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ABSTRACT

We introduce LogGOPSim—a fast simulation framework for par-

allel algorithms at large-scale. LogGOPSim utilizes a slightly ex-

tended version of the well-known LogGPS model in combination

with full MPI message matching semantics and detailed simulation

of collective operations. In addition, it enables simulation in the

traditional LogP, LogGP, and LogGPS models. Its simple and fast

single-queue design computes more than 1 million events per sec-

ond on a single processor and enables large-scale simulations of

more than 8 million processes. LogGOPSim also supports the sim-

ulation of full MPI applications by reading and simulating MPI

profiling traces. We analyze the accuracy and the performance

of the simulation and propose a simple extrapolation scheme for

parallel applications. Our scheme extrapolates collective opera-

tions with high accuracy by rebuilding the communication pattern.

Point-to-point operation patterns can be copied in the extrapola-

tion and thus retain the main characteristics of scalable parallel

applications.

1. INTRODUCTION
Parallel application simulation has long been used to investigate

the performance of applications in different environments. Sev-
eral simulators, such as PSINS, DIMEMAS, or BigSim, are already
used by application developers as a part of their development tool
chain. Simulations are very effective to discover the sources of
performance and correctness bugs in parallel programs [2]. Simu-
lations can also be used to check the effects of architectural changes
(e.g., cache-sizes or network parameters) or changes in the middle-
ware (e.g., different collective algorithms) on parallel applications.

Traditionally, simulators can be divided into three classes: ap-
plication, architecture, and full-system simulators. We note that
this distinction is not always strict and the classes blur together
sometimes. Application simulators usually focus on properties of
the application or algorithm, such as synchronization behavior of
happens-before relations [10]. Application communication traces
are often sufficient to reflect the critical properties of an applica-
tion [4,26]. Architecture simulators often employ a detailed model
of one or more components of a parallel architecture (e.g., com-
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munication network, memory subsystem, or CPUs/caches), but are
often only applied to traces of application kernels due to the high
costs of a detailed simulation. Full system simulators aim to pro-
vide a detailed model of a parallel architecture such that whole
applications, including complete software stacks, can execute in
them. However, full system simulations can be expensive due to
the need to emulate the whole Instruction Set Architecture (ISA)
of the target machine. Common to all simulators is a fundamen-
tal trade-off between simulation accuracy (i.e., detail of the model)
and simulation time.

Our work aims to study parallel application and algorithm be-
havior under the influence of different network and system models
at large-scale. The main goal is to simulate short phases of appli-
cations under the LogGOPS model (such as a small set of collec-
tive operations) with up to 8 million processes on a single CPU to
analyze the scaling of the algorithm. Applications with a reason-
able number of messages (typical executions of 5 minutes or more)
should be possible up to 50,000 processes. In order to allow scal-
ing to large node counts with comparatively little simulation and
execution resources, we chose a trace-based method to gather the
characteristics of the target applications and trace extrapolation for
large-scale simulations. The specific contributions of our work are:

• a simple and efficient discrete event simulation kernel for
LogGOPS

• a full LogGOPS simulation framework for parallel applica-
tions

• a tool-chain to perform trace gathering, simulation, and visu-
alizations

• a simple and effective trace extrapolation scheme
• a simulation analysis of the two scalable applications

Sweep3D and MILC

1.1 Related Work
Focusing on application simulation, we omit references to ar-

chitecture simulation. An up-to-date list of architecture and full-
system simulators can be found on Derek Hower et al.’s “WWW
Computer Architecture Page” [16].

Several parallel application simulators have been proposed in the
past. They can roughly be divided into the two classes by their
simulation technique: The first technique is full system simulation
where an application is executed in a simulator that fully emulates
the target architecture. There exist two approaches to increase the
performance of such a simulation. Direct execution uses the host
architecture to execute parts of the code natively in order to ac-
celerate the simulation. Examples for simulators in this class are
BigSim [27], SILAS [10], and MPI-SIM [5]. The memory require-
ments of direct execution are very high and the system used to gen-
erate the traces usually has to have as much memory as the target



system which often makes this approach impossible for large-scale
simulations. Adve et al. [1] uses techniques from static analysis
to reduce the memory footprint of such simulations. The second
class, trace-driven or post mortem simulation, uses traces of the
application execution to extract significant properties for the simu-
lation. Traces enable easy scaling of accuracy vs. simulation time
by changing the granularity of the information in the trace. Exam-
ples are PSINS [26], DIMEMAS [23] and Rugina’s and Schauser’s
simulator [25].

