
spcl.ethz.ch
@spcl_eth

@spcl

Scalable and Efficient AI: From Supercomputers to Smartphones
with contributions by the whole SPCL deep learning team (T. Ben-Nun, S. Li, K. Osawa, N. Dryden and many others), Microsoft Azure (M. Heddes, J. Belk, 
S. Scott, D. Goel, M. Castro) and collaborators (D. Alistarh and others)
Keynote talk at the ACM Federated Computing Research Conference, Orlando, FL, June 2023

T. HOEFLER
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Source: https://medium.com/

Source: https://www.ft.com/

Source: https://www.medpagetoday.com/

What is left for us humans?

https://www.sciencedaily.com/
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“Really the deciding factor [for the 
AI revolution] was the increase in 

compute power” (26:50)

“I think a lot of the credit for deep 
learning goes to [… others …] and 

the people who made the 
computers go fast.” (27:00)

https://www.youtube.com/watch?v=VsnQf7exv5I 3

https://www.youtube.com/watch?v=VsnQf7exv5I
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How do we “Make Computers go Fast”?

2021 Turing award – Jack Dongarra 

Supercomputers 
are very (>70%) 

efficient at dense 
linear algebra!

4https://www.youtube.com/watch?v=lsnRP9akCDk 

https://www.youtube.com/watch?v=lsnRP9akCDk
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Supercomputers fuel Modern AI

f(x)

layer-wise weight update

▪ GPT-3: 96 (complex) layers

175 bn parameters (700 GiB in fp32)

2048-token “sentences”

▪ GPT-3: 30-50k dictionaries

▪ takes weeks to train

A robot 

may __ injure a 

human being or, 

through inaction, 

allow a human 

being to come 

to harm.

…
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10k GPUs

T. Ben-Nun, TH: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, ACM Computing Surveys (CSUR), 2019

▪ GPT-3: 500 billion tokens

▪ ImageNet (22k): A few TB

▪ Soon: the whole internet!
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Large-Scale AI is the Future

We need a Principled Approach to it
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Three Systems Dimensions in Large-scale Super-learning …

…

High-Performance I/O High-Performance Compute

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Data movement!

• Quantization, Sparsification
• Drives modern accelerators!

High-Performance Communication

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Optimized networks 

Data Pipeline Operator
Distribution and Parallelism
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High-Performance I/O for Deep Learning

9

▪ Example: ResNet-50 3.8 Gflop inference, ≈3x for training

▪ ImageNet is 150 GiB for ≈1.3M images → average size 115 kiB, range: 508B - 15MiB

▪ MLPerf v2.1 on one H100 - 81k samples/s → 9.3 GiB/s random access → ~50 SSDs / GPU

Likely more for problems from scientific computing!

▪ Training on thousands of GPUs may need to manage 10,000s of SSDs

▪ But why do we need those even? Deep Learning workloads “randomly sample” input!

▪ By “random”, we really mean pseudo-random sequences with fixed seeds ☺

This enables clairvoyant prefetching!

Nail

Near-optimal Pre-Fetching System, aka. NoPFS
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▪ NoPFS acts as a distributed cache – each node keeps cache – fully knowing about the future!

10

Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

single-process access to samples 
for ImageNet with 16 processes

Some 
samples are 
accessed 18 

times!
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▪ NoPFS acts as a distributed cache – each node keeps cache – fully knowing about the future!

11

Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

ImageNet 1k with ResNet-50

Piz Daint 

Lassen

PyTorch

PyTorch + DALI

NoPFS

>100x! >150x!
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▪ NoPFS acts as a distributed cache – each node keeps cache – fully knowing about the future!

12

Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

ImageNet 1k with ResNet-50

Lassen

runtime per epoch (full training time)

5.4x faster
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Three Systems Dimensions in Large-scale Super-learning …

…

High-Performance I/O High-Performance Compute

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Data movement!

• Quantization, Sparsification
• Drives modern accelerators!

