
Leveraging non-blocking Collective Communication in

high-performance Applications

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine

Open Systems Laboratory

Indiana University

501 N. Morton Street

Bloomington, IN 47404 USA

{htor, pgottsch, lums}@cs.indiana.edu

Abstract

Although overlapping communication with computation is an important mechanism for achieving

high performance in parallel programs, developing applications that actually achieve good overlap can

be difficult. Existing approaches are typically based on manual or compiler-based transformations. This

paper presents a pattern and library-based approach to optimizing collective communication in parallel

high-performance applications, based on using non-blocking collective operations to enable overlapping

of communication and computation. Common communication and computation patterns in iterative

SPMD computations are used to motivate the transformations we present. Our approach provides the

programmer with the capability to separately optimize communication and computation in an applica-

tion, while automating the interaction between computation and communication to achieve maximum

overlap. Performance results results with two model applications show more than 90% decrease in com-
munication overhead, resulting in 16% and 21% overall performance improvements.

1 Introduction

Improving the performance of distributed-memory parallel scientific applications has long focused on opti-

mizing two primary constituents, namely optimizing (single process or single thread) computational perfor-

mance and optimizing communication performance. With more advanced communication operations (such

as non-blocking operations), it has also become important to optimize the interactions between computa-

tion and communication, which introduces yet another dimension in which to optimize. Moreover, these

advanced operations continue to grow even more sophisticated (with the advent, e.g., of non-blocking col-

lective operations), presenting the programmer with yet more complexity in the optimization process. As

systems continue to grow in scale, the importance of tuning along all of these dimensions becomes more

important.

The most straightforward way to improve basic communication performance is to employ high-performance

communication hardware and specialized middleware to lower the latency and increase the bandwidth. How-

ever, there are limits to the gains to overall application performance that can be achieved just by focusing on

bandwidth and latency. Approaches that overlap computation and communication seek to overcome these

limits by hiding the latency costs by performing communication and computation simultaneously.

Obtaining true overlap (and the concomitant performance benefits) requires hardware and middleware

support, sometimes placing high demands on communication hardware. Some studies, e.g., [31], found

that earlier communication networks did not support overlapping well. However, however, most modern



network interconnects perform communication operations with their own co-processor units and much more

effective overlap is possible [26]. To take advantage of this parallelism, specific non-blocking semantics

must be offered to the programmer. Many modern library interfaces (even outside of HPC) already offer

such non-blocking interfaces, examples include asynchronous filesystem I/O, non-blocking sockets and MPI

non-blocking point-to-point communication.

Another key component to efficient hardware utilization (and therefore to high performance) is the ab-

straction of collective communication. High-level group communications enable communication optimiza-

tions specific to hardware, network, and topology. A principal advantage of this approach is performance-

portability and correctness [20].

Non-blocking collective operations for MPI, which combine the benefits of the two concepts discussed

above, have been proposed and implemented in [28]. Several studies [24, 25] showed that the high per-

formance of blocking collective operations can be effectively combined with overlap to achieve up to 35%
application speedup. In addition, the use of non-blocking collective operations avoids data-driven pseudo-

synchronization of the application [29]. Iskra et al. and Petrini et al. show in [32] and [38] that this effect

can cause a dramatic performance decrease.

It is easy to understand how non-blocking collective operations mitigate the pseudo-synchronization

effects and hide the latency costs. However, properly applying those techniques to real-world applications

turned out to be non-trivial because code must often be significantly restructured to take full advantage

of non-blocking collective operations. We learned in several application studies [24, 25] that using non-

blocking collectives to achieve good computation and communication overlap is likely to be labor-intensive

and error-prone–and may decrease code readability as well. The main goal of our current work is to over-

come these difficulties by making non-blocking collective operations much more straightforward to use. In

particular, we propose an approach for incorporating non-blocking collectives based on library-based trans-

formations. Our current implementation uses C++ generic programming techniques, but the approach would

be applicable in other languages through the use of other appropriate tools.