Our work is similar to the latter category with two main differ-
ences: (1) the simulator has been tuned for small trace files and
fast simulation of large-scale systems and (2) collective operations
are replaced by a set of point-to-point algorithms which are opti-
mized to the underlying network, such as an MPI implementation
would do. The latter differs significantly from previous approaches
in PSINS or DIMEMAS where collective operations are modeled
as global synchronization and some analytic model. Our design
preserves the fact that not all collective operations are synchro-
nizing (see [22], e.g., MPI_Bcast() usually does not incur global
synchronization) and that the arrival pattern at a collective and the
leave pattern depend on the actual collective implementation.

1.2 The LogP Model Family
The original LogP model by Culler et al. [6] models message

passing systems with the parameters L, o, g, and P. The model gen-
erally assumes that all P processors in a network are connected
with bidirectional channels and only fixed-size (small) messages
are communicated. The latency parameter L models the maximum
latency among any two processors in the system. The parameter
o reflects the CPU overhead per message and the parameter g the
time between two message injections into the network. Thus, the
model considers pipelining in the network and a maximum of L/g
packets can be in flight between two endpoints. The LogP model
assume a network that is free of contention, that is, the capacity of
the network is at least P 2 · L/g.

The LogGP model by Alexandrov et al. [3] adds an additional
parameter G—the cost per byte of messages—to the LogP model.
This models the capability of most networks to transmit large mes-
sages relatively fast (fragmentation and reassembly in hardware).
Thus, a cost-per-byte metric (G) is more accurate then modeling
multiple small messages (limited by g) in LogP.

The LogGPS model by Ino, Fujimoto, and Hagihara [17] adds
sender synchronization to the model. Message passing of large
messages is often performed by sending small control messages
to the receiver to check if enough buffering is available. This so
called rendezvous protocol causes the sender to be synchronized
with the receiver, that is, the message cannot be sent before the re-
ceiver is ready to receive it. The new parameter S determines the
message-size threshold for synchronizing sends.

Other LogP extensions, such as pLogP [18], LogPC [21], and
LogfP [12] are not included in this work, but might be considered
in future work.

1.3 The LogGOPS Model
The most important advantages of the LogGP model over simple

latency-bandwidth models (T = α+ β · s) is the ability to model
network pipelining and computation/communication overlap accu-
rately. The latter is achieved by distinguishing the CPU and net-
work parts of the overhead, o and g respectively. Simpler models
would fold both parameters into one (α) and one would prohibit
the determination of CPU usage of communications. If CPU usage
and overlap are not important, LogGP analyses, such as [3], fold
the two parameters into one (e.g., by defining o < g) and essen-

tially fall back to the simpler model. However, in our simulations,
we carefully distinguish both parameters in order to model overlap
of communication and computation accurately.

One shortcoming of the LogGPS model is that it models only a
constant overhead per message send which is independent of the
message size. While this is correct on some architectures (e.g.,
when performing remote direct memory access (RDMA) with pre-
registered memory), other architectures incur some cost per byte
(e.g., TCP packet processing or memory registration in InfiniBand
[11, 20]).

We use the Netgauge tool to investigate the scaling of the CPU
(send) overhead with the message size. The highly accurate mea-
surement technique is outlined below and described in detail in
[11]. The main problem in network measurements is that, in the
general case of non-synchronous clocks, time differences can only
be measured on a single node. Thus, we employ a client-server
model where the client sends multiple (n) messages (of varying
size s) to a server and receives an acknowledgment from the server.
The client waits for a specified time (the delay d) between mes-
sage transmissions. A round-trip time with n messages and a delay
d is called RTT d

n in the following. The benchmark ensures that
d > s · G + g and the client takes the time from the first message
to the acknowledgment and we can compute o via (cf. Equation 6
in [11])

o =
RTT d

n −RTT 0

1

n− 1
− d.

Figure 1 shows the measurement scheme in detail for n = 3.
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Figure 1: Measurement of the LogGP Overhead for n = 3.

