
The PERCS High-Performance Interconnect

Baba Arimilli ∗, Ravi Arimilli ∗, Vicente Chung ∗, Scott Clark ∗, Wolfgang Denzel †, Ben Drerup ∗, Torsten Hoefler ‡,
Jody Joyner ∗, Jerry Lewis ∗, Jian Li †, Nan Ni ∗ and Ram Rajamony †

∗ IBM Systems and Technology Group, 11501 Burnet Road, Austin, TX 78758
† IBM Research (Austin, Zurich), 11501 Burnet Road, Austin, TX 78758

‡ Blue Waters Directorate, NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801
E-mail: arimilli@us.ibm.com, rajamony@us.ibm.com, htor@illinois.edu

Abstract—The PERCS system was designed by IBM in re-
sponse to a DARPA challenge that called for a high-productivity
high-performance computing system. A major innovation in the
PERCS design is the network that is built using Hub chips that
are integrated into the compute nodes. Each Hub chip is about
580 mm2 in size, has over 3700 signal I/Os, and is packaged
in a module that also contains LGA-attached optical electronic
devices.

The Hub module implements five types of high-bandwidth
interconnects with multiple links that are fully-connected with a
high-performance internal crossbar switch. These links provide
over 9 Tbits/second of raw bandwidth and are used to construct
a two-level direct-connect topology spanning up to tens of thou-
sands of POWER7 chips with high bisection bandwidth and low
latency. The Blue Waters System, which is being constructed
at NCSA, is an exemplar large-scale PERCS installation. Blue
Waters is expected to deliver sustained Petascale performance
over a wide range of applications.

The Hub chip supports several high-performance computing
protocols (e.g., MPI, RDMA, IP) and also provides a non-
coherent system-wide global address space. Collective commu-
nication operations such as barriers, reductions, and multi-cast
are supported directly in hardware. Multiple routing modes
including deterministic as well as hardware-directed random
routing are also supported. Finally, the Hub module is capable
of operating in the presence of many types of hardware faults
and gracefully degrades performance in the presence of lane
failures.

Keywords-interconnect, topology, high-performance comput-
ing

I. INTRODUCTION

In 2001, DARPA called for the creation of high-
performance highly productive, commercially viable com-
puting systems. The forthcoming system from IBM called
PERCS (Productive Easy-to-use Reliable Computing Sys-
tem) is in direct response to this challenge. Compared to
state-of-the-art high-performance computing (HPC) systems
in existence today, PERCS has very high performance and
productivity goals and achieves them through tight integra-
tion of computing, networking, storage, and software.

Although silicon technologies (e.g., multi-core dies,
45nm) continue to improve generation after generation [6],
surrounding technologies in HPC systems such as the in-
terconnect bandwidth, memory densities and bandwidths,
power packaging and cooling, and storage densities and

bandwidths do not scale accordingly. For instance, while
High Performance Linpack performance [5], [10] shows a
steady improvement over time, interconnect-intensive met-
rics such as G-RandomAccess and G-FFTE [5] show very
little improvement.

The challenge of building a high-performance, highly
productive, multi-Petaflop system forced us to recognize
early on that the entire infrastructure had to scale along with
the microprocessor’s capabilities. A significant component
of our scaling solution is a new switchless interconnect with
very high fanout organized into a two-level direct connect
topology. Using this interconnect technology enables us
to build a full system with no external switches and half
the physical interfaces and cables of an equivalent fat-tree
structure with the same bisection bandwidth.

The rest of this paper is organized as follows. We describe
the PERCS compute node in Section II. The IBM Hub chip
is the gateway to the interconnect as well as the routing
switch in the system. We describe the Hub chip in Section III
and the interconnect topology in Section V. The Hub chip
has several components that permit it to offer high value as
well as high performance. We describe these components
in Section IV. The two-tiered full-connect graph typology
allows for several routing innovations which we describe
in Section VI. We conclude with a description of the Blue
Waters Sustained Petascale System in Section VII.

