executed on p processors, each of local memory size $S \geq \frac{mn + mk + nk}{b}$ is

$$Q \geq \min \left\{ \frac{2mnk}{pS}, S, 3 \left(\frac{mnk}{p} \right)^{1/3} \right\}$$

Proof. The theorem is a direct consequence of Lemma 1 and the computational intensity (Lemma 2). The load balance constraint enforces a size of each local domain $|D_j| = mnk/p$. The I/O cost is then bounded by $|D_j|/p$. Schedule P_{opt} maximizes p by the formulation of the optimization problem (Equation 3).

I/O-Latency Trade-off

As showed in this section, the local domain D of the near optimal schedule P is a grid of size $[a \times a \times b]$, where a, b are given by Equation (4). The corresponding sequential schedule S is a sequence of b outer products of vectors of length a. Denote the size of the communicated inputs in each step by $I_{step} = 2a$. This corresponds to b steps of communication (the latency cost is $L = b$).

The number of steps (latency) is equal to the total communication volume of D divided by the volume per step $L = Q/I_{step}$. To reduce the latency, one either has to decrease Q or increase I_{step}, under the memory constraint that $I_{step} + a^2 \leq S$ (otherwise we cannot fit both the inputs and the outputs in the memory). Express $I_{step} = a \cdot h$, where h is the number of sequential subcomputations V_i we merge in one communication. We can express the I/O-latency trade-off:
The comparison of complexities of 2D, 2.5D, recursive, and COSMA algorithms. The 3D decomposition is a special case of 2.5D, and can be obtained by instantiating $c = \cscs / \text{COSMA}$.

The overlap of communication and computation § 7.3. For this, to leverage the I/O cost

$P = \frac{k + \frac{m + n}{p}}{\frac{p}{\sqrt{x}}} + \frac{m^2 + n^2}{p} + 3 \log_2 \left(\frac{\c^{\text{COSMA}}}{p} \right)

\frac{\log_2 \left(\frac{\c^{\text{COSMA}}} {p} \right)}{p}

Square matrices, "limited memory": $m = n = k, S = 2n^2 / p, p = 2^{m+1}$

"Tall" matrices, "extra" memory available: $m = n = \sqrt{p}, k = p^{1/2} / 4, S = 2nk / p^{3/2}, p = 2^{m+1}$

Solving this problem, we have $Q = \frac{2mnk}{pa} + a^2$ and $L = \frac{b}{h}$

$a^2 + 2ah \leq 5$ (I/O constraint)

$a^2 b = \frac{mnk}{p}$ (load balance constraint)

Note that in practice it is rarely the case, as the parameters usually emerge from external constraints, like a specification of a performed calculation or hardware resources (§ 8). If matrix dimensions are not divisible by the local domain sizes a, b (Equation 4), then a straightforward option is to use the floor function, not utilizing the "boundary" processors whose local domains do not fit entirely in the iteration space, which result in more computation per processor. The other option is to find factors of p and then construct the processor grid by matching the largest factors with largest matrix dimensions. However, if the factors of p do not match m, n, k, this may result in a suboptimal decomposition. Our algorithm allows to not utilize some processors (increasing the computation volume per processor) to optimize the grid, which reduces the communication volume. Figure 5 illustrates the comparison between these options. We balance this communication–computation trade-off by "stretching" the local domain size derived in § 6.3 to fit the global domain by adjusting its width, height, and length. The range of this tuning (how many processors we drop to reduce communication) depends on the hardware specification of the machine (peak flop/s, memory and network bandwidth). For our experiments on the Piz Daint machine, we chose the maximal number of unutilized cores to be 3%, accounting for up to 2.4 times speedup for the square matrices using $2,198$ cores (§ 9).
As shown in Algorithm 1, COSMA by default executes in $t = \frac{2ab}{S-a^2}$ rounds. In each round, each processor receives $s = ab/t = (S-a^2)/2$ elements of A and B. Thus, the input buffers are broadcast among the i and j dimensions of the processor grid. After the last round, the partial results of C are reduced among the k dimension. The communication pattern is therefore similar to ScaLAPACK or CTF.

To accelerate the collective communication, we implement our own binary broadcast tree, taking advantage of the known data layout, processor grid, and communication pattern. Knowing the initial data layout § 7.6 and the processor grid § 7.1, we craft the binary reduction tree in all three dimensions i, j, and k such that the distance in the grid between communicating processors is minimized. Our implementation outperforms the standard MPI broadcast from the Cray-MPICH 3.1 library by approximately 10%.

