
Transforming the high-performance 3d-FFT in ABINIT

to enable the use of non-blocking collective operations

Torsten Hoefler and Gilles Zérah

Département de Physique Théorique et Appliquée

Commissariat á l’Énergie Atomique

CEA/DAM Ile-de-France BP 12,

91680 Bruyères-le-Châtel Cedex, France

September 13, 2007

Abstract

This article describes the implementation of the three-dimensional Fast Fourier Transfor-
mation in the application ABINIT and investigates a possible way to enhance parallel perfor-
mance by leveraging communication/computation overlap. We propose code transformations
that enable the use of non-blocking collective operations which are implemented by an MPI
extension library (LibNBC). The transformations and the code are described in detail and
fulfil also the role of a source documentation. The results are presented as microbenchmarks
that show the performance gain on an InfiniBand network.

1 Introduction

Recent cluster computer interconnection networks, like InfiniBandTM, Myrinet, or Quadrics are
able to perform most parts of the message transmission process without CPU interaction. Thus, the
main CPU is mostly idle during the message transmission process. This enables new optimization
techniques that use the free CPU resources during send and receive operations. MPI-2 as the
de-facto standard for the programming of parallel systems supports the usage of this “hardware
parallelism” by offering non-blocking send and receive operations that can effectively be used
to “overlap” computation and communication. Efficient overlap can only be achieved if both,
the network technology and the MPI library support overlap. This was not necessarily true
in the past. However, recent MPI libraries like Open MPI [8] support overlap and so called
“asynchronous progress” (that enables the message transmission to progress transparently to the
user) sufficiently [13].

Traditionally, collective operations have been a “language tool” to support programmers in the
design of often-used communication patterns and to ensure highest performance on a given system

1

1.1 Implementation of non-blocking collective operations: LibNBC2 STATE OF THE ART OF 3D-FFT

and at the same time performance portability between different systems (cf. [10]). Using collective
operations, the programmer could be sure that his program will achieve high performance on
nearly all parallel architectures, regardless of the underlying hardware/interconnection system.
The clear separation of communication and computation enabled computer scientists to optimize
the communication patterns independently and the application programmer could concentrate on
the algorithm itself. It is clearly suboptimal to use send/receive calls on scenarios where a collective
operation could be applied1.

The two optimization principles, the usage of collective operations and the overlap of computation
and communication are unfortunately mutually exclusive in the MPI-2 standard. Our assumption
is that non-blocking collective operations could combine both advantages and lead to more efficient
parallel programs. Previous work dealt with the design and implementation of non-blocking col-
lective operations as an addition to the MPI-2 standard. The definition of non-blocking collectives
and some possible use cases are introduced in [12].

1.1 Implementation of non-blocking collective operations: LibNBC

An implementation of non-blocking collective operations is available with LibNBC2 [15]. This
library implements every collective operation as a collective schedule that is communicator and
process specific and executed asynchronously. Every outstanding non-blocking collective operation
has its own state that is represented by the current position in its schedule. This enables highest
possible asynchrony and the maximum overlap potential. LibNBC bases on MPI-1 (MPI-2 if
Fortran is used), and ANSI C and is therewith highly portable. The implemented collective
algorithms can be easily exchanged with machine specific ones. The current version is optimized
for the InfiniBand network. A detailed description of LibNBC and it’s implementation is available
as a technical report [14].

2 State of the Art of 3d-FFT

Fourier transforming three-dimensional boxes is used very often in scientific computing. A popular
example is the transformation of wave functions from real to reciprocal space and vice versa in
ab initio calculations to simplify the calculation. Those applications are very computationally
demanding and parallelization is necessary to tackle growing problems.

Thus, implementing efficient parallel three-dimensional FFT algorithms has been subject to re-
search since several years. The serial parts of those algorithms are already highly optimized for
many processor architectures or follow automatic tuning approaches (e.g., [7]). The big challenge
in parallel FFTs is the relatively high communication complexity. The computation grows with
O(N · log(N)) while the communication growth is only slightly smaller with O(N). Thus, many

1Several application developers achieved higher performance with this technique with a single MPI implemen-

tation, but this is neither portable nor clean programming. A better way would have been to modify the MPI

implementation of the collective operation
2http://www.unixer.de/NBC

2

2.1 Implementation in ABINIT 2 STATE OF THE ART OF 3D-FFT

research groups dealt with a communication-efficient parallel implementation of the 3d-FFT. Adel-
man et al. [1] and Cramer et al. [3] implemented a 3d-FFT on a cluster of workstations. They
both chose to perform two 1d transformations along all x and y lines in parallel, do a parallel
transpose (MPI ALLTOALL), and perform the last transformation in the z direction in parallel.
This scheme turned out to be more efficient on cluster computers that other distribution patterns
(e.g. redistributing the data twice). Another algorithm, developed in the BSP model is presented
by Inda et al. in [16].