Figure 2 shows the measured overheads for four different sys-
tems: an InfiniBand cluster (Odin), a Myrinet 2000 cluster (Big
Red), a BlueGene/P, and an XT-4 (Jaguar). All machines show an
increase of the overhead with growing message sizes. We propose
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Figure 2: Measured overheads for different systems.

to use a linear function (f(s) = a · s + b) to fit the curves. This
method is very similar to g and G in the LogGP model where we



would simply replace a → G and b → g. Following the LogGP
model, we introduce the new parameter O in order to model the
overhead per byte, replacing a → O and b → o in the fitted linear
equation. This resembles the LogGP idea and accurately captures
the growing overhead while not adding too much complexity to
the LogGPS model. Our measured values for O are 1.4ns, 6.2ns,
2.5ns, and 0.6ns for Odin, Big Red, BlueGene/P, and Jaguar, re-
spectively. The asymptotic standard error of the least squares fit
was less than 1% for all systems.

2. LARGE-SCALE SIMULATIONS
Our goal is the simulation of large-scale applications with more

than 8 million processes. We mainly focus on the communication
part and the LogGOPS model. Computations are simply modeled
as delays and communications as send/receive pairs. We chose a
dialect of the Group Operation Assembly Language (GOAL) to ex-
press all operations. GOAL is a language to define complex syn-
chronous and asynchronous parallel algorithms.

2.1 Group Operation Assembly Language
GOAL, first proposed in [15] to express efficient offload for block-

ing and nonblocking collective operations, can express arbitrary
parallel applications. The computation is expressed as a process-
local task dependency graph with remote dependencies mandated
by happens-before relations in message passing systems. GOAL
defines three different types of tasks: send, receive, and computa-
tion (loclop). Tasks are arranged as a directed acyclic graph, called
schedule, with dependencies among the tasks as edges. We use a
GOAL schedule to represent the computation and communication
of a single process. A parallel program with P processes is repre-
sented by P GOAL schedules. For example, the following schedule
models process 0 that computes for 100 microseconds and then ex-
changes 10 bytes of data with process 1:

rank 0 {
l1: calc 100 cpu 0
l2: send 10b to 1 tag 0 cpu 0 nic 0
l3: recv 10b from 1 tag 0 cpu 0 nic 0
l2 requires l1

}

The values tag, CPU, and NIC are optional (default to 0) and enable
the modeling of MPI-like message matching semantics, multi-CPU
systems, and multi-NIC systems, respectively.

This textual GOAL representation is converted into a binary GOAL
schedule for faster cache-efficient simulation (cf. serialization in
[15]).

2.2 The Simulator Design
The simulator consists of two main parts: the parser that reads

binary GOAL schedules and the simulation core which executes
the simulation. One of the main goals was to keep both parts as
simple and as fast as possible. The parser exposes all P schedules
and manages dependencies and execution order. It returns a list of
executable operations and offers an interface to mark operations as
executed.

The simulation core is based on a single priority queue (or heap),
the active queue (AQ). The AQ contains all executable operations
of all processes and their earliest start times. As soon as an opera-
tion is retrieved from the parser, it will be added to the queue. Each
operation in the queue is annotated with an execution time and a
process number and the operation that can execute next is returned
first. Figure 3 shows the program flow of the core simulation.

MPI Message Matching.
To simulate full message passing semantics, we add an unex-

pected queue (UQ) and a receive queue (RQ) for each process.

Messages are matched with MPI semantics, that is, the tuple (tag,
source) and the order determine matching. LogGOPSim supports
indeterministic messaging (any_source, any_tag) as well as eager
and rendezvous protocols.

To do this, we add a new operation type message (msg) which
models messages in flight. To model nonblocking (immediate)
messages, we use a special dependency type immediate requires

(irequires) which can be satisfied when an operation started while
the normal dependencies are satisfied when an operation completed.
In MPI terms, an irequires would reflect a dependency on an im-
mediate operation (e.g., isend or irecv) while a requires would be
linked to the according wait (or test loop).

Figure 3: Simulation Core Program Flow.

