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and MeteoSwiss, Zürich, Switzerland12

Salvatore Di Girolamo13

Computer Science, ETH Zürich, Switzerland14
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ABSTRACT

Currently major efforts are underway towards refining the horizontal reso-

lution (or grid spacing) of climate models to about 1 km, using both global

and regional climate models (GCMs and RCMs). Several groups have suc-

ceeded in conducting km-scale multi-week GCM simulations, and decade-

long continental-scale RCM simulations. There is the well-founded hope that

this increase in resolution represents a quantum jump in climate modeling, as

it enables replacing the parameterization of moist convection by an explicit

treatment. It is expected that this will improve the simulation of the water

cycle and extreme events, and reduce uncertainties in climate-change projec-

tions. While km-scale resolution is commonly employed in limited-area nu-

merical weather prediction, enabling it on global scales for extended climate

simulations requires a concerted effort. In this paper, we exploit an RCM that

runs entirely on graphics processing units (GPUs) and show examples that

highlight the prospects of this approach. A particular challenge addressed in

this paper relates to the growth in output volumes. It is argued that the data

avalanche of high-resolution simulations will make it impractical or impossi-

ble to store the data. Rather, repeating the simulation and conducting online

analysis will become more efficient. A prototype of this methodology is pre-

sented. It makes use of a bit-reproducible model version that ensures repro-

ducible simulations across hardware architectures, in conjunction with a data

virtualization layer as a common interface for output analyses. An assessment

of the potential of these novel approaches will be provided.
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Capsule summary64

Kilometer-resolution climate models provide exciting prospects, as they will explicitly represent65

convective clouds. We explore this approach using a limited-area atmospheric model and discuss66

prospects, challenges and potential solutions.67

1. Introduction68

While the basic scientific concepts of anthropogenic climate change are now well established,69

uncertainties in climate projections have remained staggeringly large. For instance, current esti-70

mates of the equilibrium climate sensitivity (ECS) – the equilibrium global surface warming in71

response to a doubling of atmospheric CO2 concentration – are between 1.5 and 4.5 ◦C. Over the72

last 40 years, this uncertainty range, covering a probability of 66%, has not narrowed (Charney73

et al. 1979), and according to the most recent IPCC assessment report, even extreme values of74

the ECS (below 1 ◦C and above 6 ◦C) cannot be excluded (IPCC 2013). This evident uncertainty75

makes it difficult to plan for adequate response strategies essential to mitigate the anticipated76

warming. Reducing this uncertainty is also of paramount importance in order to provide more re-77

liable projections of sea-level rise, regional climate change and extreme events, which are essential78

to climate change adaptation.79

The key reason behind the slow progress in reducing the uncertainties of climate projections is80

likely the lack of adequate computational resolution, together with the importance of small-scale81

processes in the climate system. In particular, there is evidence that the response of tropical and82

subtropical clouds may significantly amplify or reduce global warming, depending upon changes83

in cloud reflectivity with global warming (Bony and Dufresne 2005; Sherwood et al. 2014; Schnei-84

der et al. 2017, 2019). Likewise, eddy-resolving ocean models are expected to contribute towards85

reducing uncertainties in ECS by better representing ocean heat uptake (e.g. Gregory et al. 2002;86
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Ringler et al. 2013; Hewitt et al. 2017), but in the current article we will focus on atmospheric87

models.88

With the advent of emerging supercomputing platforms, and with the progress in high-resolution89

climate modeling, there are now promising prospects to refine the horizontal resolution1 of global90

climate models from today’s 50-100 km to 1-2 km, thereby explicitly resolving some of the small-91

scale convective cloud processes (e.g. thunderstorms and rain showers). There is the well-founded92

hope that this increase in resolution might lead to a quantum jump in climate modeling, as it93

enables replacing the parameterizations of moist convection and gravity-wave drag by explicit94

treatments (Palmer 2014). It is also hoped that this will improve the simulation of the water cycle95

and of extreme events, and reduce uncertainties in ECS. However, what resolution will actually96

be needed for the later purpose is not yet fully understood. On the one hand, convective cloud97

processes (dynamics, turbulence and microphysics) occur on scales that are not fully resolved at98

km-resolution (Skamarock 2004; Neumann et al. 2019; Panosetti et al. 2019). On the other hand,99

studies have indicated that there is some bulk convergence at grid resolutions around 2 km, i.e. the100

feedbacks between convective clouds and the larger-scale flow are partly captured at resolutions101

at which the structural details of the cloud field are not yet fully resolved (Langhans et al. 2012;102

Harvey et al. 2017; Ito et al. 2017; Panosetti et al. 2018, 2019). Following Schulthess et al. (2018)103

and Neumann et al. (2019) we thus assume that a global resolution of 1 km is a suitable near-term104

target. Thus further improvements in the parameterizations of the turbulence and microphysical105

processes appear essential, as these processes will remain poorly resolved.106

The development and testing of climate models with horizontal resolutions of around 1 km is107

already well underway. Both global and regional models have contributed to this development,108

with the former refining the horizontal resolution on a global domain, and the latter expanding109

1In this paper we are using the terms “resolution” and “grid spacing” synonymously.
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the computational domains of high-resolution limited-area models (Fig. 1). The target (1 km on a110

global domain) can be approached both ways. The figure also shows an estimate of the relative111

computational costs (green lines), assuming that the vertical resolution is kept constant, where-112

upon the number of operations scales with Nz A∆x−3, with A denoting the horizontal area of the113

domain, Nz the number of vertical levels, and ∆x the horizontal grid spacing. This scaling assumes114

perfect computational scalability and that the time step is refined together with the horizontal reso-115

lution, consistent with maintaining a constant Courant number, a measure for how far information116

propagates per timestep relative to the gridspacing.117

Some prototype simulations (e.g. Miyamoto et al. 2013; Fuhrer et al. 2018) are already close118

to the target (Fig. 1, right-hand panel), but these models have not yet been run over climate time119

periods, but merely over days to seasons. There are also major initiatives on the further devel-120

opment of these approaches, such as the Energy Exascale Earth System Model (E3SM)2 of the121

US Department of Energy, or the high-resolution modeling activities at many weather and climate122

centers culminating in simulations of 9 atmosphere-only codes at kilometer-scale resolution for a123

40-day-long common simulation period (Satoh et al. 2019, DYAMOND3).124

In any case, realizing the potential of global convection-resolving climate simulations requires125

enormous efforts and innovative solutions at the interface of computer and climate sciences. Some126

of these aspects will be addressed in this paper: How can we efficiently leverage the next genera-127

tions of supercomputers? What programming languages should we use to make our climate codes128

future-proof? How can we overcome the data avalanche generated by high-resolution models?129

How can we trade storing the model output with re-computation of model simulations?130

2https://e3sm.org/
3https://www.esiwace.eu/services-1/dyamond-initiative
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We will discuss these aspects by exploiting a version of the COSMO limited-area model that has131

extensively been used at km-resolution in the last decade, and that can be run entirely on modern132

supercomputers at unprecedented speed. While this framework is still far away from the global-133

domain km-scale target, the main challenges are exposed and potential solutions can be assessed.134