II. SYSTEM OVERVIEW

Figure 1. Compute node structure

Figure 1 shows the abstract structure of a compute node in
a PERCS system. There are four POWER7 chips in a node
with a single operating system image that controls resource

2010 18th IEEE Symposium on High Performance Interconnects

978-0-7695-4208-9/10 $26.00 © 2010 IEEE

DOI 10.1109/HOTI.2010.16

75

Figure 2. IBM Hub chip overview

allocation. Applications executing on the compute node can
utilize 32 cores, 128 SMT threads, eight memory controllers,
up to 512 GB of memory capacity, over 900 GFLOPS of
compute capacity and over 500 GB/s of memory bandwidth.
The four POWER7 chips are cache coherent and are tightly
coupled using three pairs of buses.

The IBM Hub chip completes the compute node, pro-
viding network connectivity to the four POWER7 chips.
The Hub chip participates in the cache coherence protocol
within the node and serves not only as an interconnect
gateway to the four POWER7 chips that connect to it,
but also as a switch that routes traffic between other IBM
hub chips. A PERCS system therefore requires no external
network switches or routers with considerable savings in the
switching components, cabling, and power.

III. HUB CHIP

The main purpose of the IBM Hub Chip is to interconnect
tens of thousands of compute nodes and to provide I/O
services. The Hub design provides ultra-low latencies at
high bandwidth, dramatically improving the scalability of
applications written using such varied programming APIs
as MPI, sockets, and PGAS languages [2].

The Hub chip also improves the performance and cost of
an HPC storage subsystem by requiring no FCS Host Bus
Adapters, no external switches, no storage controllers and
no direct attached storage within the compute nodes. The
Hub chip also obviates the need for external PCI-Express
controllers by integrating them on-chip.

Key functions used by software are accelerated in hard-
ware by the Hub Chip. The Collective Acceleration Unit
(CAU) in the Hub chip speeds up collective (including
synchronization) operations that are often a big scalability
impediment to high-performance computing applications.
The Hub Chip also employs a memory management unit

that is kept consistent with the TLBs on the compute cores.
This enables an application running on one compute node to
use program-level effective addresses to operate upon data
located on another compute node. Finally, the Hub Chip
also has special facilities to enable certain operations to
be atomically performed in the compute node’s memory
without involving any of the compute node’s cores.

The Hub chip is implemented using 45 nm lithography
Cu SOI technologies. The chip is 582 mm2 in size with
440M transistors and 13 levels metal. There are over 3700
signal I/O and over 11,000 total I/O pins. The Hub chip is
integrated along with 12X optics modules into a 58 cm2

glass ceramic LGA module.
Figure 2 shows an overview of the Hub chip.

IV. HUB CHIP DETAILS

The different components of the Hub chip are described
in greater detail below.

A. PowerBus Interface

The PowerBus interface enables the Hub chip to partic-
ipate in the coherency operations taking place between the
four POWER7 chips in the compute node. The Hub chip is a
first-class citizen in the coherence protocol and has visibility
to coherence transactions taking place in the node, including
TLB-related coherence operations.

B. Host Fabric Interface

The two HFI units in the Hub chip manage communi-
cation to and from the PERCS interconnect. The HFI was
designed to provide user-level access to applications. The
basic construct provided by the HFI to applications for de-
lineating different communication contexts is the “window”.
The HFI supports many hundreds of such windows each with
its associated hardware state.

An application invokes the operating system and thus the
hypervisor to reserve a window for its use. The reservation
procedure maps certain structures of the HFI into the appli-
cation’s address space with window control being possible
from that point onwards through user-level reads and write
to the HFI mapped structures.

The HFI supports three APIs for communication:
• General packet transfer: This can be used for compos-

ing unreliable protocols as well as reliable protocols
such as needed for MPI through higher levels of the
software stack.