The minimum number of rounds, and therefore latency, is $t = \frac{2ab}{S-a^2}$ (§ 6.3). However, to exploit more overlap, we can increase the number of rounds $t_2 > t$. In this way, in one round we communicate less data $s_2 = ab/t_2 < s$, allowing the first round of computation to start earlier.

To reduce the latency [27] we implemented communication using MPI RMA [32]. This interface utilizes the underlying features of Remote Direct Memory Access (RDMA) mechanism, bypassing the OS on the sender side and providing zero-copy communication: data sent is not buffered in a temporary address, instead, it is written directly to its location.

All communication windows are pre-allocated using MPI_Win_allocate with the size of maximum message in the broadcast tree $2^{a+1}D$ (§ 7.2). Communication in each step is performed using the MPI_Get and MPI_Accumulate routines.

For compatibility reasons, as well as for the performance comparison, we also implemented a communication back-end using MPI two-sided (the message passing abstraction).

The binary broadcast tree pattern is a generalization of the recursive structure of CARMA. However, CARMA in each recursive step dynamically allocates new buffers of the increasing size to match the message sizes $2^{a+1}D$, causing an additional runtime overhead.

To alleviate this problem, we pre-allocate initial, send, and receive buffers for each of matrices A, B, and C of the maximum size of the message ab/t, where $t = \frac{2ab}{S-a^2}$ is the number of steps in COSMA (Algorithm 1). Then, in each level s of the communication tree, we move the pointer in the receive buffer by $2^{s-1}D$ elements.

COSMA’s schedule induces the optimal initial data layout, since for each D_j it determines its dominator set $Dom(D_j)$, that is, elements accessed by processor j. Denote $A_{i,j}$ and $B_{i,j}$ subsets of elements of matrices A and B that initially reside in the local memory of processor j. The optimal data layout therefore requires that $A_{i,j}, B_{i,j} \subset Dom(D_j)$. However, the schedule does not specify exactly which elements of $Dom(D_j)$ should be in $A_{i,j}$ and $B_{i,j}$. As a consequence of the communication pattern § 7.2, each element of $A_{i,j}$ and $B_{i,j}$ is communicated to g_m, g_n processors, respectively. To prevent data reshuffling, we therefore split each of $Dom(D_j)$ into g_m and g_n smaller blocks, enforcing that consecutive blocks are assigned to processors that communicate first. This is unlike the distributed CARMA implementation [22], which uses the cyclic distribution among processors in the recursion base case and requires local data reshuffling after each communication round. Another advantage of our blocked data layout is a full compatibility with the block-cyclic one, which is used in other linear-algebra libraries.

We evaluate COSMA’s communication volume and performance against other state-of-the-art implementations with various combinations of matrix dimensions and memory requirements. These scenarios include both synthetic square matrices, in which all algorithms achieve their peak performance, as well as “flat” (two large dimensions) and real-world “tall-and-skinny” (one large dimension) cases with uneven number of processors.

As a comparison, we use the widely used ScaLAPACK library as provided by Intel MKL (version: 18.0.2.199)8, as well as Cyclops Tensor Framework7, and the original CARMA implementation8. We manually tune ScaLAPACK parameters to achieve its maximum performance. Our experiments showed that on Piz Daint it achieves the highest performance when run with 4 MPI ranks per compute node, 9 cores per rank. Therefore, for each matrix sizes/node count configuration, we recompute the optimal rank decomposition for ScaLAPACK. Remaining implementations use default decomposition strategy and perform best utilizing 36 ranks per node, 1 core per rank.

All implementations were compiled using the GCC 6.2.0 compiler. We use Cray-MPICH 3.1 implementation of MPI. The parallelism within a rank of ScaLAPACK9 is handled internally by the MKL BLAS (with OpenMP threading) version 2017.4.196. To profile MPI communication volume, we use the mpiP version 3.4.1 [56].