Sections 2 and 3 of the paper outlines the main challenges and potential strategies, and Section 4135

presents some specific applications and results. The study is concluded in Section 5.136

2. Challenges of km-scale resolution137

a. Exploiting next generation hardware architectures138

While high-performance computing (HPC) system performance has continued to increase year139

after year 4, a series of fundamental technology transitions had profound impacts on programming140

models and simulation software. After decades of scaling transistor power efficiency, the energy141

required to move data has become the dominant performance constraint (e.g., Kestor et al. 2013).142

Figure 2 presents the energy consumption for elementary store and compute operations. It illus-143

trates the fact that for common operations (reading two double precision floating point numbers144

from system memory, performing an addition, and storing the result back into system memory)145

the energy required for the data transfers is approximately 100 times larger than that required to146

execute the actual arithmetic operation. Finally, energy constraints for large HPC systems have led147

to heterogeneous node designs with accelerators such as graphics processing units (GPUs). With148

the end of exponential scaling of transistor size towards the end of this decade (often referred to as149

Moore’s law), disruptive architectural changes and architectural diversity and complexity are ex-150

pected to continue to increase. In order to take advantage of the computational power of the largest151

HPC systems, climate models have to be able to run on these emerging hardware architectures.152

4https://top500.org
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Lacking proper programming abstractions, details of these novel hardware architectures are ex-153

posed to the application developer via software libraries (e.g., MPI to handle data movement be-154

tween remote memories), extensions to programming languages (e.g., OpenACC compiler direc-155

tives for GPU programming) or entirely new programming languages (e.g., CUDA, a language for156

GPU programming). The climate modeling community has begun to realize the enormity of the157

challenge facing them. A climate model typically has on the order of one million lines of source158

code, rendering the traditional programming paradigms and development process unsustainable.159

As a consequence, global fully-coupled climate models are not capable of efficiently leveraging160

current leadership class HPC systems. The effort required for the maintenance, validation, and161

migration of climate models has increased drastically. This has become known as the software162

productivity gap (Lawrence et al. 2018).163

One important design principle of modern software engineering is the separation of concerns.164

It means splitting a computer program into different parts, where each part deals with a separate165

concern. To this end, there has been an increased interest in the development of higher-level ab-166

stractions for weather and climate models (Bertagna et al. 2018; Adams et al. 2019; Fuhrer et al.167

2014; Clement et al. 2018, e.g.,). For example, domain-specific languages (DSLs) can help sepa-168

rate hardware architecture-dependent details from the source code written by the climate scientists169

(see ”Domain-specific languages explained” sidebar). As a result, the source code of a GCM or170

RCM implemented using a DSL is more concise and more easily maintainable.171

b. Choice of numerical methods172

Weather and climate models consist of a dynamical core and physical parameterizations. For173

large-scale atmospheric simulations at resolutions explicitly resolving deep convection, choosing174

a fully compressible, nonhydrostatic set of primitive equations is essential (Davies et al. 2003).175
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The optimal (fastest for a given accuracy) numerical approach for solving these equations depends176

on the hardware architecture and the underlying numerical method. In particular, the exchange of177

data across the computational mesh (and thus data movement across compute nodes) is strongly178

influenced by the numerical method employed. Some schemes avoid global communication (i.e.179

data is moved only between neighboring grid points), but have rigorous timestep restrictions (e.g.180

horizontally-explicit, vertically-implicit methods, see Lock et al. 2014). Others require iterative181

solvers and/or global communication at each timestep, but allow for much longer timesteps (e.g.182

semi-implicit semi-Lagrangian or pseudo-spectral methods, see Tanguay et al. 1990; Temperton183

et al. 2001).184

In the real atmosphere, the speed of sound is the fastest velocity in the system. Thus, the tem-185

poral evolution of the atmosphere at a given location is influenced by a neighborhood determined186

approximately by sound propagation (Fig. 3a). This neighborhood is referred to as the physical187

domain of dependence. Any numerical scheme must respect this principle, and the numerical do-188

main of dependence must be identical to or larger than its physical counterpart. However, in order189

to minimize data communication, the numerical domain of dependence should also be as small as190

allowable. For some implementations (Zängl et al. 2015; Skamarock et al. 2012; Baldauf et al.191

2011; Kühnlein and Smolarkiewicz 2019) data is exchanged at about twice the minimum rate as192

determined by sound propagation (Fig. 3b), while the spectral approach requires global commu-193

nication at each time step (Fig. 3c). It is thus evident that data communication requirements are194

strongly affected by the underlying numerical approach, and the implied computational costs are195

influenced in turn by the hardware configuration of the employed supercomputer (e.g. its node-196

to-node network topology). With higher computational resolution (when more compute nodes197

become involved), or with current hardware trends (when data movement become more costly),198

numerical methods with little across-node communication will often have a faster performance.199
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Among other methodologies, the split-explicit approach, as employed in our work-horse200

COSMO model, is well suited for this challenge, as it restricts communication to near-neighbors201

and provides perfect weak scaling (Fuhrer et al. 2018). Perfect weak scaling means that the com-202

putational domain of a simulation can be expanded in parallel with the number of computational203

nodes employed, without increasing the wall-clock time required to run the simulation.204

c. Coping with the data avalanche205

The climate modeling community is already struggling to cope with the data volumes produced206

by the current simulation efforts. For instance, performing all the simulations considered for the207

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al. 2016) would amount to208

about 800 TB of output for each of the 100 participating models (Balaji et al. 2018). While it209

is impossible to foresee all the experiments envisioned in future editions, projecting the output210

volume of the compulsory DECK simulations (Table 1) seems like an illustrative exercise. The211

DECK consist of four simulations, which every model participating in CMIP6 needs to complete212

(see Table for details). Performing these simulations at kilometer-scale resolution would exceed213

the expected overall data volume of CMIP6 by about three orders of magnitude (Table 1, fourth214

column). This assumes that only a small fraction of the total data is written to disk, while for some215

applications higher output frequency is needed (see, e.g., examples in Section 4c). A more recent216

development are DECK simulations with up to 100 – 1000 ensemble members (Large/Grand En-217

sembles, e.g., Maher et al. 2019). While these simulations would be particularly useful to address218

rare and extreme events, the expected data volume typically prevents storing data at sub-daily in-219

tervals, which would be essential for, e.g., the analysis of diurnal cycles, weather system dynamics,220

precipitation, and wind extremes.221
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One possibility to overcome the output avalanche is to merely store the simulation setup, initial222

conditions and restart files, and re-run the simulation on demand when needed to perform a specific223

analysis. A more sophisticated scheme would restart the simulation in parallel from a series of224

restart files. This in principle enables to arbitrarily trade off storage for computation. Depending225

upon the available hardware resources, an optimized design of a re-simulation (in terms of cost and226

time) might employ an alternate software configuration (e.g., using a different number of compute227

nodes), or even an alternate hardware platform.228

In order to ensure exactly the same results when re-simulating the chaotic dynamical system,229

we must ensure that the simulation code itself is bitwise reproducible, i.e., produces exactly the230

same output, bit by bit, when re-run with the same input. Bitwise reproducibility is potentially231

also required across different hardware architectures, depending on the setup of the re-simulation.232