• Global address space operations and active messaging:
This can be used by user-level codes to directly manipu-
late memory locations of a task executing on a different
compute node. The Nest Memory Management Unit
provides support for these operations.

• Direct Internet Protocol (IP) transfers
The HFI can extract data that needs to be communicated

over the interconnect from either the POWER7 memory or

76

directly from the POWER7 caches. The choice of source
is transparent with the data being automatically sourced
from the faster location (caches can typically source data
faster than memory). In addition to writing network data to
memory, the HFI can also inject network data directly into
a processor’s L3 cache, lowering the data access latency for
code executing on that processor.

Five primary packet formats are supported: Immediate
sends, FIFO send/receive, IP, remote DMA (RDMA), and
Atomic updates.

A new PowerPC instruction, ICSWX, is used to imple-
ment immediate sends [7]. This instruction forces a cache
line directly to the HFI for interconnect transmission and is
the lowest latency (at the expense of bandwidth) communi-
cation mechanism for sending packets that are less than a
cache line in size.

The FIFO send/receive mode permits an application to
use a staging area for both sending and receiving data. An
application can pre-reserve a portion of its address space to
serve as circular First-In-First-Out buffers. After composing
packets in the send FIFO, the application “triggers” the
HFI by writing an 8-byte value to a per-window trigger
location. In this mode, incoming packets are written to the
receive FIFO by the HFI and can then be processed by the
application. An 8-byte write to another location informs the
HFI of the space that it can reuse in the receive FIFO.

The HFI supports two forms of IP transfers. IP packets
can be transferred to and from the FIFO (see above). IP
packets can also be described with scatter/gather descriptors
with the HFI assembling/dissembling data.

A variety of RDMA mechanisms are supported. In ad-
dition to traditional memory-to-memory transfers, the HFI
also supports transfers between the FIFO and memory. Since
these are asynchronous operations, completion notifications
permit an application to implement read and write fences.

A final packet format permits an application to specify
atomic updates to remote memory locations. Fixed-point
operations such as ADD, AND, OR, XOR, and Cmp &
Swap with and without Fetch for multiple data sizes (8-,
16-, 32-, 64-bits) are supported. Sequence numbers are used
to ensure proper reliable operation of all atomic updates,
with an optimized mode permitting up to four operations to
be packed per cache line at a coarser reliability granularity.

Collective packets are also supported and the operation is
described in more details in Section IV-D.

C. Integrated Switch Router (ISR)

The ISR implements the two-tiered full-graph network
described in Section V. It is organized as a 56 × 56 full
crossbar that operates at up to 3 GHz. In addition to the
forty-seven L and D ports described previously, the ISR also
has eight ports to the two local Host Fabric Interfaces, and
one service port.

The ISR uses both input and output buffering with a
packet replay mechanism to tolerate transient link errors.
This feature is especially important since the D links can be
several tens of meters in length. The ISR operates in units
of 128-byte FLITs with a maximum packet size of 2048
bytes. Messages are composed of multiple packets with the
packets making up a message being potentially delivered out
of order.

High-performance computing applications benefit from
having access to a single global clock across the entire sys-
tem. The ISR implements a global clock feature whereby a
clock onboard is globally distributed across the interconnect
and kept consistent with the clocks on other Hub chips.

Deadlock prevention is achieved through virtual channels,
each corresponding to a hop in the L-D-L-D-L worst case
route.

More details of the ISR as it pertains to routing are
described in Section V below.

D. Collectives Acceleration Unit (CAU)

Many HPC applications perform collective operations
with the application being able to make forward progress not
only after every compute node has completed its contribution
to the collective operation, but also after the results of the
collective are disseminated back to every compute node (e.g.
barrier synchronization or a global sum). The Hub Chip
provides specialized hardware to accelerate frequently used
collective operations.

