
Writing Parallel Libraries with MPI
-- The Good, the Bad, and the Ugly --

Torsten Hoefler

With input from Bill Gropp and Marc Snir

Keynote at EuroMPI 2011, Sept 21st 2011, Santorini, Greece

2/37T. Hoefler: Writing Parallel Libraries with MPI

Outline

ÅModular programming basics

ÅModular distributed memory programming

ÅA taxonomy for parallel libraries

ÅMPIôs loosely synchronous model

ÅThe Good

ÅThe Bad

ÅThe Ugly

ÅGuidelines and best practices

The rights on all images used in this talk belong to the owner!

3/37T. Hoefler: Writing Parallel Libraries with MPI

Modular Programming Basics

ÅModular programming is important for:

ÅCode reuse (even buy and sell)

ÅSmaller scope for optimizations

ÅCode exchange (clear interfaces)

ÅPerformance portability

ÅSeparation of concerns (implementation, testing)

ÅLibraries are the ñde-factoò standard for modular

programming J

ÅFound to improve productivity and reduce bugs

T. Korson, J.D. McGregor: Technical criteria for the specification and evaluation of object-oriented libraries

4/37T. Hoefler: Writing Parallel Libraries with MPI

Component-based Software Engineering (CBSE)

ÅProgram by composing large-scale components

ÅDesirable attributes of a library:

ÅWide domain coverage

ÅConsistency, robustness

ÅEasy-to-learn, easy-to-use, intuitive

ÅComponent efficiency

ÅExtensibility, integrability

ÅWell-supported

5/37T. Hoefler: Writing Parallel Libraries with MPI

Distributed CBSE?

ÅNeeds to control multiple resources (PEs)

ÅLearn from the Eiffel language:

ÅClasses ïorganize components around data

structures and not action structures

ÅInformation hiding ïexport facilities, but hide

internal structures (avoid ñcross talkò)

ÅAssertions ïcharacterize semantics

ÅInheritance ïmodule inclusion and subtyping

ÅComposability ïperformance composability and

functional orthogonality

Meyer, B.: Lessons from the Design of the Eiffel Libraries

6/37T. Hoefler: Writing Parallel Libraries with MPI

Spatial Resource Sharing

ÅSerial libraries: only temporal resource sharing

ÅAssuming ñenoughò memory

ÅParallel libraries: also spatial resource sharing

ÅE.g., master/worker

ÅMain library types:

1. Spatial (use some processes to implement services, leave

other processes to user, e.g., ADLB)

2. Collective, loosely-synchronous (called ñin orderò but not
synchronous from a static process group, e.g., PETSc)

3. Collective, asynchronous (called from a static process

group but work asynchronously, e.g., libNBC)

7/37T. Hoefler: Writing Parallel Libraries with MPI

A Taxonomy for Parallel Libraries

1. Computational libraries

ÅFull computations, often domain-specific,

e.g., PETSc, ScaLAPACK, PBGL, PPM

2. Communication libraries

ÅProvide (high-level) communication functions, e.g.,

libNBC, AM++

3. Programming model libraries

ÅSpecialized (limited) programming model, e.g., ADLB, AP

4. System and utility libraries

ÅInterface architectural subsystems, e.g., LibTopoMap,

HDF5, Boost.MPI, C# MPI bindings, pyMPI é
T. Hoefler, M. Snir: Writing Parallel Libraries with MPI ïCommon Practice, Issues, and Extensions

8/37T. Hoefler: Writing Parallel Libraries with MPI

Example Computational Libraries

ÅPETSc

ÅOffers algorithms and data structures

ÅScoped with MPI communicators (duped/isolation)

ÅHides communication (uses advanced features)

ÅNonblocking interface (VectScatter{Begin,End}())

ÅPBGL (Parallel Boost Graph Library)

ÅImplements graph algorithms and data structures

ÅGeneric C++, lifting from sequential algorithms

ÅScoped in process group (e.g., MPI process group)

ÅDistributed property map and queue hide comms.

9/37T. Hoefler: Writing Parallel Libraries with MPI

Example Computational Libraries

ÅPMTL (Parallel Matrix Template Library)

ÅDistributed vectors and matrices for linear algebra

ÅCompletely hides communication

ÅTopology mapping (MPI-2.2)

ÅPPM (Parallel Particle Mesh)

ÅDomain decomposition and automatic communication

ÅHigh-level application-oriented interface

10/37T. Hoefler: Writing Parallel Libraries with MPI

Example Programming Model Library

ÅADLB (Asynch. Dynamic Load Balancing)

ÅOffers a simplified programming model

ÅHighly scalable master/worker computations

ÅSpatial decomp. (master/worker)

ÅUser controls workers (with tasks)

ÅAP (Active Pebbles)

ÅData-driven, fine-grain anon. objects

ÅUser supplies message handlers and distribution

objects

ÅObject-based addressing, coalescing and routing

11/37T. Hoefler: Writing Parallel Libraries with MPI

Example Communication Libraries

ÅLibNBC (nonblocking collectives)

ÅAdds support for NBC to MPI-1.0

ÅThreaded and ñmanualò progression

ÅAsynchronous and loosely synchronous model

ÅStandardized in MPI-3.0

ÅAM++

ÅSupport for Active Messages

ÅGeneric C++, vectorizable handlers!