Whether bitwise reproducibility is required will depend upon the targeted analysis. Consider for233

instance an analysis focusing on a few major hurricanes in an extended simulation, then the lack of234

bitwise reproducibility presents a serious hurdle (as hurricanes might disappear or change with the235

chaotic dynamics). Alternatively, for the statistical evaluation of short-term precipitation events,236

bitwise reproducibility might not be needed, provided the simulation considered is sufficiently237

long.238

It is often assumed that bitwise reproducibility comes at a significant performance cost. How-239

ever, recently, various approaches to ensure bitwise reproducibility with small performance over-240

heads have been demonstrated by Demmel and Nguyen (2013). Arteaga et al. (2014) demonstrated241

how to integrate such approaches into full scientific applications. These developments enable effi-242

cient re-simulation and will be discussed later in this paper.243
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d. Compliance with Data Policies, FAIR principles244

In recent years the issue of data sharing and data accessibility has received growing attention245

(Sloan and Alper 2018; National Academies of Sciences and Medicine 2018; Schuster et al. 2019).246

To make maximum use and reuse of scientific data, it should be Findable, Accessible, Interoper-247

able und Reusable (FAIR) (Wilkinson et al. 2016). Publishers have taken action and their data248

policies address data accessibility. For example the American Meteorological Society (AMS) has249

issued a policy statement: “the AMS encourages the Earth System Science community to provide250

full, open, and timely access to environmental data and derived data products, as well as all associ-251

ated information necessary to fully understand and properly use the data (metadata)”5. Moreover,252

many journals require that the storage archive for the underlying data is documented in the article253

upon publication. Organizations such as the Coalition for Publishing Data in the Earth and Space254

Sciences (COPDESS) have been founded to facilitate FAIR data.255

It is not clear yet, how the FAIR principles can be extended to include the workflow proposed256

in this study, namely re-simulating data once it is required for further analysis. Especially the257

aspect of a timely access to the data is challenging, and often the required source code is subject258

to some licence agreement. It is clear that these emerging strategies will also require updates of259

data policies. In particular, guaranteeing bitwise reproducibility over extended time periods (say260

5-10 years) should become a central element of the FAIR principles, as for some applications261

recomputation will become more cost-effective than storing the output.262

5https://www.ametsoc.org/ams/index.cfm/about-ams/ams-statements/statements-of-the-ams-in-force/full-and-open-access-to-data/
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3. Strategies towards km-scale resolution263

a. The target model264

In this study we use the COSMO (Consortium for Small-scale Modeling, Steppeler et al. 2003;265

Baldauf et al. 2011) model. COSMO is a community model used by many national weather266

services worldwide as well as research groups at over 100 universities. The COSMO model is a267

limited-area model used for both numerical weather prediction and climate modeling by the CLM-268

Community6. The findings and results presented in this paper have all been carried out using a269

version of the COSMO model refactored for heterogeneous computing architectures (Fuhrer et al.270

2014). This version also supports execution in single precision (Düben and Palmer 2014). The271

overall effort to refactor COSMO is approximately 20 man-years. We expect that the learnings272

presented in this article from COSMO carry over to many other models.273

b. Domain-specific languages274

Dynamical cores of atmospheric or ocean models such as COSMO typically do not contain sin-275

gular performance hot spots that can simply be replaced with an efficient implementation7. Rather,276

the program code often contains a series of iterations over all grid points (for example applying277

a fourth order diffusion filter as in the sidebar ”Domain-specific languages explained”). As men-278

tioned in Section 2a, achieving good performance on current high-performance computing systems279

requires decorating the code with hardware dependent compiler directives to specify parallelism280

and the schedule of how the loop iterations will be executed (see Section c). Further, optimizations281

often entail changes in the looping structure (e.g., blocking), the data structures, and typically also282

the fusion of consecutive iterations over all grid points. The consequences of the above changes283

6https://www.clm-community.eu
7Spectral transforms are a notable exception.
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are loss of performance portability, significant decrease in maintainability of the code and often284

sub-optimal performance.285

Choosing an alternative route, the dynamical core of the COSMO model has been rewritten using286

the GridTools DSL (Gysi et al. 2015; Fuhrer et al. 2014). GridTools is a domain-specific language287

that eases the burden of the application developer by separating the architecture dependent im-288

plementation strategy from the user-code. GridTools is currently implemented in C++ by using289

template metaprogramming; thus an application based on GridTools needs to be implemented in290

C++. GridTools has become publicly available under a permissive open-source license in March291

20198.292

c. Use of OpenACC293

While code re-writing using DSLs offers many advantages in terms of performance and main-294

tainability, it may not be applicable to the entire code base. In addition, some parts like the physical295

parameterizations have been developed by a large and active community, which may not be ready296

for changing their programming paradigm. However, in order to avoid costly CPU to GPU data297

transfers, most parts of the code need to run on the GPU. To achieve this, an OpenACC compiler298

directive porting approach was used for all components of the COSMO model that had not been299

re-written using DSLs (Fuhrer et al. 2014; Lapillonne and Fuhrer 2014).300

The OpenACC compiler directives can be added to existing code, to tell the compiler which part301

should run on the GPU, offering the possibility to incrementally adapt the code for GPUs. While302

the directive approach does not offer a hardware optimization comparable to DSLs, it allows to303

achieve reasonable performance. Some parts of the code have been further optimized and restruc-304

tured to achieve a better performance on GPUs. In some cases these changes are not performance305

8http://www.github.com/GridTools/
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portable, i.e., they have a negative impact on the CPU execution time, such that two code paths306

– one for CPU and one for GPU – need to be maintained. Although this approach has proven307

successful to port large legacy codes, the OpenACC compiler directives have limitations and the308

long-term support of OpenACC compilers is not guaranteed at this stage. Thus our approach309

requires re-evaluation in the future as new programming paradigms emerge.310

Overall the COSMO model with the re-written GridTools dynamical core and with the other311

components ported with OpenACC directives runs about 3 to 4 times faster on GPUs than the312

original code on CPUs when comparing hardware of the same generation (Fuhrer et al. 2014;313

Leutwyler et al. 2016). Similar speedups have been reported by other studies (Govett et al. 2017,314

e.g.,).315

d. Emerging programming paradigms for climate models316

The complexity of climate models is already challenging at current resolutions. However, with317

further resolution increases, and with the need to account for newly emerging hardware architec-318

tures, these challenges become even more significant. In practice there is a high compartmental-319

ization of the model development, with dynamical cores and physics packages mostly developed320

in isolation (Donahue and Caldwell 2018). The immediate downside of this approach is the pro-321

liferation of model components with incompatible structures. Transferring such components to322

other models often requires a large amount of work (Randall 1996).323

The recognition of the need for standardizing Earth system models dates back to the 1980s324

