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The future of simulation and modeling hardware and software technologies?

Programming and Frameworks Accelerators and Compute

Data Center Networking
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Cloud and HPC Networks Converge

Cloud AI as a gravity well – HPC will follow
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IEEE Computer, June 2022 (10.1109/MC.2022.3158437) 

▪ Design and Deployment

▪ One-off vs. incremental 

➢ Proprietary networks vs. Ethernet

✓ AI supercomputers in the cloud

▪ Operations philosophy

▪ Run-to-completion jobs vs. high-reliability services

➢ Checkpoint/restart vs. replicated instances

✓ Large-scale training in the cloud

▪ Service diversity

▪ Parallel jobs vs. opaque VM servers + microservices

➢ Single context vs. QoS

✓ Most will be AI-driven – serve LLMs

▪ Protocol stacks and layers

▪ Proprietary vs. task-adapted flow control

➢ Simple protocols vs. multi-traffic protocols

➢ Lossless vs. lossy

▪ Utilization and applications 

▪ High peak low noise vs. low peak high noise

➢ High bandwidth low latency vs. normal bandwidth high latency

✓ AI demands highest bandwidths and reasonable latency
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Some Cloud-HPC networks are well on their way to convergence

[1] De Sensi et al.: “Noise in the Clouds: Influence of Network Performance Variability on Application Scalability”, SIGMETRICS’23

19 𝜇𝑠Latency 10 𝜇𝑠1.7 𝜇𝑠 1.7 𝜇𝑠 3.0 𝜇𝑠 2.4 𝜇𝑠

Cloud HPC On Prem HPC
1.7 𝜇𝑠

youtube.com/@spcl
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What about Cloud-AI networks? 
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Communication 
is (largely) a 

logical 3D Torus

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)

The 101 of AI communication patterns …
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▪ Memory bandwidth can be satisfied using HBM3 and friends

▪ Technologies are quickly becoming available

▪ Network bandwidth is more complex and requires full-system 
and packaging tricks 

▪ HPC:

▪ Slingshot (‘21): 200G per GPU

▪ InfiniBand CX-7 (‘22): 400G per NIC

▪ AI:

▪ Google TPUv2 (‘21): 1T 

▪ AWS Trainium (‘21): 1.6T

▪ DGX-2 (A100, ‘21): 4.8T (islands of NVLINK)

▪ Tesla Dojo (‘22): 128T  → Broadcom TH5 / NVIDIA Spectrum 4: 51.2T

▪ Performance models indicate even higher demands 

▪ Massive transformer EDAGs have really bad cuts
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(Network and memory) bandwidth is the new oil in AI supercomputing

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)

640x

A fat tree with 16k 
accelerators and 1.6T 
would cost $680M!

   

Conventional HPC topologies are unaffordable for AI bandwidths!
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Co-designing an AI supercomputer with unprecedented and cheap bandwidth
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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A bandwidth-cost-flexibility tradeoffs

Global Topology 
(e.g., Fat Tree)

HammingMesh
(many configurations)

Local Topology 
(e.g., 2D Torus)

(large) reduce bandwidth

placement flexibility

injection bandwidth

global bandwidth

-
-

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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HammingMesh cost vs. bandwidth – simulated using SST (0.6M core hours) 

Single switch per 
row/column

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ Mapping logical job topologies 

▪ 1D, 2D - obvious

▪ 3rd dimension map onto switches

▪ Fault-tolerance

▪ Nodes may fail

▪ We fail the whole board 

Remaining nodes run single-node jobs

▪ High flexibility!

▪ Simple greedy allocation scheme

▪ Some added tricks (details in paper)
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Practical usage – topology mapping and fault tolerance 

physical Hx2Meshlogical 4x4x4 job

3x3 job

2x4 job

map

[ 1  1  1  2  4  2  2  4]

[ 1  1  1  2  4  2  2  4]

[ 1  1  1  2 -1  2  2 -1]

[ 3  3  3  5  4  5  6  4]

[ 3  3  3  5  7  5  6  8]

[ 3  3  3  5  7  5  6 -1]

[-1  9 10 11  7 12 13  8]

[-1  9 14 15 16 17 18 19]

1-3:3x3; 4-5:2x3, 6-7:1x3, 

8-9:1x2, 10-19:1x1

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ Efficiency of the greedy allocation scheme

▪ And all tricks

13

Experimental workloads
Alibaba’s ML-as-a-service (MLaaS) cluster 

with 6,742 GPUs workload trace

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ Efficiency of the greedy allocation scheme

▪ Now with random failures!
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Experimental workloads