The simulator supports multiple execution cores (CPUs) and mul-
tiple network cards (NICs). The process-specific simulation vari-
able ocp is set to next time when o can be charged on CPU c at
process p. Similarly, gnp indicates the next time when g or G can
be charged at NIC n on process p. We will shortly discuss the flow
for the four operation types (cf. the four top branches in Figure 3)
in the following:

(1) If a send (process p, NIC n, and CPU c) is fetched from
the AQ and ocp and gnp are available, then ocp and gnp are increased
and a new operation of type message is inserted into the AQ with
its time advanced by L and o. Else, if ocp or gnp are not avail-
able, the operation is reinserted into the AQ with the earliest ex-
ecution time (max(ocp, gnp )). Started rendezvous sends satisfy only
irequires while eager sends activate all dependencies. Requires
of rendezvous messages are satisfied when the message completes
(see (2)).

(2) If an incoming message (msg) is found and ocp and gnp are
available then it is matched against the RQ, received if a matching
element is found, and otherwise added to the UQ.

(3) If a new receive operation (recv) is found then it is matched
against the UQ and immediately satisfied if the message was al-



ready received, otherwise a new entry is added to the RQ of the
process.

(4) A local calculation (loclop) is simply executed if the CPU
(ocp) is available and otherwise reinserted into the AQ with the start
time of the next available ocp.

This single-queue design allows very fast and accurate LogGPS
simulations due to the low complexity of the simulation core.

2.3 Limitations and Assumptions
As mandated by the LogGOPS model, our simulator ignores

congestion in the network and assumes full effective bisection band-
width. We showed in [14] that networks with full bisection band-
width and static routing (e.g., InfiniBand or Ethernet (folded) Clos
topologies) nearly meet this requirement (60-75%). Networks with
adaptive routing on (folded) Clos topologies such as Quadrics [24]
or Myrinet [7] can deliver the required full effective bisection band-
width. However, torus-based networks as used in BlueGene/L,
BlueGene/P, the Cray XT-4, and XT-5 series might suffer from con-
gestion.

Our simulation scheme makes two assumptions that are not stated
in the original LogGPS model: We assume that each message is
delayed until o and g are available at the receiver. We model each
channel as full duplex, that is, g and G are either charged to gsend
or grecv not both.

Our message-centric simulation approach also ignores effects of
input and output (I/O) which can sometimes influence the runtime
significantly or even dominate it.

3. ANALYTICAL MODELS
In this section, we compare the results delivered by the simu-

lator with analytical LogGPS models for different communication
patterns. This demonstrates the correctness of our LogGPS simu-
lation.

It is important to understand that the times o,O and g,G can
overlap because some networks can progress messages indepen-
dently from the CPU once descriptors are posted. This very impor-
tant mechanism models overlap of communication and computa-
tion. On networks which do not allow progression or overlap, one
sets o = g and O = G.

Linear Scatter.
The first pattern represents a linear broadcast or scatter where a

single process sends a message to a set of other processes. If we
define sO = (s− 1) ·O and sG = (s− 1) ·G, then the LogGPS
prediction for this communication is (for s < S):

Tscat = 2o+ L+max{(P − 2)o+ (P − 1)sO), (1)

(P − 2)g + (P − 1)sG}.

The max-term satisfies the LogGOP property that CPU and net-
work work independently (communication/computation overlap).
For s > S, we have to add another (P − 1) · L to account for the
synchronization costs for each message.

Figure 4 shows the simulation output visualization for a linear
broadcast/scatter communication with L = 2.5µs, o = 1.5µs, g =
4µs, G = 6ns, O = 8ns, P = 8, S = 65, 535, and s = 1, 024.
We verified the results against equation 1 for different parameters
and larger P and found that the simulator works accurately.

Linear Gather.
The second pattern that we investigate is a linear gather pattern

where each process sends data to a designated root. This pattern
causes congestion at the root process and serializes all incoming

Rank 0
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Rank 5

Rank 6

Rank 7

Figure 4: Linear Broadcast/Scatter Pattern.

data. The LogGPS model for s < S for the linear scatter pattern is

Tgat = 2o+ L+max{(P − 2)o+ (P − 1)sO), (2)

(P − 2)g + (P − 1)sG}, such that

Tgat = Tscat.

Figure 5 shows the simulator output for the Gather pattern with
the same parameters as for the scatter pattern. We also verified the
results for different sets of parameters.
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Figure 5: Linear Gather Pattern.