Specialized ALU logic within the CAU implements mul-
ticast, barriers and reduction operations. For reductions, the
ALU supports the following operations and data types:

• Fixed point: NOP, SUM, MIN, MAX, OR, AND, XOR
(signed and unsigned)

• Floating point: MIN, MAX, SUM, PROD (single and
double precision)

Software organizes the CAUs in the system into collective
trees. Each tree is set up so that it “fires” when data on all of
its inputs are available with the result being fed to the next
“upstream” CAU. There is one CAU in each Hub chip and
a link in the CAU tree could map to a path in the network
made up of more than one link. A multiple-entry content
addressable memory structure per CAU supports multiple
independent trees that can be concurrently used by different
applications, for different collective patterns within the same
application, or some combination.

Reliability and pipelining are afforded using sequence
numbers and a retransmission protocol. Each tree has exactly
one participating HFI window on any involved node. The
tree can be set up such that the order in which the reduc-
tion operations are evaluated is preserved from one run to
another. Programming models such as the Message Passing
Interface (MPI) [8], which permit programmers to require
collectives to be executed in a particular order, can benefit
from this feature.

77

E. Nest Memory Management Unit (NMMU)

A key facility for high-performance global address space
languages such as UPC [3], CAF [9], and X10 [2] is a low-
overhead mechanism for user-level code to operate upon the
address space of processes executing on the compute nodes.
The NMMU in the Hub chip facilitates such operations.

A process executing on a compute node can register its
address space, permitting interconnect packets to directly
manipulate the registered region. Registering a portion of the
address space results in the NMMU being able to reference
a page table mapping table that maps effective addresses to
real memory. A cache of the mappings is also maintained
within the Hub chip and can map the entire real memory of
most installations.

Incoming interconnect packets that reference memory
such as RDMA packets and packets that perform atomic
operations contain both an effective address as well as
information pinpointing the context in which to translate
the effective address. This greatly facilitates global address
space languages by permitting such packets to contain easy-
to-use effective addresses.

F. IO connectivity

The Hub chip has three PCI-E ports. Two of the ports are
×16 and support ×16, ×8, ×4, and ×1 connections. The
third port is ×8 and supports ×8, ×4, and ×1 connections.
The ports are all backwards compatible up to Generation
1.1a. The Hub chip supports “Hot plug” capability.

V. PERCS TOPOLOGY

Two key design goals for PERCS were to dramatically
improve bisection bandwidth (over other topologies such as
fat-tree interconnects) and to eliminate the need for external
switches. With these goals in mind, the Hub chip was
designed to support a large number of links that connect
it to other Hub Chips. These links are classified into two
categories “L”, and “D”, that permit the system to be
organized into a two-level direct-connect topology. Figures 3
and 4 illustrates these concepts.

Every Hub chip has thirty-one L links that are used to
fully connect thirty-two Hub chips into a star topology.
Within this group of thirty-two Hub chips, every chip
has a direct communication link to every other chip. The
Hub chip implementation further divides the L links into
two categories: seven electrical LL links with a combined
bandwidth of 336 GB/s and twenty-four optical LR links
with a combined bandwidth of 240 GB/s. The L links bind
thirty-two compute nodes into a supernode.

Every Hub chip also has sixteen D links that are used
to connect to other supernodes with a combined bandwidth
of 320 GB/s. The topology maintains at least one D link
between every pair of supernodes in the system, although
smaller systems can employ multiple D links between su-
pernode pairs.

Since the Hub chip being connected to the POWER7 chips
in the compute node at a bandwidth of 192 GB/s and has
40 GB/s of bandwidth for general I/O, the peak switching
bandwidth of the Hub chip exceeds 1.1 GB/s. An interesting
metric is the ratio of the injection bandwdith to/from the
compute POWER7 chips and the network bandwidth. When
all links are populated and operate at peak bandwidths, the
injection bandwidth to network bandwidth ratio is 1:4.6.
Note though that by performing the dual roles of switch
and interconnect gateway, the majority of traffic through the
Hub chip will typically be destined for other compute nodes.