Overview In our paper we address in particular the following issues:

1. We show how scientific kernels can take advantage of non-blocking collective operations,

2. We show which code transformations can be applied and how they can be automated,

3. We analyze the potential benefits of such transformations, and

4. We discuss limitations and performance trade-offs of this approach.

Related Work Many scientists recognized the fact that overlapping communication and computation can

yield a substantial performance benefit. Practical application performance has been shown to improve up to

a factor of 1.9 [6, 35]. Dimitrov [15] explains the gains of overlapping on cluster systems. Kale et al. show

the applicability of a non-blocking collective personalized communication for a set of applications in [33].

Several application studies have been conducted to analyze the possible benefits of overlapping for

parallel applications. Sancho et al. [39] show a high potential of overlap for a set of scientific applications.

Brightwell et al. [7] state clearly that many parallel applications could substantially benefit from non-

blocking collective communication.

Possible transformations to parallel codes to enable overlapping have been proposed in many studies

[1, 4, 8, 13]. However, none of them investigated transformations to non-blocking collective communica-

tion. Danalis et al. [13] even suggest replacing collective calls with non-blocking send-receive calls. This

is clearly against the philosophy of MPI and destroys performance portability and many possibilities of op-

timization with special hardware support (cf. [30, 36]) completely. Our approach transforms codes that use
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blocking collective operations and enables the use of non-blocking collective operations and thus combines

the performance portability and machine-specific optimization with overlap and easy programmability.

Several languages, like Split-C [12], UPC [10], HPF [22] or Fortran-D [23], have compilers available

that are able to translate high-level language constructs into message passing code.

2 Overlapping Collectives

Many parallel algorithms apply some kind of element-wise transformation or computation to large (poten-

tially multi-dimensional) data sets. Sancho et al. show several examples for such “Concurrent Data Parallel

Applications” in [39] and prognose a high overlap potential. Other examples are Parallel Sorting [11], Finite

Element Method (FEM) calculations, 3D-FFT [2] and parallel data compression [40].

We chose a dynamic, data-driven application, parallel compression, as a more complex example than

the simple static-size transformations that were shown in previous works. The main difference here is that

the size of the output data can not be predicted in advance and strongly depends on the structure of the input

data. Thus, a two-step communication scheme has to be applied to the problem.

In our example, we assume that the N blocks of data are already distributed among the P processing

elements (PE) and each PE compresses its blocks by calling compress(). The data will finally be gathered to

a designated rank. Gathering of the compression results must be performed in two steps where the first step

collects the individual sizes of the compressed data at the master process, and determines so the parameters

of the second step, the final data gathering. This naive scheme is shown in Listing 1.

my size = 0;

for (i=0; i < N/P; i++) {
my size += compress(i, outptr);

outptr += my size;

}
gather(sizes, my size);
gatherv(outbuf, sizes);

Listing 1: Parallel compression naive scheme

for (i=0; i < N/P; i++) {
my size = compress(i, outptr);

gather(sizes, my size);

igatherv(outbuf, sizes, hndl[i]);
if(i>0) waitall(hndl[i−1], 1);

}
waitall(hndl[N/P], 1);

Listing 2: Transformed compression

This kind of two-step communication process is common for dynamic data-driven computations (e.g.,

parallel graph algorithms [37]), making it rather challenging to be generated automatically by parallelizing

compilers or other tools. None of the projects discussed in the related works section can deal with the data-

dependency in this example and optimize the code for overlap. Thus, we propose a library-based approach

that offers more flexibility and supports the dynamic nature of the communication.

It seems that two main heuristics are sufficient to optimize programs for overlap: First, the communi-

cation should be started as early as possible. This technique is called “early binding” [15]. Second, the

communication should be finished as late as possible to give the hardware as much time as possible to per-

form the communication. In some communication systems, messages can overlap each other. So called

communication-communication overlap [5, 35] can also be beneficial.