However, even if their approach uses collective communication, the computation and the commu-
nication is clearly separated and the communication units are idle during computation and vice
versa. First experiences with overlapping in parallel 3d FFTs have been gained by Calvin et al. [2].
Dubey at al. analyzed in [4] different communication patterns for parallel FFTs. They found that
non-blocking send/receive communication with overlap performs slower than collective operations.
Goedecker et al. use a combination of OpenMP and MPI to utilize the available resources more
efficiently in [9]. However, their scheme is limited by the number of available processing units per
node.

Other FFT implementations, optimized for special parallel hardware, have been proposed in [5, 6,
17].

2.1 Implementation in ABINIT

ABINIT uses two different kinds of FFTs. A normal, also called full FFT is used to transform the
electron density, and a zero-padded FFT is used to transform the wave function. Zero-padding the
FFT is a way to save computational effort by utilizing special properties of ab initio calculations.
The real-space grid has to be bigger than the reciprocal space grid3, this means that the forward
transformation can just ignore zero elements and the backward transformation can fill those ele-
ments with zeroes. This saves a considerable amount of computation and communication for the
calculation. Many different implementations of the FFT algorithm are available to the user, and
we here concentrate on the implementation of the algorithm described in [9], in the version using
only MPI.

The following subsections are meant as a documentation for the source code. It is highly recom-
mended to read the cited source-code sections in addition.

2.1.1 Full transformation

Forward The full forward transformation is implemented in forw.F90. It starts with the planes
distributed in i3 direction. Every i3-plane is first transformed in i1 direction (fftstp), repacked
with unswitch and transformed in i2 direction (fftstp) and immediately packed into the com-
munication buffer with unmpiswitch. The communication buffer zmpi1 is so packed i3-plane by
i3-plane. The data is packed in the zmpi1 array as I1,i2,i3,ip2 where ip2 runs from 1 to nproc.
This scheme allows a redistribution with MPI ALLTOALL that i2 is distributed among the different
processes after the operation.

3usually a factor of two is chosen

3

2.1 Implementation in ABINIT 2 STATE OF THE ART OF 3D-FFT

A blocking MPI ALLTOALL is performed in the whole buffer after all planes have been packed. The
last step transforms the i3-lines line by line with fftstp. The data is unpacked from the buffer
with the unscramble routine.

Backward The full backward transformation, implemented in back.F90 starts with the i2-planes
distributed among the processes. It transforms all i1-i3-lines with fftstp and packs the trans-
formed data into the communication buffer zmpi1 (subroutine scramble). The buffer is packed as
I1,i2,i3,ip3 and suited to redistribute from i2-planes to i3-planes.

A blocking MPI ALLTOALL is performed to do this redistribution after all lines have been packed
to the buffer. The last step is to unpack every i2-plane with mpiswitch and to transform in i1 and
i2 direction.

2.1.2 Zero padding

Forward The zero padded forward transformation is implemented in forw wf.F90. It starts
with the i3-planes distributed among different processes like the full transform. The difference
is that the transformation is not done completely. The i3-planes are again transformed plane by
plane. The transformation in i1 direction is done fully (all lines are transformed). The second
transformation in the i2 direction is only done for the needed box size. The ratio between real and
reciprocal box sizes is determined by the boxcut which is usually about 2 for ab initio calculations.
Thus, we assume a boxcut of 2 for all further explanations. After this two transformations, the box
shrunk to 1/4th of its original size (two times halved). This means that only 1/4th of the data has
to be communicated in the MPI ALLTOALL exchange. However, this requires special packing. The
routine unmpiswitch cent performs this packing of only the central elements (all others can just be
ignored because they are not used in further transformations). The MPI ALLTOALL is performed,
the data is unpacked in unscramble and the last transformation in i3 direction is performed on
the center region (only 1/2 of the full i3 dimension).