(Pielke and Arritt 1984). Kalnay et al. (1989) suggested a list of basic programming rules to design325

plug-compatible physics packages, enabling a high degree of scientific code exchange. This led to326

the idea of a common software infrastructure that couples different components while enhancing327

interoperability, usability, software reuse, and performance portability (Dickinson et al. 2002).328
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Notable examples of such coupling frameworks include the Earth System Modeling Framework329

(ESMF) combined with the National Unified Operational Prediction Capability (NUOPC) layer330

(Hill et al. 2004; Theurich et al. 2016), the Flexible Modeling System (FMS) (Balaji 2012), the331

Program for Integrated Earth System Modeling (PRISM) framework (Guilyardi et al. 2003), and332

the Weather Research and Forecast (WRF) code infrastructure (Michalakes et al. 2005).333

All these frameworks are coded in Fortran, which remains the preferred programming language334

for software development in climate models. However, the new generations of atmospheric and335

computer scientists are more familiar and proficient with higher-level languages, e.g., Python.336

Python has been increasingly used by academics and scientists due to its clean syntax, great ex-337

pressiveness and a powerful ecosystem of open source packages, making it ideal for fast prototyp-338

ing (Millman and Aivazis 2011). Yet, its direct application in high-performance computing has339

historically been limited by the inherent execution slowness of the Python interpreter. Solutions to340

overcome the interpreter overhead exist, including DSLs endowed with lower-level and optimized341

backends.342

In most of the traditional frameworks, the calling sequence of parameterizations (or components343

like ocean, land, and sea ice) is hard-coded for efficiency reasons. sympl (System for Modeling344

Planets; Monteiro et al. 2018) attempts to circumvent this and other limitations by providing a345

toolset of Python objects to build hierarchies of Earth system models, in which each component346

represents a physical process. A model is thus conceived as a chain of computing blocks, which347

act on and interact through the state, i.e., the set of variables describing the model state at any point348

in time. The state is encoded as a dictionary of multi-dimensional arrays which enables metadata-349

aware operations (Hoyer and Hamman 2017). To illustrate how this dictionary works, consider350

a scientist who intends to develop a new parameterization. In doing so, he/she requires access351

to specific variables of the model state. In current climate modeling frameworks, this requires352
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specific knowledge about how the data is stored and how it can be accessed. In contrast, sympl353

provides a transparent set of tools for accessing the data in the model state dictionary. The tools354

take care of some of the annoying issues, such as the transformation of data between different355

units. In doing so, it hides the complexities of the data storage in the respective parent model, and356

can in principle provide a general approach across many different models.357

Currently several research groups are exploring sympl. In our own work, we are using it to358

investigate the physics time stepping. Although it appears to be of similar importance as the359

choice of the spatial discretization (Knoll et al. 2003), in the majority of the current weather and360

climate codes the time stepping is merely accurate to first order, and the results and sensitivity361

of models depend upon the choice of the calling sequence (e.g. Donahue and Caldwell 2018;362

Gross et al. 2018). It is not only the lack of a common interface, but also the simplified time363

stepping, that hinders the exchange of parameterizations. With the help of an idealized hydrostatic364

model in isentropic coordinates, we are currently conducting numerical experiments to quantify365

the impact of the employed coupling strategy on the solution. We find that sympl is a suitable366

prototype framework for building flexible, modular and interoperable codes, and believe that such367

frameworks could aid the development of future climate codes.368

e. Bit-reproducible code369

A bit-reproducible climate model produces the exact same numerical results for a given preci-370

sion, regardless of its execution setup – which includes the choice of domain decomposition, the371

type of simulation (continuous or restarted), compilers, and the architectures executing the model372

(CPU or GPU).373

One source of non-reproducibility stems from the way arithmetic operators are evaluated on a374

computer. A floating-point arithmetic operation is equivalent to the application of the operator375
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on the operands, followed by a rounding of the result: r(a+ b) 6= a+ b, where r(·) denotes the376

rounding function. The latter function produces a representable floating-point value in the com-377

puter’s memory from a real number. For simple operations (addition, subtraction, multiplication,378

division and square root), the IEEE-754 standard ensures bit-wise reproducibility across hard-379

ware architectures (Zuras et al. 2008; Arteaga et al. 2014). However, the associativity property380

of arithmetic operators is broken. This means that (a+ b)+ c = a+(b+ c) is not preserved, as381

r(r(a+b)+c) 6= r(a+r(b+c)). Although the rearrangements are equivalent in their mathematical382

form, they are not equal in a floating point computation.383

Achieving reproducibility across architectures is a challenge, as compilers don’t produce the384

same executable code when targeting different hardware architectures (i.e., GPU or CPU). Math-385

ematical expressions can be rewritten (contraction, re-association, fast mathematics) in different386

manners to ensure best performance on the targeted architecture, leading to potentially different387

results due to the aforementioned properties of floating-point arithmetic. The key points to achieve388

bit-reproducibility with COSMO are to (i) forbid the re-association of mathematical expression,389

(ii) forbid the creation of alternative execution strategies for a given computation, (iii) forbid the390

usage of mathematical approximation or contraction operators, and (iv) provide portable transcen-391

dental functions (i.e., logarithm, exponential function, or the trigonometric functions) to ensure392

reproducibility of their evaluation.393

Compilers can be more or less aggressive with the level of optimization they apply. By using394

execution flags, the user can have some control over the optimizations applied during compilation.395

We used a set of flags that limits instructions rearrangement as much as possible (see Supple-396

mentary Table 1). This increases the probability that compilers targeting different architectures397

produce identical mathematical expressions. Finally we wrote a preprocessor to automatically398

add parentheses to every mathematical expressions of the model, ensuring a unique way to evalu-399
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ate these expressions. The preprocessor also replaces all intrinsic function calls with our custom400

version of portable transcendental functions.401

In our work with COSMO, reproducibility between the CPU (Intel Xeon E5-2690) and GPU402

(Nvidia Tesla K80) versions of the model has been achieved, although at the time of writing403

discrepancies remain in some modules relevant for long simulations and with restarted simulations.404

These challenges still need to be addressed. The performance penalty of making the code bit-405

reproducible is acceptable (Figure 4). On the CPU the bit-reproducible version is 37% slower406

than the original version of the program code, and on the GPU it is 13% slower. Overall this407

demonstrates that the overhead associated with bit-reproducibility may be smaller than previously408

thought.409

f. Virtualization layer410

Data produced by high-resolution simulations is expected to be potentially valuable for a large411

number of climate and impact scientists over the course of decades. The way this data is commonly412

analyzed today is by storing it on disk and letting the analysis applications access it. This solution413

enables the analyses to access the data with arbitrary access patterns (e.g., forward or backward414

in time) and guarantees that the exact same data can be re-analyzed to produce the same results.415