Manual Transformation Technique Listing 2 shows the transformed code of Listing 1. This simple

scheme enables the communication of the n
th element to overlap with the computation of the (n + 1)st

element. The call gather(sizes, my size) collects the local data size of all nodes into a single array sizes

and igatherv(outbuf, sizes, hndl[i]) starts a non-blocking communication of the buffers, gathering the

correct size from every PE. The non-blocking communication is finished with a call to waitall(hndl, num)

that waits for num communications identified by handles starting at hndl.
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However, our previous works involving overlap, such as optimization of a three-dimensional Poisson

solver [24] or the optimization of a three-dimensional Fast Fourier Transformation [25] showed that this

simple heuristic is not sufficient to achieve good overlap. The two main reasons for this have been found in

a theoretical and practical analysis of non-blocking collective operations [28]. This analysis shows that the

overlap of non-blocking collective operations is relatively low for small messages but grows with message-

size. This is due to some constant CPU intensive overheads such as issuing messages or managing com-

munication schedules and the faster “bulk” transfer [3] of larger messages. Furthermore it can be more

beneficial to give every communication more time to complete before waiting for it. Another conflicting

issue could be that some MPI implementations have problems to manage many outstanding requests [28]

and this results in significantly degraded performance. We provide separate solutions to those problems in

the following.

Loop Tiling The fine grained communication can be coarsened by loop tiling. This means that more com-

putation is performed before a communication operation is started. Listing 3 shows such a transformation.

for (i=0; i < N/P/t; i++) {
my size = 0;

for (j=i; j < i+t; j++) {
my size += compress(i∗t+j, outptr);
outptr += my size;

}
gather(sizes, my size);

igatherv(outbuf, sizes, hndl[i]);

if(i>0) waitall(hndl[i−1], 1);
}
waitall(hndl[N/P/t], 1);

Listing 3: Compression after loop-tiling

for (i=0; i < N/P; i++) {
my size = compress(i, outptr);

outptr += my size;
if (i > w) waitall(hndl[i−w], 1);

igather(sizes, my size);

igatherv(outbuf, sizes, hndl[i]);

}
waitall(hndl[N/P−w],w);

Listing 4: Compression with a window

CommunicationWindow Allowing more than a single outstanding request at a time gives the opportunity

to finish the communication later (possibly at the end) and allow communication/communication overlap.

However, too many outstanding requests create large overhead and can slow down the application signifi-

cantly. So, the number of outstanding requests must be chosen carefully. This transformation is shown in

Listing 4. Both schemes can be combined efficiently to transform our example as illustrated in Listing 5.

for (i=0; i < N/P/t; i++) {
my size = 0;

for (j=i; j < i+t; j++) {
my size += compress(i∗t+j, outptr);

outptr += my size;

}
if (i > w) waitall(hndl[i−w], 1);

gather(sizes, my size);
igather(outbuf, sizes, hndl[i]);

}
waitall(hnld[N/P/t−w], w);

Listing 5: Final compression transformation

Tuning the Parameters These schemes introduce a

trade-off that is caused by the pipelined fashion of the

transformed algorithm (cf. pipeline theory [21]). The

speedup of a pipeline is usually limited by the start-up

overhead needed to fill the pipe. Our two-stage pipeline

has a start-up time of a single communication. In our spe-

cial case, this overhead is not a start-up time at the be-

ginning but rather a drain time at the end because the last

operation can usually not be overlapped. This means that

a high tiling factor can lead to higher drain times with-

out overlap. Thus, the tiling factor has to be chosen big

enough to allow for bulk transfers and efficient overlap

but also no too big to cause high pipeline drain times. The window factor is important to give the single

4



communications more time to finish but a too high window might cause performance degradation in the

request matching of the underlying communication system. Both factors have to be optimized carefully to

every parallel system and application.

3 Programmer-directed Collectives Overlap

The previous section described several code transformation schemes to leverage non-blocking collective

operations. However, our experiences show that applying those schemes manually is error-prone and time-

consuming. Fully automatic transformation with the aid of a compiler will demand an extremely elaborated

data dependency analysis to guarantee inter-loop independence and can simply not handle many cases. We

propose a flexible generic approach that does not require external software but only a standard compli-

ant C++ compiler. The basic idea is to separate the communication from the computation and rearrange

them while optimizing tiling factor and window-size to get the highest possible performance. The resulting

generic communication pattern represents the class of applications discussed in this paper.