The topology used by PERCS permits routes to be made
up of very small numbers of hops. Within a supernode, any
compute node can communicate with any other compute
node using a distinct L link. Across supernodes, a compute
node has to employ at most one L hop to get to the “right”
compute node within its supernode that is connected to
the destination supernode (recall that every supernode pair
is connected by at least one D link). At the destination
supernode, at most one L hop is again sufficient to reach
the destination compute node.

VI. ROUTING

The above-described principles form the basis for direct
routing in the PERCS system. A direct route employs a
shortest path between any two compute nodes in the system.
Since a pair of supernodes can be connected together by
more than one D link, there can be multiple shortest paths
between a given set of compute nodes. With only two levels
in the topology, the longest direct route L-D-L can have at
most three hops made up of no more than two L hops and
at most one D hop.

PERCS also supports indirect routes to guard against
potential hot spots in the interconnect. An indirect route is
one that has an intermediate compute node in the route that
resides on a different supernode from that of the source
and destination compute nodes. An indirect route must
employ a shortest path from the source compute node to the
intermediate one, and a shortest path from the intermediate
compute node to the destination compute node. The longest
indirect route L-D-L-D-L can have at most five hops made
up of no more than three L hops and at most two D hops.
Figure 5 illustrates direct and indirect routing within the
PERCS system.

A specific route can be selected in three ways when
multiple routes exist between a source-destination pair. First,
software can specify the intermediate supernode but let the
hardware determine how to route to and then from the inter-
mediate supernode. Second, hardware can select amongst the
multipe routes in a round robin manner for both direct and
indirect routes. Finally, the Hub chip also provides support
for route randomization whereby the hardware can pseudo-
randomly pick one of the many possible routes between a
source-destination pair. Hardware-directed randomized route

78

Figure 3. IBM Hub chip structure and interconnections

Figure 4. Direct connections between nodes in a supernode and supernodes in the system

selection is available only for indirect routes. These routing
modes can be specified on a per-packet basis.

The right choice between the use of direct versus indirect
route modes depends on the communication pattern(s) used
by applications. Direct routing will be suitable for communi-
cation patterns where each node has to communicate with a
large number of other nodes as with spectral methods. Com-
munication patterns that involve small numbers of compute
nodes will benefit from the extra bandwidth offered by the
multiple routes with indirect routing.

Routing is accomplished using static route tables placed in
the routers (ISR). These route tables are set up during system
initialization and are dynamically adjusted as links go down
or come up during operation. Packets are injected into the
network with a destination identifier and the route mode.
Route information is picked up from the route tables along
the route path based on this information. Packets injected
into the interconnect by the HFI employ source route tables.
Per-port route tables are used to route packets along each
hop in the network. Separate route tables are used for inter-

79

Figure 5. Direct and Indirect routes in PERCS

supernode and intra-supernode routes.
Virtual channels (VCs) are used to prevent deadlocks.

Rather than use priorities, we use the position of the current
hop within the full route to select which VC to use. Based on
the worst case route in the system being L-D-L-D-L, there
are three VCs assigned to L links and two VCs assigned to
D-links.

Figure 6 shows how data flows within the PERCS system.
The Integrated Switch Router (ISR) within the Hub chip
employs cut-through and wormhole routing [4] with 128-
byte FLITs. FLITs are assembled into packets which is
the largest unit for which the hardware makes an ordering
guarantee: all FLITs of a packet will be delivered in order.
No ordering guarantees are provided between packets in
a message. Thus even packets sent from the same source
window (see Section IV) and node to the same destination
window and node may reach that destination in a different
order.

Figure 6 shows two Host Fabric Interfaces (HFIs) coop-
erating to move data from the POWER7s attached to one
PowerBus to the POWER7s attached to another PowerBus
through the interconnect. Note that the path between any

two HFIs may be indirect, requiring multiple hops through
intermediate ISRs.