8 the latest version available on Piz Daint when benchmarks were performed (August 2018). No improvements of P[S,D,C,Z]GEMM have been reported in the MKL release notes since then.
9 https://github.com/cyclops-community/cif, commit ID 244561c on May 15, 2018
10 https://github.com/lipshitz/CAPS, commit ID 7589212 on July 19, 2013
9 only ScaLAPACK uses multiple cores per rank
Experimental Setup and Architectures
We run our experiments on the CPU partition of CSCS Piz Daint, which has 1,813 XC40 nodes with dual-socket Intel Xeon E5-2695 v4 processors (2–18 cores, 3.30 GHz, 45 MiB L3 shared cache, 64 GiB DDR3 RAM), interconnected by the Cray Aries network with a dragonfly network topology. We set p to a number of available cores\(^{16}\) and \(S\) to the main memory size per core (§ 2.1). To additionally capture cache size per core, the model can be extended to a three-level memory hierarchy. However, cache-size tiling is already handled internally by the MKL.

Matrix Dimensions and Number of Cores
We use square \((m = n = k)\), "largeK" \((m = n \ll k)\), "largeM" \((m \gg n = k)\), and "flat" \((m = n \gg n = k)\) matrices. The matrix dimensions and number of cores are (1) powers of two \(m = 2^l, n = 2^r, m = 2^s\), (2) determined by the real-life simulations or hardware architecture (available nodes on a computer), (3) chosen adversarially, e.g., \(n^2 + 1\).

Tall and skinny matrices are taken from an application benchmark, namely the calculation of the random phase approximation (RPA) energy of water molecules [21]. To simulate \(w\) molecules, the sizes of the matrices are \(m = n = 136w\) and \(k = 228w^2\). In the strong scaling scenario, we use \(w = 128\) as in the original paper, yielding \(m = n = 17,408, k = 3,735,552\). For performance runs, we scale up to 512 nodes \((18,432\) cores).

Selection of Benchmarks
We perform both strong scaling and memory scaling experiments. The memory scaling scenario fixes the input size per core \((\frac{E}{T} = I = mn + nk + nk)\), as opposed to the work per core \((\frac{m n k}{P} \neq \text{const})\).

We evaluate two cases: (1) "limited memory" \((\frac{E}{T} = \text{const})\), and (2) "extra memory" \((\frac{E^{1/3}}{n} = \text{const})\).

To provide more information about the impact of communication optimizations on the total runtime, for each of the matrix shapes we also separately measure time spent by COSMA on different parts of the code. For each matrix shape we present two extreme cases of strong scaling - with smallest number of processors (most compute-intensive) and with the largest (most communication-intensive). To additionally increase information provided, we perform these measurements with and without communication-computation overlap.

Programming Models
We use either the RMA or the Message Passing models. CTF also uses both models, whereas CARMA and ScALAPACK use MPI two-sided (Message Passing).

Experimentation Methodology
For each combination of parameters, we perform 5 runs, each with different node allocation. As all the algorithms use BLAS routines for local matrix computations, for each run we execute the kernels three times and take the minimum to compensate for the BLAS setup overhead. We report median and 95% confidence intervals of the runtimes.

9 RESULTS
We now present the experimental results comparing COSMA with the existing algorithms. For both strong and memory scaling, we measure total communication volume and runtime on both square and tall matrices. Our experiments show that COSMA always communicates less data and is the fastest in all scenarios.

Summary and Overall Speedups
As discussed in § 5, we evaluate three benchmarks - strong scaling, "limited memory" (no redundant copies of the input are possible), and "extra memory" \((\text{p}^{13}/\text{m}^{12}\text{ extra copies of the input can fit into combined memory of all cores})\). Each of them we test for square, "largeK", "largeM", and "flat" matrices, giving twelve cases in total. In Table 3, we present arithmetic mean of total communication volume per MPI rank across all core counts. We also report the summary of minimum, geometric mean, and maximum speeds up vs the second best-performing algorithm.

Communication Volume
As analyzed in § 5 and § 6, COSMA reaches I/O lower bound (up to the factor of \(\sqrt{S}/(\sqrt{S}+1-1)\)). Moreover, optimizations presented in § 7 secure further improvements compared to other state-of-the-art algorithms. In all cases, COSMA performs least communication. Total communication volume for square and "largeK" scenarios is shown in Figures 6 and 9.

Square Matrices
Figure 8 presents the % of achieved peak hardware performance for square matrices in all three scenarios. As COSMA is based on the near optimal schedule, it achieves the highest performance in all cases. Moreover, its performance pattern is the most stable: when the number of cores is not a power of two, the performance does not vary much compared to all remaining three implementations. We note that matrix dimensions in the strong scaling scenarios \((m = n = k = 2^{14})\) are very small for distributed setting. Yet even in this case COSMA maintains relatively high performance for large numbers of cores: using 4k cores it achieves 35% of peak performance, compared to <5% of CTF and ScALAPACK, showing excellent strong scaling characteristics.