Backward The zero padded backward transformation is similar to the full backward besides the
fact that it starts on a small box and ends on a larger one. This requires to pad each dimension
(line) to the larger box before the transformation is performed on all elements. The transformation
starts similar to the normal backward with the i2-planes distributed. All i1-i3-lines are filled up with
zeroes by the subroutine fill cent. The transformation on each line is performed immediately
and the transformed data is packed line by line into the zmpi2 array (scramble). The following
exchange (MPI ALLTOALL) is again performed with 1/4th of the data. The unpacking of every
i3-plane is performed by mpiswitch cent that also pads the data with zeroes. The following
transformation is done in i1 direction, rearranged (with zero padding) and then in i2 direction.

The zero padding FFT is depicted in Figure 1.

4

3 CODE TRANSFORMATIONS

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

x

y
z

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

x

y
z

x

y
z

x

y
z

before transformation transformation in x transformation in y transformation in z

Figure 1: 3d FFT Backward Transformation with zero padding.

3 Code Transformations

We want to apply a pipelining scheme to the transformation. This means that the all-to-all
communication of a plane is started as soon as this plane is transformed. The disadvantage is that
one has to wait for all communications to end and to unpack the data before the first i3-line can be
transformed. The overlap potential decreases for every plane and the latest plane communication
is immediately waited for (no overlap is possible). This pipelining technique is only efficient if
there is a sufficient number of planes available to pipeline. A second issue is that the overlap
potential of LibNBC is highest for large messages sizes. Thus, we need to implement a scheme to
collect multiple planes for a single non-blocking communication step. Other tuning features like
a window size (limiting number of outstanding requests) or a specific test interval (to progress
LibNBC internally) have not been implemented yet.

The whole implementation is guarded with a CPP define (MPI NBC) that enables the configure
script to indicate if LibNBC is available or not.

Full Forward Transformation The forward transformation remains mainly unchanged. The
current implementation transforms already plane by plane in i3 direction. The new parameter
mpi enreg%fftplanes fourdp indicates the number of i3 planes to accumulate before a non-
blocking communication is started. The main difference is that the planes have to be packed
differently for the finer-grained communication operation. The communication takes now place on
n small all-to-all buffers instead of a single one. The different packing is performed in the new
subroutine unmpiswitch htor. This subroutine packs it accordingly to the number of accumulated
planes. The different packing schemes for a 3x3x3 box on 3 processes are shown in Figures 2 and
3. The zmpi1 array is used as a three dimensional array of dimensions n1 × n2/p × n3. The
first dimension is just consecutively filled with data (1..i1). The indexes of the second and third
dimension are corrected, according to the required packing scheme.

All outstanding communication operations are finished after the transformation of all i3-planes.
The unpacking must of course also obey the new structure of the array zmpi2. Thus, the new
routine unscramble htor has been introduced. This routine unpacks the selected number of planes
into the work array.

5

4 MICROBENCHMARK RESULTS

020 021 022

000 001 002020 021 022

120 121 122

220 221 222

010 011 012000 001 002

110 111 112100 101 102

210 211 212200 201 202

100 101 102 200 201 202

110 111 112 210 211 212

120 121 122 220 221 222

Alltoall

0

1

2

010 011 012

rank

Figure 2: Memory layout for a single Alltoall operation.

000 010 020 002 012 022 000 100 200 100 101 201 002 102 202

100 110 120

200 210 220

101 111 121

201 211 221

102 112 122

202 212 222

010 011 210

020 120 220

011 111 211

021 121 221

012 112 212

022 122 222

AlltoallAlltoallAlltoall

0

1

2

001 011 021

rank

Figure 3: Memory layout for three concurrent Alltoall operations on the same data.

Full Backward Transformation The changes to the backward transformation are similar as in
the forward transformation. A big difference is though that the computation time is much smaller
and the communication of a single plane is only overlapped with the computation of a 1d transfor-
mation of this plane (as opposed to a 2d transformation in the forward transform). The packing
function is exchanged with scramble htor and the unpacking function with mpiswitch htor.

Zero padding transformations Both, the forward and backward transformation with zero
padding are modified in a similar manner. The modifications are slightly more complicated due to
the padding and the different (non block-wise) distribution scheme, but follow the same principles.