However, high-resolution simulations produce petabytes of data today, and may produce exabytes416

in the near future (Table 1): storing this amount of data for long periods of time is not cost-417

effective and, in some cases, not possible at all. This issue can be addressed by employing online418

(or in-situ) analyses. Online analysis provides a solution to this problem by not storing data and419

by coupling analyses and simulations. However, this approach leads to a loss of flexibility (e.g.,420

the data access pattern of the analysis must follow the the simulation), and most of the times it421

requires to instrument the model code with analysis software (Zhang et al. 2012) that run as the422
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data is produced by the model. While this alleviates the storage issues (for our European-scale423

simulations, storage for the monthly restart files amounts to only 38 GB in comparison to the424

standard output per month of 0.4 TB), this approach makes the analysis less flexible.425

We developed and tested SimFS (Di Girolamo et al. 2019), a virtualization layer that is in be-426

tween the analysis applications and the simulation data (https://github.com/spcl/SimFS). SimFS427

exposes a virtualized view of the simulation data: the data is seen by the analysis as if it was on428

disk, while it may not be stored there. SimFS is responsible to re-create data that is being accessed429

by an analysis but not present on disk (i.e., on-demand).430

Analysis applications can be transparently interfaced to the virtualization layer: calls to standard431

I/O libraries (e.g., netCDF, HDF5) are intercepted by a SimFS client library that can be loaded at432

runtime into the analysis application, without requiring any changes of the analysis code. To guide433

optimizations and gain control and information about the virtualized environment, the analysis can434

also interface SimFS through a set of specialized Application Programming Interfaces (APIs).435

Virtualizing the simulation data means enabling the analysis of multi-petabytes datasets on ter-436

abytes storage systems. As a consequence, SimFS may need to evict data when the given storage437

share becomes full. To select which files to evict, SimFS tracks the analyses access patterns and438

employs caching and prefetching strategies to (1) identify the most relevant (i.e., most accessed)439

parts of simulation data and keep them on-disk, avoiding their resimulation and (2) minimize the440

time to recover missing data.441

Figure 5 sketches the SimFS workflow. The scientists set up the initial simulation that runs to442

completion (top-left) and produces the restart files (black files in top-right) that are stored. Later,443

analysis tools access the simulation data through the virtualization layer (bottom-left). SimFS444

intercepts these accesses and manages/restarts simulations to recreate the requested output data if445
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not already present (bottom-right). The system can be configured to cache the simulation data on446

a hierarchy of data storage mediums (e.g., fast flash memories, mechanical disks, magnetic tapes).447

SimFS requires that simulations can be restarted and deliver bitwise-identical output (see448

Sec. 3e). If bitwise reproducibility is not provided, analyses should be able to operate on data449

that can differ from the one produced by the initial simulation.450

4. Results and applications451

a. Near-global benchmarking452

As stated in Section 1, there is significant thrust in the modeling community to decrease the453

grid spacing of global climate simulations to the kilometer-scale in order to address some of the454

most pressing deficiencies in understanding and projections of climate change. Fig. 1 summarizes455

some of the pioneering simulations that have been reported in the literature, notably the prototype456

simulations of Miyamoto et al. (2013) and Fuhrer et al. (2018). But how far are we from actually457

achieving kilometer-scale simulations on leadership class HPC facilities?458

One of the most important metrics for assessing the usability of climate simulations is the simu-459

lation throughput measured in simulated years per wall-clock day (SYPD). Different applications460

of global climate models require different minimal simulation throughput in order to be feasible.461

For example, a global climate model achieving 1 SYPD on a given HPC system can be considered462

useful for simulations spanning several decades. While not sufficient for all applications, 1 SYPD463

can be considered a reasonable first target for global kilometer-scale climate simulations.464

Since COSMO is one of the few models which has been systematically adapted to run on modern465

supercomputer architectures with GPU-accelerated node designs, it is an interesting benchmark to466

consider. Fuhrer et al. (2018) report a simulation throughput of 0.043 SYPD for idealized, near-467
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global simulations using the COSMO model on 4,888 nodes of the Piz Daint supercomputer at468

CSCS with a grid spacing of 0.93 km. In an detailed analysis, Schulthess et al. (2018) conclude,469

that this result corresponds to an approximately 100x shortfall with respect to the defined goal.470

Summit, the system currently leading the TOP500 ranking of supercomputers, has approxi-471

mately 5x more GPUs than Piz Daint and a more recent generation of GPUs (NVIDIA Tesla472

V100 16GB) which execute COSMO 1.5x faster than the GPUs in Piz Daint (NVIDIA Tesla P100473

16GB). We can not expect to be able to scale COSMO to the full Summit system, but results474

from Fuhrer et al. (2018) indicate that further linear strong scalability by a factor three is possible.475

Taking these factors into account, we find that running a global climate simulation with a realistic476

setup (cf. Table 1 of Schulthess et al. 2018) and a horizontal grid spacing of 1 km on the currently477

largest supercomputer available would fall short of the 1 SYPD target by approximately a factor478

of 20x (Schulthess et al. 2018). A recent study by Neumann et al. (2019) reports a shortfall of479

a factor of 30x, extrapolating results from the ICON model at 5 km grid spacing and assuming480

perfect weak scaling.481

Addressing the remaining shortfall will likely require a combination of several strategies, in-482

cluding algorithmic, software and hardware improvements. Addressing the challenge of I/O for483

global kilometer-scale simulations will require fundamental changes in our simulation and analy-484

sis workflow such as SimFS.485

However, at a resolution of 2 km, the simulation throughput of COSMO on Piz Daint for a486

regional climate simulation setup already reaches 0.23 SYPD, thus the model can already be used487

for decade-long continental-scale simulations at such a resolution. Some examples are shown in488

the next section.489
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b. Regional climate simulations490

There are three areas where km-scale resolution is raising hopes for significant benefits. First,491

there is a better representation of the underlying surface – complex topography, coast lines, and492

land-surface properties. Second, higher resolution allows to better represent meso-scale pro-493

cesses and the associated feedbacks to the larger scale, such as fronts, orographic wind systems,494

boundary-layer processes, and soil-moisture atmosphere feedbacks. Third, and likely most impor-495

tantly, km-scale resolution allows switching off two of the most critical parameterizations in cli-496

mate models, namely moist convection and gravity-wave drag, which constitute critical sources of497

uncertainties in climate change projections. Explicit simulation of convection has led to significant498

improvements in simulations of the diurnal cycle of precipitation, addressing aspects of frequency499

and intensity of heavy hourly precipitation (e.g., Kendon et al. 2012; Ban et al. 2014, 2015; Prein500

et al. 2015; Leutwyler et al. 2017; Berthou et al. 2018), which can potentially lead to hydrological501

impacts like flash floods, floods and landslides. An example of this is shown in Figure 6 for hourly502

precipitation over Europe on a summer day. The 12 km model produces widespread low-intensity503

precipitation (a long-standing problem of convective parameterizations), while a more realistic504

representation of intense summer precipitation is obtained in the 2 km model. Furthermore, km-505

scale resolution is needed for resolving local scale wind systems, like sea breeze and orographic506

circulations (e.g., Belušić et al. 2018), and for a better representation of clouds and their vertical507

profiles (e.g., Hentgen et al. 2019).508

A comparison of cloud cover at different resolutions over the tropical Atlantic is shown in Fig-509

ure 7. In comparison with MODIS9 (Moderate Resolution Imaging Spectroradiometer imagery)510

observations, convection-parameterized simulations at 50 and 12 km show an overestimation of511

clouds and do not reproduce the organized cloud structures visible in observations. In contrast,512