High-Performance Communication

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Optimized networks 

Data Pipeline Operator
Distribution and Parallelism
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Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)

BERT encoder

Our performance improvement for BERT-large
▪ 30% over PyTorch
▪ 20% over Tensorflow + XLA
▪ 8% over DeepSpeed 

est. savings on AWS over PyTorch:
$85k for BERT, $3.6M GPT-3

Operator class % flop % Runtime

Tensor contraction 99.80 61.0

Statistical normalization 0.17 25.5

Element-wise 0.03 13.5

39%0.2%

highly 
optimized
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Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)

different data 
layouts

different fusion 
strategies

Configuration selection graph

data layout

fusion strategy

TF+XLA PyTorch DeepSpeed Ours

Forward 3.2 3.45 2.8 2.63

Backward 5.2 5.69 4.8 4.38

Full BERT encoder layer performance (ms)

https://github.com/spcl/dace
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Moving Data is Most Expensive!

Techniques to Shrink ML Data
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▪ Brains have limited precision! Why are we computing with FP32?

▪ For technical reasons (SGD, optimization, how we quantize)

▪ Neurons in Hippocampus can “reliably distinguish 24 strengths” [1]

4.6 bits of information! 

▪ GPT-3 has up to 175 billion parameters 

▪ 700 GiB in FP32, 350 GiB in FP16/BF16 

▪ Rounding to <5 bits is not so simple

▪ Requires some foundation and many tricks

▪ Consider “error landscape” of a trained model with weights 𝑤 [2]

    𝜕𝐸 = ൰൬
𝜕𝐸

𝜕𝑤

𝑇

𝜕𝑤 +
1

2
𝜕𝑤𝑇 ቇቆ

𝜕2𝐸

𝜕2𝑤
𝜕𝑤 + 𝑂( 𝜕𝑤 3)

17

Quantization – Running Gigantic LLMs on Reasonable Systems (arXiv:2210.17323)

[1] Bartol et al., “Hippocampal Spine Head Sizes Are Highly Precise”, eLife 2015
[2] LeCun, Denker, Solla: “Optimal Brain Damage”, NIPS’90

𝐿

𝑥1

𝑠2

𝑠1

𝑥1

𝑥2

Gradient 
(≈0)

Higher-order terms
(=0 for quadratic loss)

“Curvature” of error
(aka. “sensitivity”)
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▪ Quantization objective for low precision rounded weights ෝ𝒘

argmin ෝ𝑤 𝑤𝑥 − ෝ𝑤𝑥 2
 

▪ Solve PTQ optimization problem row by row of 𝑤

▪ Round row and push the error forward using the inverse Hessian

▪ Update Hessian for each column

▪ Tricks

▪ Block updates for better locality (10x speedup)

▪ Use Cholesky to invert Hessian (higher stability)

▪ Work one transformer block at a time (6 operators fit in memory)

▪ Use quantized input from previous blocks for block 𝑖

▪ Results

▪ Generative inference 2-4x faster

▪ 3 bits → 66 GiB, fits in a single (high-end) A100 GPU!

18

Quantization – Running Gigantic LLMs on Reasonable Systems (arXiv:2210.17323)
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Quantization Reduces Data by an Order of Magnitude

How to Go Further?
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▪ Brains are not densely connected! Why are DNN computations dense?

▪ For technical reasons (training, implementation etc.)

▪ We may want to shift towards sparse!

20

Model Sparsification … (arXiv:2102.00554)

Intuition: not all features 
  are always relevant!
o Represent as (sparse) 

vector space
✓ Less overfitting
✓ Interpretability
✓ Parsimony

Key results:
- 95% sparse ResNet-52, 

BERT, or GPT models
- Essentially same quality
- Up to 20x cheaper!
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Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”,  arXiv 2102.00554, Jan 2021
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Sparse ML Computations – Very Different from Scientific Computing!

WQ

WK

Sparsified BERT
WK and WQ matrices

(3rd encoder)

Source: Suite Sparse (sparse.tamu.edu)

Sparse Matrices from Scientific Computing 
are quite structured!

Sparse Matrices in Deep Learning 
are quite uniform(ly random)!
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Blocked MaterializingStreaming
22

Programming Sparse Models – Meet PyTorch Sten (arXiv:2304.07613)

Selected Available Sparsifiers:
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torch.sparseSTen

32% speedup

23

Sten Performance

2:6 sparse format

dense sparse densedense

Custom implementation of 
matrix multiplication: 
sparse @ dense -> dense
Linear layer: y = x W + b

VENOM @ SC23 – 10x speedup on GPUs! 