Tall and Skinny Matrices
Figure 9 presents the results for "largeK" matrices - due to space constraints, the symmetric "largeM" case is For strong scaling, the minimum number of cores is 2048 (otherwise, the matrices of size \(m = n = 17,408, k = 3,735,552\) do not fit into memory). Again, COSMA shows the most stable performance with a varying number of cores.

"Flat" Matrices
Matrix dimensions for strong scaling are set to \(m = n = 2^{17} = 131,072\) and \(k = 2^9 = 512\). Our weak scaling scenario models the rank-k update kernel, with fixed \(k = 256\), and \(m = n\) scaling accordingly for the "limited" and "extra" memory cases. Such kernels take most of the execution time in, e.g., matrix factorization algorithms, where updating Schur complements is performed as a rank-k gemm operation [31].

Unfavorable Number of Processors
Due to the processor grid optimization (§ 7.1), the performance is stable and does not suffer from unfavorable combinations of parameters. E.g., the runtime of COSMA for square matrices \(m = n = k = 16,384\) on \(p_1 = 9,216 = 2^{13}\cdot 3^2\) cores is 142 ms. Adding an extra core \((p_2 = 9,217 = 13 \cdot 709)\), does not change COSMA’s runtime, as the optimal decomposition does not utilize it. On the other hand, CTF for \(p_1\) runs in 600 ms, while for \(p_2\) the runtime increases to 1613 ms due to a non-optimal processor decomposition.

\(^{16}\)for ScALAPACK, actual number of MPI ranks is \(p/9\)
Communication-Computation Breakdown

In Figure 10 we present the total runtime breakdown of COSMA into communication and computation routines. Combined with the comparison of communication volumes (Figures 6 and 7, Table 3) we see the importance of our I/O optimizations for distributed setting even for traditionally compute-bound MMM. E.g., for square or “flat” matrix and 16k cores, COSMA communicates more than twice as much as the second-best algorithm, CTF. Even more extreme, with COSMA suffering 2.3 times slowdown if communicating as much as the second-best algorithm, CTF, which being slower than CARMA by 30%. For “largeK”, the situation is even more extreme, with COSMA suffering 2.3 times slowdown if communicating as much as the second-best algorithm, CTF, which communicates 10 times more.

Detailed Statistical Analysis

Figure 11 provides a distribution of the achieved peak performance across all numbers of cores for all six scenarios. It can be seen that, for example, in the strong scaling scenario and square matrices, COSMA is comparable to the other implementations (especially CARMA). However, for tall-and-skinny matrices with limited memory available, COSMA lowest achieved performance is higher than the best performance of CTF and ScaLAPACK.

10 RELATED WORK

Works on data movement minimization may be divided into two categories: applicable across memory hierarchy (vertical, also called I/O minimization), or between parallel processors (horizontal, also called communication minimization). Even though they are “two sides of the same coin”, in literature they are often treated as separate topics. In our work we combine them: analyze trade-offs between communication optimal (distributed memory) and I/O optimal schedule (shared memory).

10.1 General I/O Lower Bounds

Hong and Kung [34] analyzed the I/O complexity for general CDAGs in their red-blue pebble game, on which we base our work. As a special case, they derived an asymptotic bound $\Omega(n^3/\sqrt{p})$ for MMM. Elango et al. [23] extended this work to the red-blue-white game and Liu and Terman [40] proved that it is also P-SPACE complete. Irony et al. [33] extended the MMM lower bound result to a parallel machine with p processors, each having a fast private
memory of size S, proving the $\frac{n^3}{2\sqrt{2p}S} - S$ lower bound on the communication volume per processor. Chan [12] studied different variants of pebble games in the context of memory space and parallel time. Aggarwal and Vitter [2] introduced a two-memory machine that models a blocked access and latency in an external storage. Arge et al. [3] extended this model to a parallel machine. Solomonik et al. [50] combined the communication, synchronization, and computation in their general cost model and applied it to several linear algebra algorithms. Smith and van de Geijn [47] derived a sequential lower bound $2mnk/\sqrt{S} - 2S$ for MMM. They showed that the leading factor $2mnk/\sqrt{S}$ is tight. We improve this result by 1) improving an additive factor of $2S$, but more importantly 2) generalizing the bound to a parallel machine. Our work uses a simplified model, not taking into account the memory block size, as in the external memory model, nor the cost of computation. We motivate it by assuming that the block size is significantly smaller than the input size, the data is layout contiguously in the memory, and that the computation is evenly distributed among processors.