In addition to the direct and indirect route tables, the ISR
also has multicast route tables for replicating and forwarding
IP multicast packets. All of the route tables are set up during
system initialization by network management software. In
the event of link or other failures, network management
software is alerted and intervenes to reroute the system.

VII. BLUE WATERS—A LARGE-SCALE EXAMPLE

IBM and NCSA are working on constructing Blue Waters,
a machine expected to achieve sustained Petascale perfor-
mance for a large set of applications. Blue Waters will
comprise more than 300.000 POWER7 cores, more than
1 PiB memory, more than 10 PiB disk storage, more than
0.5 EiB archival storage, and achieve around 10 PF/s peak
performance. More information on Blue Waters is available
at the Blue Waters project office [1].

A possible configuration could consist of several hundred
supernodes (SN) with thousands of hub chips. Since the
number of D links in an SN may not be an integral multiple
of the number of other SNs in the system, the Hubs in an SN

80

Figure 6. Packet flow in PERCS between two compute nodes. Note that data can both originate from and be written to caches on the source and destination
compute nodes.

can differ in their D-link connections by one. For the number
of SNs in Blue Waters, the ratio of injection bandwidth is
expected to be close to that outlined in Section V.

A. Effective Alltoall Bandwidth

Alltoall is an important operation in parallel computing
and imposes a high load onto the network. In this section,
we derive a model for the effective alltoall bandwidth of the
Blue Waters System. We derive an upper bandwidth bound
with a simple counting argument assuming all communi-
cations happen simultaneously. First, we lead the argument
for shortest-path static routing. From a single source, each
compute node (CN) can be reached through a series of LL,
LR and D links. We use only paths P that do not includes
more than one D link or LL-LR, LR-LL, LL-LL, LR-LR
connections. We denote e(P) as the number of CNs that
can be reached from one node through P . We assume that
each Hub Chip is connected with d D-links to d distinct
supernodes. Thus, e(LL) = 7, e(LR) = 24, e(D) = d,
e(LL-D) = e(D-LL) = 7d, e(LR-D) = e(D-LR) = 24d,
e(LL-D-LL) = 49d, e(LL-D-LR) = e(LR-D-LL) = 168d,

e(LR-D-LR) = 576d, and
∑

e(P) = 31 + 1024d.
We can now count c(L), the number of paths that lead

through each LL, LR, and D link: c(LL) = (e(LL) + e(LL-
D) + e(D-LL) + 2e(LL-D-LL) + e(LL-D-LR) + e(LR-D-
LL))/7 = 1+64d, c(LR) = (e(LR)+e(LR-D)+e(D-LR)+
e(LR-D-LL)+e(LL-D-LR)+2e(LR-D-LR))/24 = 1+64d,
and c(D) = (e(D)+e(D-LL)+e(LL-D)+e(D-LR)+e(LR-
D) + e(LL-D-LL) + e(LL-D-LR) + e(LR-D-LL) + e(LR-
D-LR))/d = 1024. This results in an effective bandwidth
b(L) per channel: b(LL) = 24 GiB/s

1+64d , b(LR) = 5 GiB/s
1+64d , and

b(D) = 10 GiB/s
1024 . The D-links seem to be the bottleneck of

the alltoall for d < 8 while the LR-links are a bottleneck for
d ≥ 8. For d ≥ 8, the effective alltoall bandwidth (limited
by the slowest link) with shortest path routing would thus be∑

e(P) · 5 GiB/s
1+64d = 155+5120d

1+64d per CN. This is close to the
injection bandwidth of a CN (4·24 GiB/s = 96GiB/s). We
thus showed that the PERCS network topology with direct
routing enables high-bandwidth alltoall communication on
Blue Waters.