R. Castro et al.: “VENOM: A Vectorized N:M Format for Unleashing the 
Power of Sparse Tensor Cores“, accepted at SC23

BERT (base) from HuggingFace

▪ batch size 8
▪ sequence length 128

Sparsified linear layer weights

Intel i7–4770 CPU
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Model Compression Enables 

More Efficient Processing 

Which Makes Data Movement Even More Important!

Especially in the Network!
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Three Systems Dimensions in Large-scale Super-learning …

…

High-Performance I/O High-Performance Compute

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Data movement!

• Quantization, Sparsification
• Drives modern accelerators!

High-Performance Communication

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Optimized networks 

Data Pipeline Operator
Distribution and Parallelism
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Pipeline Parallelism

minibatch 3

minibatch 2

Operator Parallelism

minibatch 1

minibatch 4

Data Parallelism

26

The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

…
…

…
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▪ Turns out 90-99.9% of the smallest gradient values can be skipped in the summation – at similar accuracy

▪ Accumulate the skipped values locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

27

Data-parallel Gradient Sparsification – Top-k SGD (arXiv:1809.10505)

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18 

ResNet-110 on CIFAR10
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SparCML – Sparse Allreduce for Decentral Updates (arXiv:1802.08021) 

𝛻𝑤1 𝛻𝑤2 𝛻𝑤3 𝛻𝑤4

+ +

+ +

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, SC19

Microsoft Speech Production Workload Results – 2 weeks → 2 days!

Six epochs, 60 million params
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Sparse Allreduce – A Headache for Systems Work
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minibatch 3

minibatch 2

Operator Parallelism

minibatch 1

minibatch 4

Data Parallelism

Pipeline Parallelism

30

The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

…
…

…
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Bidirectional Pipelines – Meet Chimera (arXiv: 2107.06925v3) 
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Forward and backward passes of replica0 

Forward and backward passes of replica1 y
x

…

…
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replica0

model
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Chimera (backward is 2   workload of forward)
2
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32
3 1

×
S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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Chimera Weak Scaling (arXiv: 2107.06925v3) 

• 1.38x - 2.34x speedup over 
synchronous approaches 
(GPipe, GEMS, DAPPLE)
• Less bubbles
• More balanced memory 

thus no recomputation

• 1.16x - 2.01x speedup over 
asynchronous approaches 
(PipeDream-2BW, PipeDream)
• More balanced memory 

thus no recomputation
• Gradient accumulation thus 

low synch frequency

 

   

   

   

   

   

                             

 
 
  
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
  
 

                         

               

                                

                            

 

                     

                   

Weak scaling for GPT-2 on Piz Daint 
(512 to 2048 GPU nodes)

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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minibatch 3

minibatch 2

minibatch 1

minibatch 4

Data Parallelism

Pipeline Parallelism

Operator Parallelism

33

The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

…
…

…
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▪ Large MMMs dominate large language models!

▪ e.g., GPT-3 multiples 12,288x12,288 matrices

600 MiB in fp32 and 1.9 Tflop

▪ generative inference multiplies tall & skinny matrices

▪ Distribute as operator parallelism

▪ Heaviest communication dimension!

Requires most optimization!

▪ COSMA [1] communication-optimal distributed MMM

▪ Achieves tight I/O lower bound of 

▪ Uses partial replication with an outer-product schedule

See paper for details and proofs!

▪ AutoDDL [2] combines operator-parallel models into
communication-avoiding data distribution

34

Operator Parallelism, i.e., Parallel Matrix Matrix Multiplication

Operator class % flop % Runtime

Tensor contraction 99.80 61.0

Statistical normalization 0.17 25.5

Element-wise 0.03 13.5

Remember those? 
All MMM!

[1] G. Kwasniewski et al.: “Red-Blue Pebbling Revisited:  Near Optimal Parallel Matrix-Matrix Multiplication”, best student paper at Supercomputing SC19
[2] J. Chen et al.: “AutoDDL: Automatic Distributed Deep Learning with Asymptotically Optimal Communication“, arXiv
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minibatch 3

minibatch 2

minibatch 1

minibatch 4

Data Parallelism

Pipeline Parallelism

Operator Parallelism

35

The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

…
…

…
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Communications in 3D Parallelism in Deep Learning (arXiv:2209.01346)

1

2

D
allreduce ring

communication 1 2 P

allreduce ring or neighbor communication
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O,P,2

