
New and old Features in MPI-3.0: The Past,

the Standard, and the Future

Torsten Hoefler
With contributions from the MPI Forum

All used images belong to the owner/creator!

2/29

What is MPI – Message Passing Interface?

• An open standard library interface for message

passing, ratified by the MPI Forum

• Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 2.0 (’97),

1.3 (’08), 2.1 (’08), 2.2 (’09), 3.0 (probably ’12)

• Common misconceptions:

• MPI parallelizes your application

• MPI is for distributed memory only

• MPI (a library interface) is not scalable

• MPI is fundamentally slower then PGAS etc.
• Really, if you don’t know what MPI is, you won’t enjoy this talk

3/29

What is this MPI Forum?

• An open Forum to discuss MPI

• You can join! No membership fee, no perks either

• Since 2008 meetings every two months for three

days (switching to four months and four days)

• 5x in the US, once in Europe (with EuroMPI)

• Votes by organization, eligible after attending two

of the three last meetings, often unanimously

• Everything is voted twice in two distinct meetings

• Tickets as well as chapters

4/29

How does the MPI-3.0 process work

• Organization and Mantras:

• Chapter chairs (convener) and (sub)committees

• Avoid the “Designed by a Committee” phenomenon

 standardize common practice

• 99.5% backwards compatible

• Adding new things:
• Review and discuss early proposals in chapter

• Bring proposals to the forum (discussion)

• Plenary formal reading (usually word by word)

• Two votes on each ticket (distinct meetings)

• Final vote on each chapter (finalizing MPI-3.0)

5/29

Now to the technical part

• Topology Mapping (MPI-2.2)

• Nonblocking and Neighborhood Collectives

• Matched Probe

• MPI Tool interface

• New One Sided Functions and Semantics

• New Communicator Creation Functions

• Improvements in Language Bindings

• Fault Tolerance/Resiliency

6/29

Topology Mapping in MPI-2.2

• Specify application/algorithm

communication topology via virtual topology

creation functions (since MPI-1.0)

• MPI_Cart_create() – builds a k-dimensional

Cartesian application topology, very scalable

• MPI_Dist_graph_create() – replaces non-scalable

MPI_Graph_create() with a scalable version

• MPI_Dist_graph_create_adjacent() – even more

scalable but all processes specify all neighbors

• How does it map to a topology?
 Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE Journal 2010

7/29

Example Mappings

 Physical

Topology:
 Application

 Topology:

Mapping 1: Mapping 2:

8/29

Why do I care?

• Increase performance or decrease energy

consumption!

• Performance: reduce maximum congestion

• Energy: reduce average dilation

• The general problem is NP-complete (ND17)

• Heuristics are known, algorithms for special

cases to be discovered!

• Portable research-quality implementation in

LibTopoMap [1]

[1]: Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures ICS’11

9/29

Nonblocking Collective Operations

• E.g., MPI_Ibcast(…, &req); MPI_Wait(&req);

• Simple to understand, some things to note:

• Requests are normal MPI_Requests, can be mixed

• Progress is not guaranteed!

• The init call must return independently of remote procs

• All buffers (including arrays for vector colls) shall not

be modified (or accessed) until the op completes

• No matching with blocking collectives

• Collectives must be called in order (as for threading)

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07

10/29

Why do I care?

• Easy availability (LibNBC and MPICH2)

• Overlapping communication and computation

• Improved performance (≤2x though)

• Sometimes tricky, see [1] (will change)

• Decoupling start and synchronization of collectives

• Enhanced system noise resiliency

• Interesting synchronization semantics when mixed

with point-to-point operations!

• E.g., limited-depth termination detection [2]

 [1]: Hoefler, Lumsdaine: Message Progression in Parallel Computing - To Thread or not to Thread?, Cluster 2008

[2]: Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’10

11/29

Neighborhood Collective Operations

• Many applications are written in a BSP-like model

(compute, communicate, compute, …)

• High temporal locality in communication patterns!

• Specify the communication pattern statically

• “User-defined collective communication”

• Cf. MPI Datatypes (who’s using them?)

• Communication along a virtual topology

• MPI_Neighbor_allgather() – same buffer to all

• MPI_Neighbor_alltoall() – personalized send buffer

12/29

Why do I care?

• Simplified programming

• MPI stores the communication partners for you.

• Simple intuitive interface (from an MPI perspective)

• Optimization possibilities (in addition to mapping!)

• Message scheduling

• Needs additional information (e.g., comm. volumes)

• Standard leaves options open (MPI_Info)

• Many applications fit this scheme!

• All stencil codes on Cartesian grids

More info: Hoefler, Traeff: Sparse Collective Operations for MPI, HIPS’09

13/29

Matched Probe

• MPI-2.2 point-to-point communication is not

thread safe!

• Easy to fix: return a message handle from probe!

• Receive this message only through the handle

More info: Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10

MPI_Probe(..., status)

size = get_count(status)*size_of(datatype)

buffer = malloc(size)

MPI_Recv(buffer, ...)

14/29

Why do I care?

• Did you try writing a threaded MPI library which is

called by a threaded code?

• It’s a mess!

• Mprobe cleans this up (a bit)

• Mprobe is actually faster than

user-level hacks

• And much easier to use

each message

 copied twice

message rate

More info: Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10

MPI_Mprobe(..., msg, status)

size = get_count(status)*size_of(datatype)

buffer = malloc(size)

MPI_Mrecv(buffer, …, msg, ...)