ÅFull functionality (e.g., comm. from handlers)

12/37T. Hoefler: Writing Parallel Libraries with MPI

Example System/Utility Libraries

ÅLibTopoMap (Topology Mapping)

ÅSupports scalable topology mapping for MPI-1.0

ÅProvides new comm. with optimized rank order

ÅUser needs to re-distribute data

ÅStandardized in MPI-2.2

ÅHDF5

ÅAbstract data model for storing and managing data

ÅHeavily uses datatypes and MPI-IO

13/37T. Hoefler: Writing Parallel Libraries with MPI

MPI and Libraries (The Good)

ÅCommunication Contexts

ÅSpatial and temporal isolation ñcomm. privatizationò

ÅScope for collective communications

ÅĄ MPI Communicators (and process groups)

ÅVirtual Topologies

ÅDomain-specific process naming

ÅExtends the one-dim. naming of process groups

ÅArbitrary Cartesian or general graph

14/37T. Hoefler: Writing Parallel Libraries with MPI

MPI and Libraries (The Good)

ÅAttribute Caching

ÅAssociate state with communication objects

ÅCommunicators, windows, data types

ÅConcept of inheritance (copy functions)

ÅData types

ÅInterface to exchange layouts of data structures

ÅBetween libraries and users

ÅProvide privatization (dup) and (de)serialization

15/37T. Hoefler: Writing Parallel Libraries with MPI

MPI and Libraries (The Good)

ÅMPIôs Modular Design

ÅThe standard itself is modular

ÅSections can be implemented as separate libraries

ÅCollectives

ÅNonblocking collectives

ÅTopologies

ÅI/O

ÅEncourages external communication libraries (e.g.,

LibNBC)

T. Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

16/37T. Hoefler: Writing Parallel Libraries with MPI

Where it breaks - initialization (The Bad)

ÅImagine:

int main() {
LibA_Init()
LibB_Init()

/* use libs */

LibA_Finalize()
LibB_Finalize()

}

LibA_Init() {
int flag;
MPI_Initialized(&flag);
if(!flag) MPI_Init(NULL,NULL);

}

LibB_Init() {
int flag, reqd=MPI_THREAD_MULTIPLE, p;
MPI_Initialized(&flag);
if(!flag)
MPI_Init_thread(NULL,NULL,reqd,&p);

}

17/37T. Hoefler: Writing Parallel Libraries with MPI

Where it breaks - initialization (The Bad)

ÅImagine:

int main() {
LibB_Init()
LibA_Init()

/* use libs */

LibA_Finalize()
LibB_Finalize()

}

LibA_Init() {
int flag;
MPI_Initialized(&flag);
if(!flag) MPI_Init(NULL,NULL);

}

LibB_Init() {
int flag, reqd=MPI_THREAD_MULTIPLE, p;
MPI_Initialized(&flag);
if(!flag)
MPI_Init_thread(NULL,NULL,reqd,&p);

}

18/37T. Hoefler: Writing Parallel Libraries with MPI

ÅMPI_INFO

ÅInfo key/value pairs can be attached to several

objects (e.g., windows)

ÅInfluences performance or correctness

ÅRequires at least an info query mechanism!

Where it breaks ïinfo objects (The Bad)

int main() {
MPI_Infoinfo; /* = no_locks; */
MPI_Win_create ȣȟ ÉÎÆÏȟ comm, &win);
/* One-Sided Communication */
LibA_BuildOctTree(win, comm);
MPI_Win_free(&win);

}

void LibA_BuildOctTree(win, comm) {
MPI_Win_lock(type, 0, 0, win);
/* One-Sided Communication */
MPI_Win_unlock(0, win);

}

19/37T. Hoefler: Writing Parallel Libraries with MPI

int main() {
/* init */
int tid , bsize=N/ num_threads;
LibA_Init();
#pragmaomp parallel private(tid)
{
tid = omp_get_thread_num();
LibA_CalcRange(tid*bsize,

(tid+1)* bsize, comm);
}
LibA_Finalize();