9https://terra.nasa.gov/about/terra-instruments/modis
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the 2 km simulation with explicit convection can qualitatively reproduce the characteristic cloud513

structures known as mesoscale cloud flowers (e.g., Bony et al. 2017). More detailed analysis514

demonstrates that the use of explicit convection also significantly reduces top-of-the-atmosphere515

radiation biases. The simulations suggest that the organization of the subtropical clouds considered516

does not overly depend upon small-scale processes truncated at km-scale resolution. Animations517

of these simulations are shown in the Electronic Supplement.518

In addition to a better representation of the present-day climate, convection-resolving climate519

models provide modified climate change signals. Although changes in mean seasonal precipi-520

tation are generally robust between convection-resolving and convection-parameterizing models,521

significant differences occur for projections of heavy hourly precipitation events (Ban et al. 2015;522

Kendon et al. 2017) and for changes in the vertical structure of clouds (Hentgen et al. 2019).523

Convection-resolving and convection-parameterizing models often exhibit important differences524

for sub-daily variables, or when feedback effects are considered. Most of the analysis in current525

climate studies is done using two-dimensional daily and/or hourly output fields, which are cur-526

rently feasible to store. Three-dimensional fields are usually not available over extended time527

periods, which limits detailed investigations of the flow dynamics. Convective clouds can grow,528

mature and dissipate within an hour, and thus it is difficult to gain deeper understanding of con-529

vection and its characteristics in current and future climates if restricted to hourly output fields.530

Refining the horizontal resolution of regional climate models is a key focus in a number of531

internationally coordinated projects, like CORDEX10 and EUCP11. Within these two projects,532

several groups across Europe are conducting regional climate simulations in common domains533

with horizontal resolutions around 3 km, with the aim of producing a multi-model ensemble of534

10COordinated Regional Downscaling EXperiment, http://www.cordex.org
11European Climate Prediction System, https://www.eucp-project.eu
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climate simulations (Coppola et al. 2018). Similar initiatives are also underway within GEWEX12.535

The availability of long-term high-resolution simulations would also enable to link to short-term536

case studies (e.g. Dauhut et al. 2015) and idealized simulations of convective events (e.g. Loriaux537

et al. 2017).538

c. Sophisticated analysis using the virtualization layer539

This section presents online analysis applications of convection-resolving COSMO simulations540

with SimFS, and briefly discusses the limitations of offline and online analyses. An offline analysis541

would follow the traditional approach of saving all necessary fields on disk (e.g., with a temporal542

resolution of 1 h) and then running the diagnostic. In contrast, an online analysis would be run as543

part of the main model forward integration, allowing for an almost arbitrary temporal resolution544

of input fields – e.g., online forward trajectory calculations (Miltenberger et al. 2016). In the545

following, two applications are considered, with differing requirements in terms of the temporal546

resolution and data volume of the input fields. The results are based on a week-long COSMO547

simulation, starting at 00 UTC 10 April 2000. The first application tracks precipitation cells, and548

the second uses backward trajectories to investigate the Foehn flow in an Alpine valley.549

Precipitation cells are identified every 6 min using a threshold of 2 mm h−1 and tracked in time550

with a criterion considering feature overlap and size (Rüdisühli 2018). Access to the data is pro-551

vided through SimFS, i.e. without storing it on disk. In order to speed up the analysis, the grid552

resolution is reduced by averaging the surface precipitation field over 3x3 grid points, and a min-553

imum feature size of two coarse grid points is required. To facilitate the tracking, the overlap554

of features in consecutive steps is increased temporarily by 3 coarse grid points in all directions.555

Results are shown in Figure 8. At 10 UTC 12 April 2000, precipitation occurs over large areas,556

12https://ral.ucar.edu/events/2018/cpcm
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extending along a frontal band extending from the British Isles over Germany to the Alps, and557

in the form of small shower cells in the Bay of Biscay and adjacent regions (Figure 8a). The558

cell tracking reveals the strongly differing lifetimes of the various cells, ranging from minutes to559

days (Figure 8b). While short-lived cells produce less precipitation than longer-lived cells, they560

are more frequent. An animation of this figure over an extended period is provided in the Elec-561

tronic Supplement. SimFS allows to use this approach for tracking precipitation cells at temporal562

resolutions of a few minutes in long climate simulations without storing the fields on disk.563

The second application is based on air-parcel trajectories, which implies considerable compu-564

tational challenges for SimFS: The trajectories are run 12 h backward in time and hence do not565

follow the forward integration of the COSMO simulation (backward trajectories prohibit a stan-566

dard online implementation). The trajectories are released in a narrow (2-5 km wide) Alpine valley567

and therefore the temporal resolution of the wind fields must be high in order to capture the spatial568

and temporal variability of the winds as the air parcels descend into the valley. The backward tra-569

jectories are initialized in the upper Rhine valley – a classical Alpine Foehn valley (e.g., Würsch570

and Sprenger 2015) (see Supplementary Figure 1). Trajectory computations use wind fields at571

different update intervals from 1 to 60 min. Results show that depending upon the case, there is572

considerable sensitivity to the temporal resolution, pinpointing different origins of the air parcels.573

This illustrates the importance of using input fields with very high temporal resolution (1 to 5 min).574

This example further emphasizes the value of SimFS: it allows computing backward trajectories575

(which would be difficult with a standard online implementation) with winds at very high temporal576

resolution (which would not be possible with an offline implementation).577

The two applications differ substantially in terms of their computational requirements. For the578

Foehn flow the bottleneck is I/O, due to the demand of 3D wind fields at high temporal resolution.579

The calculation of the trajectories is then rather cheap. In contrast, the precipitation cell track-580
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ing relies on 2D fields only. Therefore, it is not restricted by I/O but rather by the cell tracking581

algorithm itself. Both requirements are relevant when using SimFS to analyze long climate simu-582

lations. SimFS provides a lot of flexibility. For instance, an analysis may be designed conditional583

upon the occurrence of a particular weather event, such as the occurrence of a hurricane or in our584

example the occurrence of Foehn flow at a particular location.585

5. Conclusions and Outlook586

In this article we have explored the use of a high-resolution modeling system for extended simu-587

lations over a large computational domain, and discussed potential challenges associated with the588

further development of climate models. A series of fundamental technology transitions are having589

a profound impact on the development of models, simulation software, and modeling workflows:590