1,1,1

2,1,1

O,1,1

2,2,1

O,2,1

2,P,1

O,P,1

1,2,1 1,P,1

3D - Data, Pipeline, and Operator Parallelism

Data Parallelism Operator ParallelismPipeline Parallelism

Communication 
is (largely) a 

logical 3D Torus

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346)

AI bandwidth today / yesterday (and growing!)
• Google TPUv2 (‘21): 1T 
• AWS Trainium (‘21): 1.6T
• DGX-2 (A100, ‘21): 4.8T (islands of NVLINK)
• Tesla Dojo (‘22): 128T  
     → Broadcom TH5 / NVIDIA Spectrum 4: 51.2T

A fat tree with 16k 
accelerators and 1.6T 
would cost $680M!
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Co-designing an AI Supercomputer with Unprecedented and Cheap Bandwidth

y,1 y,2 y,3 y,x

1,1 1,2 1,3 1,x

2,1 2,2 2,3 2,x

3,1 3,2 3,3 3,x

…

…

…

…

…………
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each plane fully-connected in xaccelerator 
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346)
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Bandwidth-cost-flexibility Tradeoffs (arXiv:2209.01346)

Global Topology 
(e.g., Fat Tree)

HammingMesh
(many configurations)

Local Topology 
(e.g., 2D Torus)

(large) reduce bandwidth

placement flexibility

injection bandwidth

global bandwidth

-
-

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346)
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Three Systems Dimensions in Large-scale Super-learning …

…

High-Performance I/O High-Performance Compute

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Data movement!

• Quantization, Sparsification
• Drives modern accelerators!

High-Performance Communication

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Optimized networks 

Data Pipeline Operator
Distribution and Parallelism

What will the (near future bring)? 

Some predictions for the future of HPC but also computing at large!
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Prediction 1: Accelerators Converge

AI is a gravity well – HPC will follow
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▪ Most of the performance will be low precision arithmetic!

▪ I would predict (C)FP8 or smaller

▪ We can be lucky if we get some fp64!

▪ They will support quantization and sparsity in hardware

▪ Vector scaling and zero points

▪ They will heavily be optimized towards data movement

▪ Physical limits and cost introduce two fundamental constraints:

Latency will become a problem

Locality and sparse connectivity

▪ Potentially hard to program

41

Future Accelerators …

B. Wisniewski (Samsung) 
Memory-coupled Compute
SPCL_Bcast 01/19/23
https://www.youtube.com/watch?v=KCrQtpx31CQ 

Optimized topologies and network
technologies.
E.g., HammingMesh
https://www.youtube.com/watch?v=xxwT45ljG4o 

ISSCC’23

30x*

https://www.youtube.com/watch?v=KCrQtpx31CQ
https://www.youtube.com/watch?v=xxwT45ljG4o
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Prediction 2: Programming and Tools Converge

Data Science as a gravity well – HPC will follow
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Scientific Computing is Moving to Python (as language frontend/ecosystem)

43

        
                          

Tiobe Index June’23

439,100 projects
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Upleveling Programming in the 21st Century – Performance Metaprogramming

IR – e.g., Parametric 

Dataflow Graphs (SDFG)

𝜕𝑢

𝜕𝑡
− 𝛼𝛻2𝑢 = 0

Graph Transformations 

(API, Interactive)

Transformed

Dataflow

Performance

Results

C++ code 

generation/runtime

𝑳 𝑹
*

*

*

*

*

*

Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs, SC19

Domain Scientist

DSLs

SDFG Builder API
Multi-Level 

Library Nodes

Applied Scientist

translate DSL into 
an Internal Representation

Performance Engineer

Specialized 
Code Generation

CPU Code

GPU Code

FPGA Code

R
u

n
ti

m
e 

10s of 
SLOC

1000s of auto-
generated SLOC100s of reusable 

SLOC
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Prediction 3: Networks Converge

Cloud as a gravity well – HPC will follow
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46[1] De Sensi et al.: “Noise in the Clouds: Influence of Network Performance Variability on Application Scalability”, SIGMETRICS’23

19 𝜇𝑠Latency 10 𝜇𝑠1.7 𝜇𝑠 1.7 𝜇𝑠 3.0 𝜇𝑠 2.4 𝜇𝑠
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