Binomial Tree Broadcast.
Tree patterns are a very important communication structure and

are often used to implement broadcast or scatter operations. One
particularly important pattern is the binomial tree. The runtime in
the LogGPS model for s < S is

Tbino = (2o+ L+max{sO, sG})⌈log
2
P ⌉. (3)

Figure 6 shows the simulation output for the binomial tree pattern
with same parameters as before but s = 1 to improve its readabil-
ity. We also verified this pattern extensively with different input
parameters.
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Figure 6: Binomial Tree Pattern.

Dissemination Pattern.
The last example pattern, the dissemination pattern, is often used

for all-to-all data exchanges, barriers, or allreduce collective oper-



ations. The pattern has, like the binomial tree, ⌈log
2
P ⌉ commu-

nication rounds. However, now, each process sends and receives
each round from processes at exponentially growing distance. If
we now assume that o is charged after the message arrived (e.g.,
a buffer copy), then each incoming message has to wait until the
send finished and o has been charged. Thus, all processes complete
at the same time after being delayed by this waiting time (δ) each
round:

δ =

{

(s− 1)O − L : (s− 1)O − L > 0

0 : otherwise.
(4)

Tdiss = (δ + 2o+ L+max{sO, sG})⌈log
2
P ⌉ (5)

Figure 7 shows the simulation visualization for s = 1 and the
previous parameters.
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Figure 7: Dissemination Pattern.

We used the patterns explained above and many other test- and
collective operation patterns (please refer to the source-code for a
comprehensive list) to verify the correctness of the simulator.

4. EXPERIMENTAL EVALUATION
In the following, we discuss the absolute performance and the

limitations of LogGOPSim. We begin the discussion with analyz-
ing single collective operations at large scale and then show two ap-
plication examples. With this, we want to compare the LogGOPS
model with real-world settings. We see that simulations are reflect-
ing real-world systems well despite fundamental restrictions in the
model. However, our main emphasis lies in accurate LogGOPS
simulations which allow us to make asymptotic statements about
the scalability of applications in congestion-free networks rather
than detailed system simulations.

4.1 Collective Operations at Large Scale
In this section, we analyze the accuracy and the performance of

LogGOPSim for simple collective patterns at large scale. We chose
two clusters, Odin and Big Red clusters as evaluation platforms to
compare our simulations to real benchmarks. Odin consists of 2
GHz Opteron quad core InfiniBand (SDR) nodes with LogGOPS
parameters: L=5.3µs, o=2.3µs, g=2µs, G=2.5ns, O=1ns, and
S=32,768 bytes. Big Red consists of quad-core PPC 970 nodes
connected with Myrinet 2000 with LogGOPS parameters: L=2.9µs,
o=2.4µs, g=1.7µs, G=5ns, O=2ns, and S=32,768 bytes. We used
Netgauge’s LogGP [11] pattern to measure the parameters.

4.1.1 Simulation Accuracy

LogGOPSim offers different implementations for collective op-
erations. We use broadcast based on binary and binomial trees as
an example for this work. We used NBCBench [13] to accurately
measure the execution time of single collective operations (to avoid
pipelining, see [13]) and LogGOPSim to simulate the communi-
cation pattern. Figure 8 shows the prediction and the benchmark
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Figure 8: Prediction and Measurement Results for 1 Byte

Broadcasts.

results for 1 byte messages on Odin. The lines indicate the simula-
tion results and the dots the measurements. The average error for
the prediction is less than 1% for both discussed systems and algo-
rithms. We note, that small messages over InfiniBand (Odin) are
not modeled well by LogGP (see the discussions about the LogfP
model for InfiniBand in [12]) which makes the prediction of bino-
mial tree algorithms with a large fan-out at the root inaccurate and
leads to higher prediction errors. Myrinet does not exhibit such a
behavior and also shows an error of less than 1% with binomial
trees.

Figure 9 shows simulation results for a binomial broadcast of
128 kiB data (using the rendezvous protocol). The simulation un-
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Figure 9: Prediction and Measurement Results for 128 kiB

Broadcasts.

derestimates the runtime over InfiniBand slightly (less than 16% at
128 processes). This is due to congestion in the real-world network
which is ignored in the LogGOPS model.