1. Moving data has increasingly become more expensive than arithmetic operations. While in591

the past compute performance has commonly been expressed in floating point operations592

per second, the energy and runtime footprints of high-resolution atmospheric models are593

dominated by accessing system memory.594

2. Energy costs of large compute centers have increased by a factor of 10-20 relative to hardware595

costs over the last two decades (Schulthess et al. 2018) and are increasingly affecting the596

design and implementation strategies of major supercomputing centers.597

3. While early supercomputers used chips that were specifically designed for science applica-598

tions, today’s supercomputers are commonly based on commodity hardware that is produced599

in large quantities for a wide range of markets.600

4. The common climate-modeling workflow – i.e., run the model on a supercomputer, store the601

results on a mass-storage system, and run analysis software on the stored results – increas-602
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ingly approaches a bottleneck. The bandwidth of mass-storage systems does not keep up with603

the speed at which high-resolution models produce data, and the cost of storage increases604

faster than that of compute power.605

The high cost of data movement favors hardware architectures with deep memory hierarchies606

having multiple layers of cache that have to be managed explicitly. Further, power constraints607

lead to heterogeneous node designs where accelerators such as graphics processing units deliver608

the bulk of the compute capacity. Current atmospheric models are unable to fully exploit such609

hardware. One hindrance are currently-used programming languages, which impose the burden of610

leveraging the hardware architecture on the model developer.611

In this article we have used the limited-area model COSMO and have explored a range of options612

to address these challenges. In particular, we have:613

• further developed and used a model version that uses the domain-specific language (DSL)614

GridTools. These languages enable a high-level abstraction to stencil operations and allow615

for a separation of concerns, i.e., the model source code is less contaminated by hardware-616

specific implementation details and optimizations.617

• developed and tested a novel modeling workflow that is based on recomputation and online618

analyses (rather than storing the results). This exploits a virtualization environment (SimFS),619

which transparently provides data access in a similar fashion as used today for the analysis of620

climate data on mass-storage systems.621

• explored a bit-reproducible version of the model code, to enable bit-wise reproducible simu-622

lations across two different hardware architectures and different compilers.623

• tested new programming paradigms such as the SYMPL framework to ease the work with624

complex codes and parameterizations in a Python environment.625

29

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-18-0167.1.



Some of the new developments (the GPU-enabled COSMO model) have been used operationally626

at MeteoSwiss for several years, others (i.e. SimFS) have been developed and tested in extended627

regional climate model integrations, and still others will require further development before be-628

coming applicable in full climate simulations (e.g. the use of SYMPL and bit-reproducible code629

versions). Results demonstrate the functionality of the approach, and also provide a look into630

future capabilities of climate models at high spatial resolution.631

We discussed our experience with COSMO as background material for future model devel-632

opments, but we are aware that additional challenges will emerge if applied to other numerical633

approaches and to global model applications. It is worth mentioning that the GridTools DSL is634

currently being extended for applications with some global meshes. However, we have not yet635

started to work on addressing the complexities of efficiently coupling atmosphere and ocean mod-636

els in full-blown earth system models.637
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Sidebar: Domain-specific languages explained875

A domain-specific language (DSL) is a language specialized to a specific application domain,876

in our case the dynamical cores of weather and climate models. To illustrate the power of DSLs,877

two implementations of a simple fourth-order horizontal diffusion operator are given below (see878

Figure 9). The code on the left is an abridged Fortran implementation extracted from a climate879

model. The original optimized version entails significantly more code to specify parallelism, data880

placement, and data movement. The code on the right shows an implementation in the gtclang881

(https://github.com/MeteoSwiss-APN/gtclang) high-level DSL which is part of the Grid-882

Tools Framework. The code shown corresponds to the complete code implemented by the domain883

(climate) scientist. Details of how data is stored in memory and order of iteration over the com-884

putational grid are no longer visible. The responsibility to generate optimized, parallel code for a885

specific hardware architecture is delegated to the DSL compiler. As a result, the DSL implementa-886

tion is very concise and maintainable. DSLs vary in the level of abstraction. In the example shown,887

the responsibility to choose an appropriate numerical scheme for the Laplacian remains with the888

domain scientist. A DSL with a higher level of abstraction may hide the choice of numerics as889

well as computational grid from the user.890
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tation) would amount to about an additional 3D variable. The CMIP6 DECK902
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Simulation Length [yr] CMIP6 @ 0.5 ◦ [TB] CMIP6 @ 1.25 km [PB] Data @ 1.25 km [ZB]

piControl 500 5 16.2 4.5

amip 36 1.7 1.3 0.4

1pctCO2 150 1.6 5.3 1.4

abrupt-4×CO2 150 8 22.2 1.4

TABLE 1. Data volumes of the CMIP6-DECK simulations. (Third column) Estimate by the Centre for Envi-

ronmental Data Analysis for a simulation employing a grid spacing of 0.5◦, 40 model levels in the atmosphere

and 60 levels in the ocean (Juckes et al. 2015; CEDA 2018). (Fourth column) The same output list projected

to an R2B11 mesh of the ICON model, employing 1.25 km grid spacing, 180 levels in the atmosphere and 200

levels in the ocean (×6576). (Fifth column) Total data volume available for analysis for the 1.25 km simulation

(footprint of 2.9 TB in single-precision floating-point format), accounting for all 3D prognostic variables (8 in

the atmosphere and 5 in the ocean) at each model time step (10 s). Adding all the available 2D fields (e.g., sea

ice, soil, vegetation) would amount to about an additional 3D variable. The CMIP6 DECK simulations (first two

columns, from top to bottom) include a pre-industrial control simulation, an atmospheric model intercomparison

simulation, a simulation forced by a 1%/yr CO2 increase, and a simulation with abrupt quadrupling of CO2.
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= Ban et al. 2014; 4 = Leutwyler et al. 2017; 5 = Liu et al. 2017; Prein et al. 2017; 6 =927
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Fig. 3. Data exchange in atmospheric models. In order to ensure numerical stability, the exchange938

of data in an atmospheric model must exceed that of the physical propagation in the real939
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Fig. 4. Performance penalty of a bit-reproducible COSMO version (providing reproducibility946
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Fig. 5. Overview of the rerun (versus store) approach using SimFS. The scientist runs the initial952
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differences in the simulation of clouds and precipitation. Namely, the 12 km model shows964

widespread precipitation with low intensities and more clouds, while 2 km model simulates965

summer convection over Europe more realistically with more intense precipitation cells. The966

results are from a decade-long continental-scale simulation (Leutwyler et al. 2017). . . . . 52967

Fig. 7. Cloudiness in MODIS short-wave satellite observations (top right panel), compared against968

mid and low-level cloudiness in simulations at different horizontal resolutions (middle and969
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and yellow circles pinpoint regions with large differences between simulations. The top left974

panel shows the geographical characteristics of the considered computational domains. . . . 53975