The separation of communication and computation introduces two functors that have to be implemented

by the programmer. The interplay between those functors is defined in the template library and can be

parametrized in order to achieve the maximum performance. The two functors are called computation and

communication.

computation(i) computes step i of an iterative parallel application. The input data can either be read

in the object or generated on the fly. The results of the computation are written into a buffer object, which

is selected by the template. A buffer object stores the computed data and acts as source and destination

buffer for the communication() functor. The communication functor communicates the data in the buffer

it is called with. The buffer object itself is not required to store actual data, it can contain references

to some other containers to avoid copying. All functors and the buffer object are implemented by the

application programmer. Our template library combines those building blocks to enable efficient pipelining.

The elements are described in detail in the following.

class computation t {
void operator() (int i, buffer t& buffer) {

buffer.size += compress(i, buffer.ptr);

buffer.ptr += buffer.size;
} } computation;

Listing 6: Computation functor

class communication t {
void operator() (buffer t& buffer) {

gather(sizes, buffer.size);

igatherv(outbuf, sizes, buffer.hndl);

} } communication;

Listing 7: Communication functor

std::vector<buffer> buffers[w];
pipeline tiled window(N/P, tile size,

computation, communication, buffers);

Listing 8: Templated function call

Computation defines the parenthesis (or application)

operator that is called for every input element by the tem-

plate. A user-supplied buffer to store the output data is

also passed to the function. Listing 6 shows the computa-

tion functor for our compression example.

Communication defines the parenthesis operator and

gets called with a buffer in order to communicate the

buffer’s contents. The computation functor for the com-

pression is given in Listing 7.

Buffer is used to store computation results and to com-

municate them later. All communication book-keeping is

attached to the buffer.

With the two functors at hand, communication over-

lap of real-world applications can be augmented by tiling

and communication windows without modifying the user

code. This is demonstrated in Listing 8.
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Figure 1: Communication overhead of the par-

allel compression using InfiniBand for different

number of PEs (optimal tiling and window size).
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Figure 2: Communication overhead of parallel

compression on 120 PEs depending on tile factor.

The function template pipeline tiled window is parameterized in order to tune the tile size—second

function argument—and the number of windows. The latter is defined implicitly by the number of buffers

(buffers.size()). In the remainder of the paper we demonstrate the performance impact of this tuning.

3.1 Performance Results

We implemented the example with our template transformation scheme to analyze the parallel performance.

We used the g++ 3.4.6 compiler with Open MPI 1.2 [18] and the InfiniBand optimized version of LibNBC

[27] to implement the MPI communication and libbzip2 for the data compression. All benchmarks have

been executed on the “Odin” cluster at Indiana University. Odin consists of 128 nodes with dual dual core

2GHz Opteron 270 HE CPUs and 4 GB RAM per node. We used only a single processor per node to reflect

our communication optimization. The nodes are interconnected with Mellanox InfiniBandTM adapters and

a single 288 port switch.

Figure 1 shows the communication overhead for the compression of 146 MiB random data on different

number of PEs (strong scaling). The MPI graph shows the performance of the original untransformed code,

the NBC/pipeline the optimized code using our template library.

Our benchmarks show that the communication overhead of the parallel compressions example can be

significantly reduced with the application of our transformation templates and the subsequent use of non-

blocking collective communication in a pipelined way. The compression time on 120 PEs was reduced from

2.18s to 1.72s which is an application performance gain of 21%. Figure 2 the influence of the tiling factor
on 120 PEs.