4 Microbenchmark Results

Two different sets of benchmarks have been run on all implementations. A detailed benchmark
provides insight into the scaling behavior of the different parts of the FFT, while another mi-
crobenchmark measures the detailed communication overheads and the general scaling (from an
application’s perspective) of the implementation.

All benchmarks have been run on the “odin” cluster at Indiana University. The system consists of
128 Opteron nodes. Each node is equipped with 2 2Ghz 270 dual core Opteron processors and 4 GB
RAM. The system is connected with an InfiniBandTM network. All the tests have been run over
InfiniBandTM. The secondary network is Gigabit Ethernet. It is expected that the performance
gain for Ethernet is much higher than for InfiniBandTM (cf. benchmarks in [11], ran on the same
system).

6

4.1 Detailed Benchmark 4 MICROBENCHMARK RESULTS

4.1 Detailed Benchmark

This benchmark structures the implementations described in Section 2 in different logical blocks
(they are mainly identical for all transformations in one direction, regardless if a full or partial
transformation is performed). We examine the detailed scaling of the forward transformation in
the following. The detailed timing can be enabled for the microbenchmark if the code is compiled
with the preprocessor-flag TIMING.

The implementations have been split into the following blocks:

allocate time needed to allocate all the temporary arrays and calculate the FFT parameters
(subroutine ctrig)

nd3proc time needed to perform the loop over all z-planes of the local processor (transforms in x
and y direction). This step includes the communication initiation time (call to NBC IALLTOALL)
in case of non-blocking communication.

unmpiswitch time needed to pack the communication array. This is a part of the time nd3proc.
It has been included to analyze effects of the changed memory layout.

communication time needed to perform the communication. This is the complete communication
overhead (call to MPI ALLTOALL) in the blocking case and the NBC WAIT overhead in the
non-blocking case.

md2proc time needed to perform the last transformation in z-direction

unscramble subset of md2proc, indicates the time to unpack the communication array. It has
been included to study the effects of the changed memory layout.

deallocate time for array deallocations

All the benchmarks have been run on the odin cluster with 1 CPU/node and the indicated times
are an average of three program runs.

4.2 Detailed timing results for the full forward transformation

This section provides the timing results for the forward transformation of a 1283 cube for different
node numbers (4, 8 and 16). This allows to determine the parallel scaling and to assess the
implementation quality. The original code has been highly cache-optimized so that every small
change to the memory access pattern may have significant consequences. The benchmarks have
been run with fftplanes=2 (two planes are accumulated into a single non-blocking communication)
to have the same pipeline-depth as the zero-padding implementation.

Table 1 shows detailed timing results for the full forward transform. The second column gives the
absolute time for the block in seconds on 4 processrs. The columns for 8 and 16 processors show
the speedup with regards to the 4 processor base-case (ideally 2 and 4 respectively). The second
part of the table shows the timings for the non-blocking implementation. This part shows also the
relative time with regards to the blocking implementation (ideally 1 or smaller).

7

4.3 Detailed timing results for the partial forward transformation4 MICROBENCHMARK RESULTS

Table 1: Full forward transform detailed timing
forw - original implementation

block 4 procs 8 procs (speedup) 16 procs (speedup)
allocate 0.000023 1.06 1.05
nd3proc 0.037205 1.85 3.62
unmpiswitch 0.005316 2.01 4.15
communication 0.022314 1.67 3.03
md2proc 0.022962 1.95 3.97
unscramble 0.008718 2.42 5.13
deallocate 0.000008 1.00 1.02
forw htor - non-blocking implementation

block 4 procs (rel. to orig) 8 procs sp. (rel. to orig) 16 procs sp. (rel. to orig)
allocate 0.000022 (0.95) 1.02 (0.97) 1.04 (0.96)
nd3proc 0.046629 (1.25) 1.72 (1.33) 2.95 (1.53)
unmpiswitch 0.005430 (1.02) 1.92 (1.06) 4.03 (1.05)
communication 0.002268 (0.10) 0.36 (0.46) 0.58 (0.53)
md2proc 0.024388 (1.06) 1.81 (1.14) 3.67 (1.14)
unscramble 0.008783 (1.00) 1.58 (1.53) 3.38 (1.52)
deallocate 0.000015 (1.76) 1.27 (1.38) 1.40 (1.29)

The non-blocking implementation spends more time in the nd3proc loop because all non-blocking
communications are initiated and progressed (NBC TEST) in this loop. However, much time is
saved in the communication where the non-blocking implementation performs 50-90% faster than
the blocking case. One can also see that the modified unscramble routine scales worse than the
original version with a growing processor number. This is due to the constant overhead of the
calculation of the corrected j3-index (cf. Section 3, the calculation could possibly be optimized
if a direct algorithm would be found). The remaining blocks are nearly identical to the original
implementation.