10.2 Shared Memory Optimizations

I/O optimization for linear algebra includes such techniques as loop tiling and skewing [58], interchanging and reversal [57]. For programs with multiple loop nests, Kennedy and McKinley [35] showed various techniques for loop fusion and proved that in general this problem is NP-hard. Later, Darte [20] identified cases when this problem has polynomial complexity.

Toledo [54] in his survey on Out-Of-Core (OOC) algorithms analyzed various I/O minimizing techniques for dense and sparse matrices. Mohanty [42] in his thesis optimized several OOC algorithms. Irony et al. [33] proved the I/O lower bound of classical MMM on a parallel machine. Ballard et al. [5] proved analogous results for Strassen’s algorithm. This analysis was extended by Scott et al. [45] to a general class of Strassen-like algorithms.

Although we consider only dense matrices, there is an extensive literature on sparse matrix I/O optimizations. Bender et al. [7] extended Aggarwal’s external memory model [2] and showed I/O complexity of the sparse matrix-vector (SpMV) multiplication. Greiner [29] extended those results and provided I/O complexities of other sparse computations.
10.3 Distributed Memory Optimizations

Distributed algorithms for dense matrix multiplication date back to the work of Cannon [10], which has been analyzed and extended many times [30] [39]. In the presence of extra memory, Aggarwal et al. [1] included parallelization in the third dimension. Solomonik and Demmel [52] extended this scheme with their 2.5D decomposition to arbitrary range of the available memory, effectively interpolating between Cannon’s 2D and Aggarwal’s 3D scheme. A recursive, memory-oblivious MMM algorithm was introduced by Blumofe et al. [9] and extended to rectangular matrices by Frigo et al. [26]. Demmel et al. [22] introduced CARMA algorithm which achieves the asymptotic complexity for all matrix and memory sizes. We compare COSMA with these algorithms, showing that we achieve better results both in terms of communication complexity and the actual runtime performance. Lazzaro et al. [38] used the 2.5D technique for sparse matrices, both for square and rectangular grids. Koanantakool et al. [37] observed that for sparse-dense MMM, 1.5D decomposition performs less communication than 2D and 2.5D schemes, as it distributes only the sparse matrix.

11 CONCLUSIONS

In this work we present a new method (Lemma 1) for assessing tight I/O bounds of algorithms using their CDAG representation and the red-blue pebble game abstraction. As a use case, we prove a tight bound for MMM, both for a sequential (Theorem 1) and parallel (Theorem 2) execution. Furthermore, our proofs are constructive: our COSMA algorithm is near I/O optimal (up to the factor of $\sqrt{3}/\sqrt{5+1-1}$, which is less than 0.04% from the lower bound for 10MB of fast memory) for any combination of matrix dimensions, number of processors and memory sizes. This is in contrast with the current state-of-the-art algorithms, which are communication-inefficient in some scenarios.

To further increase the performance, we introduce a series of optimizations, both on an algorithmic level (processor grid optimization (§ 7.1) and blocked data layout (§ 7.6)) and hardware-related (enhanced communication pattern (§ 7.2), communication-computation overlap (§ 7.3), one-sided (§ 7.4) communication). The experiments confirm the superiority of COSMA over the other analyzed algorithms - our algorithm significantly reduces communication in all tested scenarios, supporting our theoretical analysis. Most importantly, our work is of practical importance, being maintained as an open-source implementation and achieving a time-to-solution speedup of up to 12.8x times compared to highly optimized state-of-the-art libraries.

The important feature of our method is that it does not require any manual parameter tuning and is generalizable to other machine models (e.g., multiple levels of memory) and linear algebra kernels (e.g., LU or Cholesky decompositions), both for dense and sparse matrices. We believe that the “bottom-up” approach will lead to developing more efficient distributed algorithms in the future.

Acknowledgements

We thank Yishai Oltchik and Niels Gleinig for invaluable help with the theoretical part of the paper, and Simon Pintarelli for advice and support with the implementation. We also thank CSCS for the compute hours needed to conduct all experiments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon2020 programme (grant agreement DAPP, No.678880), and additional funding from the Platform for Advanced Scientific Computing (PASC).