4.1.2 Simulation Performance and Limits

We test the scalability of our simulation on a 1.15 GHz Opteron
workstation with 13 GiB available memory. Figure 10 shows the
simulation runtime of 1,024 to 8 million processes executing a
single binomial broadcast or a single allreduce operation imple-
mented with the dissemination algorithm [9]. We exclude the (ex-
pensive) costs to generate the GOAL schedule and transform it into
the binary representation because binary schedules can be used for
multiple simulations with different parameters to offset the gen-
eration costs. The diagram shows that the simulation time grows
linearly with the number of messages. The binomial tree broad-
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cast sends Θ(P ) messages while the dissemination algorithm needs
Θ(P logP ) messages. The main limitation in the simulations is the
memory consumption which increases linearly with the number of
messages. In order to allow large-scale simulations, LogGOPSim
enables an efficient out-of-core simulation mechanism by mapping
the binary schedule into main memory (mmap) and can thus pro-
cess schedules that are much larger than main memory (using the
OS’s paging mechanism). The simulation time is independent of
the message size or the duration of local operations.

4.2 Application Simulations
To verify our simulator, we use the ASC application Sweep3D [19]

version 2.2d which is frequently used to verify application simula-
tions [1,5] and the MIMD Lattice Computation (MILC) su3_rmd
benchmark [8] version 7.6.2.

Sweep3D solves a neutron transport problem on a 3D Carte-
sian geometry. The domain is represented by a rectangular IJK
grid where each IJ plane is decomposed in one dimension and dis-
tributed. The K dimension is used for pipelining. The problem is
solved in two nested iterative loops until convergence. Our weak-
scaling runs showed between 6.45% and 13.4% communication
overhead, mainly caused by point-to-point communication and var-
ious collective operations (4 broadcast, 3 barrier, 28 allreduce).

MILC is used to study quantum chromodynamics, the theory of
strong interactions of subatomic physics, such as used in high en-
ergy and nuclear physics. MILC consists of a multiple codes for
specific tasks. We used the “medium” NERSC MILC benchmark
for the su3_rmd code. We varied the grid size for weak scaling
from 16x16x16x16 on 16 processes to 32x32x32x16 on 128 pro-
cesses keeping the grid as square as possible. MILC’s communica-
tion overheads varied between 14.5% with 16 processes and 18.3%
with 128 processes.

4.2.1 MPI Tracing Overhead

Our tracing library intercepts all MPI calls at the MPI profiling
layer. Each wrapper call writes the absolute start and end time and
full parameter list of the called function to a memory buffer. The
buffer is flushed to disk by an asynchronous thread when it reaches
a threshold. We left one core idle to run the writer thread and hide
the disk I/O. With this technique, we achieved a profiling overhead
of less than 0.1% for all runs.

4.2.2 Application Simulation Accuracy

We compared the runtime of Sweep3D with the simulation of the
trace with the actual LogGPS parameters on Odin. Figure 11 shows
the benchmarked runtime (dots) and the simulation results (lines).

The average simulation error was below 2% in all experiments.
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Figure 11: Sweep3D Simulation Results.

The runtime of MILC was also predicted accurately. Figure 12
shows the benchmark and simulation results for MILC on Odin.

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 20  40  60  80  100  120  140

M
IL

C
/s

u
3
_
rm

d
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Processes

Simulated
Benchmarked

Figure 12: MILC/su3_rmd Simulation Results.

4.2.3 Extrapolating Application Traces

Our simulation tool chain also allows simple trace extrapolation
to larger communicator sizes. The scheme simply copies point-to-
point messages and renames source and target accordingly. Col-
lective operations can be extrapolated accurately by simulating the
collective algorithm at a larger scale, see Section 4.1.1. Figure 13
shows an example where a trace with two ranks and communica-
tions: allreduce, rank 0 sends to rank 1, allreduce, is extrapolated
to 8 ranks. The horizontal lines show the time axis for each process
and the vertical lines show messages. The point-to-point commu-
nication (solid lines in Figure 13) is copied while the two (dissemi-
nation) allreduce algorithms (dashed lines in Figure 13) are extrap-
olated without error. We note that this approach ignores application
load imbalance and system effects (OS noise) which might become
important at larger scale.