4.3 Detailed timing results for the partial forward transformation

Similar to Section 4.2, we discuss the detailed timing results of the zero-padding transformation of
a 1283 cube with a boxcut of 2 in the following. The blocks are similar to the full transform. The
main difference is the changed packing and unpacking routines and that less data is communicated.
All benchmarks have been run with fftplanes=1 (one plane per non-blocking communication) to
guarantee the same pipeline-depth as for the full transform. The detailed results are shown in
Table 2.

4.4 Communication and Scaling Benchmark

This benchmark measures the parallel scaling of the transformation and the communication over-
head in relation to the number of planes accumulated for communication. The influence of using

8

4.4 Communication and Scaling Benchmark 4 MICROBENCHMARK RESULTS

Table 2: Partial forward transform detailed timing
forw wf - original implementation

block 4 procs (orig.) 8 procs (speedup) 16 procs (speedup)
allocate 0.000019 1.00 0.94
nd3proc 0.040705 1.97 4.13
unmpiswitch 0.001541 1.96 3.92
communication 0.006264 2.12 3.47
md2proc 0.004317 1.78 3.69
unscramble 0.001508 2.02 4.36
deallocate 0.000008 1.33 1.60
forw wf htor - non-blocking implementation

block 4 procs (rel. to orig) 8 procs sp. (rel. to orig) 16 procs sp. (rel. to orig)
allocate 0.000055 (2.89) 2.89 (1.00) 2.89 (1.01)
nd3proc 0.064339 (1.58) 2.78 (1.12) 5.62 (1.16)
unmpiswitch 0.002681 (1.74) 3.19 (1.07) 6.31 (1.08)
communication 0.005237 (0.84) 31.17 (0.06) 7.39 (0.39)
md2proc 0.005115 (1.18) 2.02 (1.04) 4.23 (1.04)
unscramble 0.001771 (1.17) 2.07 (1.15) 4.85 (1.05)
deallocate 0.000018 (2.25) 2.00 (1.50) 2.25 (1.60)

more than one CPU-core per node is also investigated. Ideally, all cores (in our case 4) should
be used to perform useful computation or to progress communication. Neither LibNBC nor MPI
provides useful asynchonous progress in the case of collective communication. That is why we do
not investigate the use of one or more cores as communication co-processor. All benchmarks have
been executed with a 1283 processor grid from 1 to 32 processes (the FFT saturates at this point)
and 1 to 4 used processing cores.

4.4.1 The role of the fftplanes parameter

The fftplanes parameter determines the number of planes that are collected to a single communi-
cation operation. The current implementation requires that the third dimension of the FFT-box
(the large in case of a full transform and the small in case of a zero-padded transform) is divisible
by fftplanes. The fftplanes f parameter influences two other parameters, namely the size of the
communicated data and the depth of the pipeline. The whole communicated data size per pro-

cessor sbl (blocking case) for the 1283 case can be calculated by sbl = 128
3

p
· 2 · 8 bytes (complex

transform). In the non-blocking case, the communication is splitted into multiple smaller pipelined
communications. The number of those communications, i.e., the pipeline depth d, is determined
by the fftplanes parameter: d = 128/f . The size of every non-blocking communication snb is

determined by snb = sbl/128 · f = sbl/d = 128
2

p
· f · 2 · 8 bytes.

NBC deliver the optimal performance when the communicated data size is large and there is
sufficient time to overlap. The time to overlap t for every single element αi the pipeline is the time
that the remaining items αi+1 . . . α128 need to compute. Assuming that a single plane needs the

9

4.4 Communication and Scaling Benchmark 4 MICROBENCHMARK RESULTS

time λ to compute, the element i (∀ 0 < i ≤ 128) has t = λ ·(128− i) to overlap the communication
(in case f = 1). For the general case, (variable f), t(f) = fλ · (128/f − j) (∀ 0 < j ≤ 128/f). This
means that the last plane has no time to overlap and the size of this plane is directly proportional
to f .