256 total 64 total

Alibaba’s ML-as-a-service (MLaaS) cluster 
with 6,742 GPUs workload trace

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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Alltoall results

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ Allreduce algorithms: (1) ring – optimal bandwidth, high latency, (2) torus – half bandwidth, lower latency
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Allreduce results

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ First large-scale mini-app suite for communication 
in Deep Learning jobs

▪ Many relevant and scalable networks

ResNets, BERT, CosmoFlow, DLRM, GPT-2, GPT-3,  MoE, …

▪ Portable MPI C code – easy to adapt

▪ Reproducible (also for other works)

▪ Full network simulations (using SST with MPI driver)
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Full deep neural network communication
https://github.com/spcl/DNN-cpp-proxies

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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▪ But isn’t there RDMA over Converged Ethernet?
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Converging HPC technology into Ethernet 

Founding Members

white Paper on ultraethernet.org 

IEEE Computer, June 2023
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▪ 1) PFC requires excessive buffering for lossless transport – requires full BDP=BW*RTT+MTU buffer!

▪ Assuming 600ns traversal latency (FEC, arbitration, forwarding, wire delay), 9 kiB packets, 8 priorities
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Getting there – Some RDMA Issues at Hyperscale 

Tomahawk 2 
(2016)

Tomahawk 
(2014)

Tomahawk 3
(2018)

Tomahawk 4
(2020)

Tomahawk 5
(2022)

Switch bandwidth doubles 
every two years!

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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▪ 1) PFC requires excessive buffering for lossless transport – requires full BW*RTT+MTU buffer!

▪ Per 800G port for longer distance links, BDP grows
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Getting there – Some RDMA Issues at Hyperscale 

Cluster
  < 150 m
  < 0.75 us

Datacenter Site
 < 1000 m
  < 5 us

Region
  < 400 km
  < 2 ms

Global
< 6000 km
< 30 ms

1 MB

10 MB

100 MB

1 GB

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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▪ 2) Victim flows, congestion trees, PFC storms, and deadlocks

▪ 3) Go-back-N retransmission

▪ Simple recovery of lost packets (seq. number missing)

▪ Yet, no real support for multi-pathing

▪ Also retransmits full BDP on single loss (not a significant bandwidth loss though, <0.001% in practice)

▪ 4) Congestion control and collocated traffic

▪ Interference with other traffic types, simple CC is not necessarily compatible!

▪ Led to invention of DCQCN, TIMELY, HPCC, and likely many more – somewhat hacky?
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Getting there – Some RDMA Issues at Hyperscale 

S2 T2

S1

R1 R2

T1
PFC

1/4

1/4

1/4

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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▪ 5) Header sizes

▪ RoCEv2 is basically an InfiniBand BTH strapped onto a UDP/IP packet

▪ Overhead: 22B L2, 20B IP, 8B UDP, 12B BTH, 4B ICRC → min packet size 66B

▪ Limits message rate and processing efficiency

▪ 6) No smart stacks

▪ Should have support for Smart NICs, e.g., sPIN NICs

▪ INC and INT are somewhat tagged on

▪ 7) Security issues

▪ ReDMArk issues – whole different talk on RDMA security 
https://www.youtube.com/watch?v=VGQe-OpICq8

▪ Even NVMe-of is broken (see NeVerMore paper at CCS’22)

▪ Fixes available with sRDMA ideas (Usenix Security’21)
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Getting there – Some RDMA Issues at Hyperscale 

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337

https://www.youtube.com/watch?v=VGQe-OpICq8
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▪ 8) Link Level Reliability

▪ FEC is becoming an issue – new concatenated, segmented, and direct FEC increase latency!

▪ RS272 (LL-FEC) can help but only to a limited degree
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Getting there – Some RDMA Issues at Hyperscale 

FEC decoding time (30 ns)

12% 22% 36% 52% 69% 82% 

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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▪ Looking forward: CC/LB is becoming harder!

▪ Larger messages will be sent within a single BDP! → higher fraction of traffic

▪ CC/LB management will not get a good signal 
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Getting there – Some RDMA Issues at Hyperscale 

Google GCP

Amazon Web Services

Azure 
HPC

Typical frontend network

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Conclusions More of SPCL’s research:

… or spcl.ethz.ch

175+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.2K+ Followers

github.com/spcl 2K+ Stars

spcl.inf.ethz.ch
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Three systems dimensions in large-scale super-learning …

…

High-Performance I/O High-Performance Compute

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Data movement!

• Quantization, Sparsification
• Drives modern accelerators!

High-Performance Communication

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Optimized networks 

Data Pipeline Operator
Distribution and Parallelism

More details and similar content: youtube.com/@spcl
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