2010 Blue Waters Performance Modeling Workshop – Opening and Introduction

Torsten Hoefler

With slides from: William Kramer, Marc Snir, William Gropp, IBM, and the Blue Waters team
Introduction and Overview

- **My slides** contain **only public information** and will be available online after the workshop
 - No need to take pictures or notes!
- Parts of **tomorrow** will contain **IBM confidential information**
 - You may only attend the NDA session if your institution signed and cleared all NDAs for you!
 - You are responsible to maintain the confidentiality of the information!
Blue Waters in a Nutshell

- >300,000 compute cores
 - based on Power7
- 10 PF/s peak
 - 1 PF/s sustained
- >1 PiB RAM
- >10 PiB disk storage
- >0.5 EiB archival storage
Performance Modeling for Blue Waters

- Most users have only experience at comparatively “small” scale (<8000 cores)
- Applications should be ready to run on the full system
- Needs a clear understanding before system is deployed (run, tweak, rerun loop not possible)

> Programmers need to develop a deep understanding of the application scaling and bottlenecks at scale by performance modeling!
From Chip to Entire Integrated System

Blue Waters System

Building Block

SuperNode (1024 cores)

Drawer (256 cores)

SMP node (32 cores)

P7 Chip (8 cores)

Near-line Storage

On-line Storage

NPCF
POWER7: Core

- Execution Units
 - 2 Fixed point units
 - 2 Load store units
 - 4 Double precision floating point
 - 1 Branch
 - 1 Condition register
 - 1 Vector unit
 - 1 Decimal floating point unit
 - 6 wide dispatch
- Recovery Function Distributed
- 1,2,4 Way SMT Support
- Out of Order Execution
- 32KB I-Cache
- 32KB D-Cache
- 256KB L2
 - Tightly coupled to core
Power7 Chip (8 cores)

- **Base Technology**
 - 45 nm, 576 mm²
 - 1.2 B transistors

- **Chip**
 - 8 cores
 - 4 FMAs/cycle/core
 - 32 MB L3 (private/shared)
 - Dual DDR3 memory
 - 128 GiB/s peak bandwidth
 - (1/2 byte/flop)
 - Clock range of 3.5 – 4 GHz
L3 Cache/On-Chip Communication

- L1 32KB Instruction / core
- L1 32KB Data / core
- L2 = 256KB / core
- L3 = 4MB eDRAM / core
- Fast private and shared region
Quad Chip Module (4 chips)

- 32 cores!
 - 32 cores*8 F/core*4 GHz = 1 TF
- 4 threads per core (max)
- 4x32 MiB L3 cache
- 512 GB/s RAM BW (0.5 B/F)
- 800 W (0.8 W/F)
- Flat shared memory!
Adding a Network Interface (Torrent)

- Connects QCM to PCI-e
 - (two 16x and one 8x PCI-e slot)
- Connects 8 QCM's via low latency, high bandwidth, copper fabric.
- Provides a message passing mechanism with very high bandwidth
- Provides the lowest possible latency between 8 QCM's
1.1 TB/s HUB

- 192 GB/s Host Connection
- 336 GB/s to 7 other local nodes
- 240 GB/s to local-remote nodes
- 320 GB/s to remote nodes
- 40 GB/s to general purpose I/O
Drawer

- 8 nodes
- 32 chips
- 256 cores

First Level Interconnect

- L-Local
- HUB to HUB Copper Wiring
- 256 Cores
Supernode

Second Level Interconnect

- Optical ‘L-Remote’ Links from HUB
- 4 drawers
- 1,024 Cores
Global Interconnection Network

- This space is intentionally left blank
 - More details in the NDA sessions

A photo of the RAM for distraction.
National Petascale Computing Facility

A facility dedicated to Blue Waters
Back to Performance Modeling

• **Main goals of this workshop:**

 • Ignite performance modeling efforts within all PRAC teams in collaboration with NCSA

 • Start to gather a deep understanding of the performance characteristics of all codes
Logistics

• **Today:**
 • A team from LANL will present a tutorial about performance modeling
 • Specific examples and use-cases

• **Tomorrow:**
 • Hands-on sessions to get modeling of applications started
 • Supported by LANL and NCSA teams
 • Try to work with your PoC
NDA issues

• Not all participants are covered by all necessary NDAs
 • Badges will be marked

• Please be careful what you talk about
 • You are responsible for the information
 • Everything in my slides can be communicated freely!
I’m here to help!

• We have 15 training accounts on a Power 5 available for tomorrow
 • It’s AIX
 • Ask me if you need one

• Let me know if you have questions, problems, or comments!