15/29

MPI Tool Interface

• Query (and set) internal MPI variables and counters

• Variables are not prescribed but queried

• Control variables (prefix c): behavior

• Performance variables (prefix p): performance

• Query number of variables MPI_T_cvar_get_num()

and a description with MPI_T_cvar_get_info()

• Returns a string (similar to PAPI native events)

• Read and write variables MPI_T_cvar_read() and

MPI_T_cvar_write()

16/29

Why do I care?

• You probably don’t care unless you are a tool

developer – or a fine-tuner

• Query (or change) behavior of MPI

implementations

• E.g., eager limit (auto-tuning?)

• Tools (Periscope, Vampir, Scalasca and friends)

can query internal counters

• Recv queue length, blocking time for rendezvous

17/29

One Sided – Remote Memory Access

• Probably the most complex change in MPI-3.0

• Long history

• First attempt: re-write it from scratch (ICPP’09)

• Failed (no support for non-cache coherence)

• Second attempt: extend MPI-2.0

• MPI-2.0 is very elegant for non-coherent systems

• Hard to use and slow on coherent systems

• Also extend for lock-free programming

• Atomics (CAS, F&A, F&S), no CAS2

• No locks! (MPI_Lock is not really a lock)

18/29

The Memory Models

• MPI defines a window as an exposed memory

region with a public and private copy

• MPI_RMA_SEPARATE

• Like MPI-2.0, windows can have different values!

• MPI_RMA_UNIFIED

• Cache-coherent windows cannot differ

19/29

New Window Types (I)

• Allocated Windows: MPI_Win_allocate()

• MPI library allocates memory, collectively

• Lower address translation overhead

• Cf. symmetric heap in SHMEM

• Dynamic Windows: MPI_Win_dynamic()

• No memory by default, can attach memory locally

(MPI_Win_attach()/MPI_Win_detach())

• Cf. memory registration

20/29

New Window Types (II)

• MPI_Win_allocate_shared() – collectively allocate

shared memory (communicator must allow that!)

• Fast communication in shared memory (direct

access) be careful, potentially big mess!

• Allows to reduce memory consumption (share

large static structures, e.g., tables)

• Returns simple memory layout by default, info

option to request more complex (but NUMA-aware

layout)

21/29

MPI RMA Atomics

• Cf. ISA atomics for shared memory

• MPI_Get_accumulate() – MPI look and feel,

complex argument set, full datatype support

• MPI_Fetch_and_op() – only for single elements,

maps to low-level directives

• MPI_Compart_and_swap() – only single

elements, maps to low-level directives

22/29

New Completion/Synchronization Semantics

• MPI_Win_flush{_all}() – bulk completes all

operations to the specified (all) target(s)

• MPI_Win_flush_local{_all}() – bulk completes all

operations to the specified (all) target(s)

• MPI_Win_sync() – synchronize private and public

windows

• E.g., MPI_Rget(…, &req) returns a request

• Completion of the request only indicates local

completion! (cf. MPI_Rput())

• Only valid in passive target epochs

23/29

Accumulate Ordering and Memory Semantics

• Conflicting put/get accesses are undefined (not

erroneous)

• Conflicting accumulates are defined:

• No order between different pairs of processes

• Strict order between the same processes

• Can be relaxed with info argument! (recommended)

• I wish I had the time to talk about semantics

• Simple rule (C++0x-like): avoid races, they will

lead to undefined outcome on the window

24/29

Why do I care?

• It’s amazing! (and amazingly complex)

• It opens a lot of opportunity

• Think real PGAS algorithms in MPI

• Shared memory windows offer a portable way to

shared memory

• On-node memory savings

• An interesting base for algorithm research

• Is PGAS really better than message passing?

25/29

New Communicator Creation Functions

• Noncollective communicator creation

• Allows to create communicators without involving all

processes in the parent communicator

• Very useful for some applications (dynamic sub-

grouping) or fault tolerance (dead processes)

• Nonblocking communicator duplication

• MPI_Comm_idup(…, req) – like it sounds

• Similar semantics to nonblocking collectives

• Enables the implementation of nonblocking libraries

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11

T. Hoefler: Writing Parallel Libraries with MPI - Common Practice, Issues, and Extensions, Keynote, IMUDI’11

26/29

Language Bindings

• Enhanced Fortran Language bindings:

• Comply with Fortran standard (void * type)

• Type safety (type-safe handles, not all integers)

• Enable correct asynchrony (disallow temp copies,

code movement etc.)

• F08 interface to C

• Deprecated C++ bindings

• Make C++ optional

• Remove the deprecated bindings (any users?)

27/29

Fault Tolerance and Resiliency

• Focus on user-level failure notification

• No magic at all – enables ABFT

• Requires robust MPI library

• Management through communicators

• comm_invalidate, comm_shrink,

comm_failure_ack

• Still somewhat in flux

• Very hard to define and little

existing practice

28/29

The Future

• Tickets for MPI-<next> plannes:

• Scalable vector collectives

• Request completion callbacks

• Timed requests (complete after timeout)

• New communicator creation routines (hierarchical)

• …

• Many cleanups (including errata items)

• No timeline yet

29/29

• MPI-3.0 is coming quickly!

• Use-cases are being

defined

• For more details and training:

• And I will be available for questions today

Summary and Questions?

June 17th ISC’12 Tutorial

Hoefler and Schulz: “Next Generation MPI Programming:

Advanced MPI-2 and New Features in MPI-3”