The communicated data size is also directly proportional to f . This makes it not trivial to choose
the optimal f value for a given problem. However, we tested different scenarios and found that
the size dominates the communication overhead gain clearly. Figure 4 shows how the datasize
influences the possible gain of overlap in an all-to-all communication for a communicator size of
16.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100000 200000 300000 400000 500000 600000

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rh
e

a
d

 (
u

s
e

c
)

Alltoall Datasize (bytes)

MPI_Alltoall
NBC_Ialltoall

Figure 4: Communication Overhead for blocking MPI ALLTOALL and non-blocking
NBC IALLTOALL with maximum possible overlap for a communicator with 16 processes (1 process
per node)

Results for the full transform with 1 CPU/node and different fftplanes are shown in Figure 5. One
can see that a bigger fftplanes parameter benefits the scaling if there are still enough communication
operations for the pipeline (d = 128/f).

4.4.2 Performance gain due to the use of NBC

The performance gain due to the use of NBC in the parallel FFT is shown in Figure 6 for the full
transform and in Figure 7 for the zero-padded transform. The ideal fftplanes parameter is assumed
(result from multiple experiments). The gain itself varies highly and the implementation seems to
have an anomality at 16 processes in both cases. This is subject to further research.

The gain in overall performance is mostly due to a reduced communication overhead. The com-
munication overheads for a full and zero-padded transformation, utilizing all available processing

10

4.4 Communication and Scaling Benchmark 4 MICROBENCHMARK RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
p

e
e

d
u

p

Processes

original
fftplanes=1
fftplanes=2
fftplanes=4

Figure 5: Influence of the fftplanes parameter on the scaling of the parallel FFT

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 G
a

in
 (

%
)

Processor Number

1 CPU/node
2 CPUs/node
4 CPUs/node

Figure 6: Performance gain due to the use of NBC for the full transformation (the ideal fftplanes
parameter was chosen)

11

4.4 Communication and Scaling Benchmark 4 MICROBENCHMARK RESULTS

-10

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 G
a

in
 (

%
)

Processor Number

1 CPU/node
2 CPUs/node
4 CPUs/node

Figure 7: Performance gain due to the use of NBC for the zero-padded transformation (the ideal
fftplanes parameter was chosen)

cores per node (this should be the default case), are shown in Figure 8 and Figure 9 respectively.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rh
e

a
d

Processes

original
fftplanes=1
fftplanes=2
fftplanes=4

Figure 8: Communication overhead for the full transform

The variation in the overheads is also pretty high. But for every number of processes, there exists
at least one fftplanes parameter that has a lower communication overhead than the original version.

12

5 IMPLEMENTATION IN ABINIT

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25 30 35

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rh
e

a
d

Processes

original
fftplanes=1
fftplanes=2
fftplanes=4

Figure 9: Communication overhead for the zero-padded transform

The increase in the overall costs for the 16 processor case is due to the unfortunate changed memory
access pattern that slows the packing/unpacking down (i.e., is not as cache and prefetch friendly
as the original pattern).

5 Implementation in ABINIT

The modified functions that have been described in Section 2 have an identical interface to the
functions that are used to perform the transformation in ABINIT. The microbenchmark used in
Section 4 is only a driver to those routines. The implementation into ABINIT is thus straightfor-
ward.

One of the main goal was to influence the existing code as minimal as possible. All new functions
have been added to the existing code-base with the suffix htor. Three additional parameters have
been added to the input file:

fftplanes fourdp the fftplanes parameter for the full transformation forw,back

fftplanes forw wf the fftplanes parameter for the zero-padded forward transformation

fftplanes back wf the fftplanes parameter for the zero-padded backward transformation

All parameters have the default-value 0 that means that the original (blocking) implementation is
used to perform the transformation. The non-blocking variant is used if the parameter is larger
than 0 and the number is used as the fftplanes parameter for the given transformation (it is
decreased until it fulfills the divisibility requirements). Passing a -1 as parameter selects the
experimental autotuning feature. Autotuning benchmarks the first runs of the fft with different

13

REFERENCES

fftplane parameters (0 to 8) and selects the fastest one. However, this benchmark is only done
once at the beginning and is highly influenced by jitter in the system (the selection is likely to be
suboptimal).