To test the accuracy of the extrapolation, we used a Sweep3D
trace with 20 processes and extrapolated it to 40, 80, 100, and
120 processes. The extrapolation error (difference between bench-
marked and extrapolated trace) was between 1.7% and 7.4%. A
more detailed analysis shows that Sweep3D increases the num-
ber of point-to-point messages and their sizes with larger process
counts (growing surface-to-volume ratio in our weak-scaling sim-
ulation). This effect is not modeled in our simple extrapolation,
thus the extrapolation underestimates communication in Sweep3D
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Figure 13: Schedule Extrapolation Example.

at scale. Another factor is that congestion might play a bigger role
at scale but this is a problem in the abstract LogGOPS model, not
the simulator.

The authors are aware that more accurate extrapolation and ap-
plication evaluation schemes, such as used in BigSim, exist. How-
ever, such schemes often have different limits (memory consump-
tion and runtime) and our simple trace extrapolation which accu-
rately extrapolates collective operations and gives an estimation
about point-to-point communication is a useful first approximation
to the general problem of extrapolation.

4.2.4 Application Simulation Performance

The simulation performance of Sweep3D is shown in Figure 14.
Simulating a benchmark running for 37.7 seconds with 120 pro-
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Figure 14: Sweep3D Simulation Times.

cesses on Odin takes 8.2 seconds (a simulation speedup of 552). As
discussed before, the simulation time depends mostly on the num-
ber of simulated events (messages and locops) and our test-system
processed 1,009,152 events/second.

We extrapolated the run with 40 processes (0.4 million mes-
sages) to up to 28,000 processes (313 million messages). The exe-
cution time scales linearly with the number of messages up to 4,000
processes. Beginning from 8,000 simulated processes, the schedule
exhausts the memory and the simulator works out-of-core (on local
disk) which leads to the slowdown shown in Figure 14.

The simulated execution times indicate that Sweep3D and MILC
scale well. However, we note that this is a lower bound because
the extrapolation does not account for load imbalance and system
effects (e.g., OS noise).

5. EXPLORATION OPPORTUNITIES
Our simulation offers now different avenues for exploring the

behavior of parallel algorithms and applications with different Log-
GOPS parameters. One could investigate the isolated application’s
sensitivity to latency by varying L, to bandwidth by varying G (set-
ting O = 0), or to message injection rate by varying g (setting
o = 0). Another interesting test would be the application’s poten-
tial to overlap communication and computation by setting O = 0
and o = 0 (ideal overlap) or O = 0 and o small (offloaded RDMA).

We analyzed the influence of four different changes to network
parameters on the execution time for MILC and Sweep3D. We set
O = 0 to model ideal RDMA overlap, O = G to model no overlap,
G = 30 to model a ten-times lower bandwidth and L = 53000 for
a ten-times higher latency.
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Figure 15: Influence of network parameters on MILC.

Figure 15 shows the influence of our changed parameters to MILC.
We see that better RDMA overlap makes nearly no difference while
no overlap reduces the performance slightly about 3%. This shows
that the overlap capabilities (available computation during commu-
nication) seem to be exhausted with the current parameters. An
increased latency has also nearly no effect on MILC indicating that
the communication is bandwidth-bound. Decreasing the bandwidth
causes indeed a significant slowdown of over 100% which supports
the assumption that our traced MILC run is bandwidth bound.
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Figure 16: Influence of network parameters on Sweep3D.

Figure 16 shows the influence of the changed parameters to Sweep3D.
The effect of overlap in the network is also marginal. Latency has
nearly no impact while a ten-fold bandwidth-reduction slows the
application by approximately 13%.



6. CONCLUSIONS AND FUTUREWORK
We proposed a simple simulator design for LogGOPS simula-

tions and showed its efficiency at large-scale. We also showed that
the simulations are very accurate on smaller systems and demon-
strated the ability of the simulator to perform large-scale simula-
tions with millions of processes in less than 30 minutes on a single
CPU. Our simulator tool-chain can be downloaded from

http://www.unixer.de/LogGOPSim

The simulator allows easy experimenting with large-scale commu-
nication algorithms (collective operations and applications). All
results in this paper merely show the opportunities for experimen-
tation and we encourage readers to try simulations themselves.

We will further investigate application trace extrapolation tech-
niques. We also plan to simulate the influence of operating system
noise to applications at large scale with noise injection into the sim-
ulation.
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