Indirect random routing would essentially half the alltoall
bandwidth because it would perform a logical alltoall to

81

reach the intermediate supernode and then perform a second
deterministic alltoall. Random routing is interesting because
it can improve the worst-case congestion for other commu-
nication patterns. For example, communication from all 32
CNs in SN A want to communicate to different CNs in SN B
would cause a congestion of 32 on the D-link between A and
B. With random routing, each connection would bounce at
a random SN which, with high probability, does not cause
congestion on the D-link. Similar discussions can be lead
for other communication patterns. We expect that the ideal
routing scheme differs for different application classes. More
detailed analyses are subject of current research.

B. Network Requirements of Petascale Applications

In the following, we briefly describe typical challenging
requirements of Petascale applications and provide rough
performance estimations. This short discussion shows how
the described features of the PERCS network architecture are
most critical to achieve Petaflop performance. Applications
to be run on the system include Lattice QCD with a grid-
size of 843 · 144 and a homogeneous isotropic turbulence
code in a triply periodic box of size 122883.

For a high-performance implementation of Lattice QCD,
the code running at full scale is expected to perform a
global sum (allreduce) of two double complex values every
25-100µs. The CAU is capable of enabling Lattice QCD
to be solved at this performance level and the offloaded
global operation would even allow the application to hide
the communication latency.

A three-dimensional Fast Fourier Transformation (3d
FFT) is the most critical part in the Turbulence code. The
3d FFT is decomposed in two dimensions and requires
alltoall communication along both dimensions. An example
decomposition of a 81923 system into a x× y = 256× 32
processor grid leaves 8192 pencils per CN. The computation
would require 32 parallel alltoalls of size 4 MiB among 256
CNs and 256 parallel alltoalls of size 32 MiB bytes among
32 CNs. This mapping would map the y dimension into a SN
while distributing the x dimension across SNs. The large-
message communication would then use all 24 LR and 7
LL links per source simultaneously with the bandwidth of
the slower LR links (31 · 5 GiB/s) which saturates the link
bandwidth of the connections between the Hub chip and
the POWER7 chips (assuming peak bandwidths). The small-
message communication would use 8 D, 7 LL, and 24 LR-
links to inject data simultaneously. Each SN communicates
32 · 4 MiB Bytes with each other SN over 256 D-links
resulting in a bandwidth of 256·10 GiB/s

32 = 80GiB/s per
CN (the transfer is limited by the W links). Better mapping
strategies for different layouts and sizes are subject of active
research.

ACKNOWLEDGMENT

This material is based upon work supported by the De-
fense Advanced Research Projects Agency under its Agree-
ment No. HR0011-07-9-0002. This work is also supported
by the Blue Waters sustained-petascale computing project,
which is supported by the National Science Foundation
(award number OCI 07-25070) and the state of Illinois.

Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding agencies.

The authors would like to thank Marc Snir, Bill Kramer,
Jeongnim Kim, and Greg Bauer for helpful comments and
discussions to improve Section VII.

REFERENCES

[1] Blue Waters Sustained Petascale Computing, Project Office.
http://www.ncsa.illinois.edu/BlueWaters/, 2010. accessed July
2010.

[2] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) 2005, pages 519–538, 2005.

[3] U. Consortium. UPC Language Specifications, v1.2. Tech-
nical report, Lawrence Berkeley National Laboratory, 2005.
LBNL-59208.

[4] W. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[5] J. Dongarra and P. Luszczek. Introduction to the HPCCha-
llenge Benchmark Suite. Technical report, ICL Technical
Report, 10 2005. ICL-UT-05-01.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, third
edition, 2003.

[7] IBM. Power Instruction Set Architecture, 2009.

[8] MPI Forum. MPI: A Message-Passing Interface Standard.
Version 2.2, September 4th 2009.

[9] R. W. Numrich and J. Reid. Co-array fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[10] TOP500. http://www.top500.org/, 2006. accessed July 2010.

82