6 Conclusions and Future Work

We showed that the performance of a highly cache-optimized fast Fourier transformation can be
further improved with the use of non-blocking collective operations. We used a simple pipelining
scheme to enable overlap of communication and computation for this case. Furthermore, we
investigated the effects of the changes memory access pattern in a detailed speedup analysis. The
suboptimal memory access pattern for the pack/unpack operations limit the performance gain of
NBC. However, in most cases, an additional decrease in running time could be achieved with the
use of NBC.

The influence of the communicated data size has also been investigated. A parameter, that enables
the accumulation of multiple planes in a single communication (fftplanes) has been introduced
and its influence on the running time has been discussed. The choice of this parameter is non-
trivial and hardly predictable (highly system dependent). We recommend, in the case of multiple
transformation, to benchmark different parameters and use the fastest one.

References

[1] A. Adelmann, W. P. Petersen A. Bonelli and, and C. W. Ueberhuber. Communication ef-
ficiency of parallel 3d ffts. In High Performance Computing for Computational Science -
VECPAR 2004, 6th International Conference, Valencia, Spain, June 28-30, 2004, Revised
Selected and Invited Papers, volume 3402 of Lecture Notes in Computer Science, pages 901–
907. Springer, 2004.

[2] C. Calvin and F. Desprez. Minimizing communication overhead using pipelining for multidi-
mensional fft on distributed memory machines, 1993.

[3] C. E. Cramer and J. A. Board. The development and integration of a distributed 3d fft for
a cluster of workstations. In Proceedings of the 4th Annual Linux Showcase & Conference,
Atlanta, volume 4. USENIX Association, 2000.

[4] Anshu Dubey and Daniele Tessera. Redistribution strategies for portable parallel FFT: a case
study. Concurrency and Computation: Practice and Experience, 13(3):209–220, 2001.

[5] Maria Eleftheriou, Blake G. Fitch, Aleksandr Rayshubskiy, T. J. Christopher Ward, and
Robert S. Germain. Performance measurements of the 3d fft on the blue gene/l supercom-
puter. In José C. Cunha and Pedro D. Medeiros, editors, Euro-Par 2005, Parallel Processing,
11th International Euro-Par Conference, Lisbon, Portugal, August 30 - September 2, 2005,
Proceedings, volume 3648 of Lecture Notes in Computer Science, pages 795–803. Springer,
2005.

14

REFERENCES REFERENCES

[6] B. Fang and Y. Deng. Performance of 3d fft on 6d qcdoc torus parallel supercomputer. J.
Comp. Phys. Submitted, 2005.

[7] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005. special issue on ”Program Generation, Optimization, and
Platform Adaptation”.

[8] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jef-
frey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.

[9] S. Goedecker, M. Boulet, and T. Deutsch. An efficient 3-dim FFT for plane wave electronic
structure calculations on massively parallel machines composed of multiprocessor nodes. Com-
puter Physics Communications, 154:105–110, August 2003.

[10] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of message passing.
ACM Trans. Program. Lang. Syst., 26(1):47–56, 2004.

[11] T. Hoefler, P. Gottschling, W. Rehm, and A. Lumsdaine. Optimizing a Conjugate Gradient
Solver with Non-Blocking Collective Operations. In Recent Advantages in Parallel Virtual
Machine and Message Passing Interface. 13th European PVM/MPI User’s Group Meeting,
Proceedings, LNCS 4192, pages 374–382. Springer, 9 2006.

[12] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine, and W. Rehm. Non-Blocking
Collective Operations for MPI-2. Technical report, Open Systems Lab, Indiana University, 08
2006.

[13] T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine. A Case for Non-Blocking Collective
Operations. In Frontiers of High Performance Computing and Networking - ISPA 2006 Work-
shops, volume 4331/2006, pages 155–164. Springer Berlin / Heidelberg, 12 2006.

[14] Torsten Hoefler and Andrew Lumsdaine. Design and implementation of the nbc library.
Technical report, Indiana University, 2006.

[15] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. Implementation and performance
analysis of non-blocking collective operations for mpi. In In proceedings of IEEE Supercom-
puting’07, 2007.

[16] Márcia A. Inda and Rob H. Bisseling. A simple and efficient parallel FFT algorithm using
the BSP model. Parallel Computing, 27(14):1847–1878, 2001.

[17] Kenneth Moreland and Edward Angel. The fft on a gpu. In HWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 112–119,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

15