Fig. 8. (a) Six-minute surface precipitation field (mm h−1) at 10 UTC 12 April 2000 in the entire976

domain, and (b) tracked precipitation cells at the same time over the Bay of Biscay. The977

symbols depict the current track event (star: genesis; cross: lysis; circle: continuation; right-978

pointing triangle: merging; left-pointing triangle: splitting; diamond: merging-splitting).979

The symbols and feature outlines are colored with the total cell lifetime (i.e., track duration).980

To indicate recent cell movement, the previous six positions of the track center are also981

shown. . . . . . . . . . . . . . . . . . . . . . . . . 54982

Fig. 9. Sidebar Figure: Comparison of a second-order Laplacian in Fortran (left) and gtclang983

(right). . . . . . . . . . . . . . . . . . . . . . . . . 55984
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FIG. 1. Approaching the target of global km-scale climate simulations, represented by the sun symbol (left-

hand panel), by refining either the resolution of GCMs, or by expanding the computational domain of high-

resolution RCMs. The horizontal axes represents the domain size (fraction of Earth’s surface covered by the

simulations) and the vertical axes the grid spacing (km). A selection of available simulations are indicated by

the data points (right-hand panel), showing simulations longer than 10 years in full colours, and short prototype

simulations in faint colours. The green contours in the right-hand panel show lines of same computational load,

assuming that the time step is refined such as to keep the CFL-number constant. Red symbols relate to RCMs: 1

= Knote et al. 2010; 2 = Kendon et al. 2014; 3 = Ban et al. 2014; 4 = Leutwyler et al. 2017; 5 = Liu et al. 2017;

Prein et al. 2017; 6 = Bretherton and Khairoutdinov 2015; 7 = Fuhrer et al. 2018. Blue symbols relate to GCMs:

a = CMIP1 models (IPCC 1995, average horizontal resolutions of models); b = CMIP3 models (IPCC 2001); c

= CMIP5 models (IPCC 2013); d = Sakamoto et al. 2012; e = CMIP6 HighRes MIP (Haarsma et al. 2016), f =

Neumann et al. 2019, g = DYAMOND simulations (Satoh et al. 2019), h = Miyamoto et al. 2013.
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Clouds	and	Precipitation	on	July	2,	2009	at	15	UTC	

FIG. 6. Total cloud cover and precipitation over Europe obtained from convection-parameterizing (12 km

horizontal grid spacing) and convection-resolving model simulations (2 km horizontal grid spacing) on July

2, 2009 at 15 UTC. The simulation snapshots demonstrate major differences in the simulation of clouds and

precipitation. Namely, the 12 km model shows widespread precipitation with low intensities and more clouds,

while 2 km model simulates summer convection over Europe more realistically with more intense precipitation

cells. The results are from a decade-long continental-scale simulation (Leutwyler et al. 2017).
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FIG. 7. Cloudiness in MODIS short-wave satellite observations (top right panel), compared against mid and

low-level cloudiness in simulations at different horizontal resolutions (middle and bottom rows) on the 15th

of December 2013. The simulation snapshots show the cloud cover fractions from convection-parameterizing

simulations at 50 km and 12 km resolutions, and a convection-resolving simulation at 2 km resolution. The

results are from month-long simulations driven by the ERA-Interim reanalysis initialized on November 25,

2013. Red and yellow circles pinpoint regions with large differences between simulations. The top left panel

shows the geographical characteristics of the considered computational domains.
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FIG. 8. (a) Six-minute surface precipitation field (mm h−1) at 10 UTC 12 April 2000 in the entire domain,

and (b) tracked precipitation cells at the same time over the Bay of Biscay. The symbols depict the current track

event (star: genesis; cross: lysis; circle: continuation; right-pointing triangle: merging; left-pointing triangle:

splitting; diamond: merging-splitting). The symbols and feature outlines are colored with the total cell lifetime

(i.e., track duration). To indicate recent cell movement, the previous six positions of the track center are also

shown.
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subroutine horizontal_diffusion(in, out, ie, je, ke) 
  implicit none 
 
  real, intent(in) :: in(-1:ie+2, -1:je+2, ke) 
  real, intent(out) :: out(-1:ie+2, -1:je+2, ke) 
 
  real :: lap(0:ie+1, 0:je+1) 
  integer :: i, j, k 
 
  do k = 1, ke 
 
    do j = 0, je+1 
      do i = 0, ie+1 
        lap(i,j,k) = 4.0 * in(i,j,k) - in(i+1,j,k) - in(i-1,j,k) & 
                                     - in(i,j+1,k) – in(i,j-1,k) 
      end do 
    end do 
 
    do j = 1, je 
      do i = 1, ie 
        out(i,j,k) = out(i,j,k) – 0.1 * (                & 
          4.0 * in(i,j,k) - in(i+1,j,k) - in(i-1,j,k)    & 
                          - in(i,j+1,k) – in(i,j-1,k) ) 
      end do 
    end do 
 
  end do 
 
end subroutine horizontal_diffusion 
 
  

stencil_function laplacian { 
  storage phi; 
  Do { 
    return 4.0 * phi – phi[i+1] – phi[i-1] 
                     - phi[j+1] – phi[j-1]; 
  } 
} 
 
stencil horizontal_diffusion { 
  storage out, in; 
  temporary_storage lap; 
  Do { 
    vertical_region(k_start, k_end) { 
      lap = laplacian(in); 
      out = out – 0.1 * laplacian(lap); 
    } 
  } 
} 

FIG. 9. Sidebar Figure: Comparison of a second-order Laplacian in Fortran (left) and gtclang (right).
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Supplementary Table 1: List of compiler flags used to control mathematical expressions rearrangement for a
given target architecture/compiler. The flags with * generate compilation errors depending on the compiler
version. In that case the default was used (shown in parenthesis if available).

Compiler CPU GPU
Cray -O0, -hfp0, -hflex mp=intolerant,

-hnoacc, -hnoaggress,
-hnoautothread, -hfusion0,
-hnopattern

-O1* (-O2), -hfp0, -hacc,
-hnoaggress, -hnoautothread,
-hfusion0, -hnopattern,
-hflex mp=strict* (=default)

GNU -fno-fast-math, -O0, -fno-builtin,
-fno-rounding-math,
-fno-reciprocal-math,
-ffp-contract=off, -march=native

N/A

Nvidia N/A --fmad=false
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Supplementary Figure 1: 12-h backward trajectories arriving in the upper Rhine valley at Vaduz between the
surface and 1000 m above ground at 200 m height intervals. The arrival time corresponds to 21 UTC 14 April
2000 in the upper row, and one hour later in the lower row. The four panels in each row show the results when
using different input intervals of the driving 3D winds: 1, 5, 20, 60 min from left to right. Whereas the northerly
flow at 21 UTC is similarly captured when using different wind field intervals, the situation is more complex
one hour later after the onset of the southerly Foehn. The most accurate computation, using wind fields every
1 or 5 min, reveals that the flow originates from the region of Davos, while with winds every 20 or 60 min the
air parcels enter the Rhine valley much earlier and further south.
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