4 Extended Example: Three-dimensional Fast Fourier Transform

A more complex example, the parallel implementation of three-dimensional Fast Fourier Transformations

(FFTs), has been studied by many research groups [2, 9, 16, 19]. The application of non-blocking commu-

nication resulted in controversial results. The optimized collective all-to-all communication was replaced

by a non-blocking point-to-point message pattern. Even if this enabled overlap, the communication was

not optimized for the underlying architecture and different effects, such as network congestion, decreased

the performance. Dubey et al. [16] mention the applicability of a non-blocking all-to-all, but they imple-

mented a point-to-point based scheme and they did not see a significant performance improvement. Calvin

et al. showed performance benefits using the same scheme [9]. However, the test-cases of their study used
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transform all line in z−direction
for all z−planes {

transform all lines in x−direction
parallel transpose from x−distribution

to y−distribution /∗ all−to−all ∗/

}
for all y−lines {

transform line in y−direction

}

Listing 9: Pseudo-code of 3D-FFT

P 3P 2P 1P 0
x zy P 3P 2P 1P 0 x y z

Figure 3: Block distribution in y-direction (left)

and x-direction (right)
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Figure 4: Communication overhead of 3D-FFT

for different number of PEs (optimal tiling and

window size)
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Figure 5: Impact of the window size for a (opti-

mal) fixed tiling factor to communication over-

head on 120 PEs

only four compute nodes which limited the impact of congestion dramatically. We use the optimized non-

blocking collective communication operations provided by LibNBC [28] to avoid congestion and ensure

proper scaling and overlap.

The three-dimensional FFT can be decomposed into three sweeps of one-dimensional FFTs, which are

performed using FFTW [17] in our implementation. The data can be distributed block-wise such that the

first two sweeps are computed with the same distribution. Between the second and third sweep the data

must be migrated within planes of the cuboids. The computation scheme is depicted on a very high level in

Listing 9 and Figure 3.

The n
3 complex values are initially distributed block-wise in y-direction (our transformation schemes

can be used to redistribute the data if this is not the case). The first step consists of n2 1D-FFTs in z-direction.

The calculation in x-direction can still be performed with the same distribution. Before computing the FFT

in the y-direction the data in every z-plane must be redistributed, ideally with an all-to-all communication.

Performing the calculations within the z-planes in two steps establishes a loop with independent computation

and communication so that our pipelining schemes can be applied.

We applied our generic scheme to the parallel 3D-FFT. The computation() functor performs a single

serial one-dimensional transformation with FFTW and packs the transformed data to a buffer. The commu-

nication() uses LibNBC’s non-blocking NBC Ialltoall to initiate the communication. The “wait” function

unpacks the received data from the buffer object into the FFT-buffer.

The benchmark results of a weak scaling 3D-FFT (7203, 6723, 6403, 4803 and 4003 double complex

values on 120, 96, 64, 32 and 16 PEs respectively) using InfiniBand on Odin are shown in Figure 4. The

communication overhead in this more complex example can also be reduced significantly. Our optimizations

were able to improve the running time of the FFT on 120 PEs by 16% from 2.5s to 2.1s.
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We demonstrate the same performance gain for the parallel FFT as we showed for the parallel compres-

sion. Combining window and tiling leads to the highest improvement. Figure 5 shows the communication

overhead with regards to the window size (for a fixed optimal tiling).

5 Conclusions and Future Work

Although non-blocking collective communication operations offer significant potential for improving appli-

cation performance, they need to be used appropriately within applications to actually provide performance

improvements. In this paper, we presented different programming patterns to enable efficient overlapping

of collective communication for a wide class of scientific applications. Applying non-blocking collective

communication with our approach allowed applications to scale far beyond the parallelism of simple non-

blocking point-to-point communication schemes.

The implementation of our transformation scheme as a generic library function template allows these

techniquest to be used without requiring the programmer to explicitly encode them. Compression and FFT

benchmarks using our template demonstrate a significant decrease of communication overhead for both

applications. The communication overhead was reduced by more than 92% for the parallel compression and
90% for the parallel 3D-FFT which led to an application speedup of 21% and 16% respectively.

The source-code is available at the LibNBC webpage: http://www.unixer.de/NBC.

Future work includes the design of similar transformation schemes for loops where dependencies on

remote data elements exist in a single loop. An example is the class of “pipelined algorithms” [34] or

“pipelined data parallel applications” [39] where each process computes on its own grid elements and the

data is pipelined through the processors. Therefore, the process must wait for the new data to arrive before

it can proceed with the computation. Other application patterns exist, like LU factorization [14], where the

“multiplier” must be broadcasted to all ranks before the computation can start.
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