}

Reentrant Libraries (The Bad)

void LibA_Init() {
int flag;
MPI_Initialized(&flag);
if(!flag) MPI_Init(NULL,NULL);

}

void LibA_CalcRange(begin,
end, comm) {

/* init and calculate */
MPI_Allreduce ȣȟ comm);

}

20/37T. Hoefler: Writing Parallel Libraries with MPI

Reentrant Libraries (The Bad)

ÅLibraries create their private communication

context

ÅAllows for only one invocation per communicator

ÅĄ nonreentrant libraries

ÅTechniques to make them reentrant

ÅBarrier/lock before and after invocation

ÅSeveral dupôdcommunicators (cf. stack)

ÅSpecial messaging protocol

ÅNo wildcards, no cancel

21/37T. Hoefler: Writing Parallel Libraries with MPI

int main() {
/* init */
LibA_Init();
LibA_Icomm(tid*bsize,

(tid+1)* bsize, comm, &handle);
/* independent computation */
LibA_Wait(&handle);
LibA_Finalize();

}

Nonblocking Library Progress (The Bad)

ÅManual progress

ÅUser transfers control

ÅProgress call!

ÅSupported by global

progression rule in MPI

ÅAsynchronous progress

ÅNo user interaction,

finishes autonomously

T. Hoefler, A. Lumsdaine: Message Progression in Parallel Computing - To Thread or not to Thread?

22/37T. Hoefler: Writing Parallel Libraries with MPI

Nonblocking Library Progress (The Bad)

ÅMPI has a global progress rule

ÅLibraries need progress, elegant to hook into MPI

ÅGeneralized requests associate MPI requests with

library state (good!)

ÅBUT: require asynchronous libraries in MPI-2.2 (bad!)

ÅSimple solution discussed in EuroMPIô07

ÅDefine a user-progress function to be called by MPI

Å[still no proposal for MPI-3.0?]

R. Latham et al.: Extending the MPI-2 Generalized Request Interface

23/37T. Hoefler: Writing Parallel Libraries with MPI

Nonblocking Libraries ïinit (The Bad)

ÅBlocking Comm_dup

ÅCannot implement fully nonblocking library!

ÅUgly fix: initialize library for each communicator L

void LibA_Icomm(begin, end, comm, &handle);
/* initialize */
MPI_Attr_get(comm, keyval, &mycomm, &flag);
if(!flag) {
MPI_Comm_dup(comm, &mycomm);
MPI_Attr_put(comm, keyval, mycomm);

}
}

T. Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

24/37T. Hoefler: Writing Parallel Libraries with MPI

Complex Communications (The Bad)

ÅUser-defined collective reductions

ÅCannot handle user-defined operations!

ÅFixed in MPI-2.2 (reduce_local)

ÅLimited tag-space

ÅLibrary must only support 32k tags

ÅStacked libraries may want to use sub-space of tags!

ÅHard to implement ñMPI-compliantò libraries!

25/37T. Hoefler: Writing Parallel Libraries with MPI

Complex Communications (The Bad)

ÅQuiz: whatôs wrong with this code:

Rank 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Send ȣȟ ρȟ ωωȟ comm);
OF_Recv ȣ Ƞ

Rank 1

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Recv ȣȟ πȟ ωωȟ comm);
OF_Send ȣ Ƞ

26/37T. Hoefler: Writing Parallel Libraries with MPI

Complex Communications (The Bad)

ÅMPI_Send may not send immediately!

ÅSynchronization outside of MPI

ÅGood source of deadlocks (missing MPI progress)

ÅE.g., if libraries are tuned for low-level transports

Rank 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Send ȣȟ ρȟ ωωȟ comm);
OF_Recv ȣ Ƞ

Rank 1

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Recv ȣȟ πȟ ωωȟ comm);
OF_Send ȣ Ƞ

T. Hoefler, A. Lumsdaine: Optimizing non-blocking Collective Operations for InfiniBand

27/37T. Hoefler: Writing Parallel Libraries with MPI

Other Issues (The Bad)

ÅNo const-correctness

ÅNo specified contracts for C bindings

ÅCannot nest split file I/O

ÅWhat if a library already started an operation?

ÅCf. Edgarôs talk on nonblocking I/O on Monday!

ÅFinalize can only be called once

ÅMPI_Initialized() does not suffice

ÅRace-conditions for multi-threaded libraries!

ÅSolution: ref-counting (proposal for MPI-3)

28/37T. Hoefler: Writing Parallel Libraries with MPI

Hybrid Programming (The Ugly)

ÅIs this correct?

ÅWhat about the following?

Rank 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Send ȣȟ ρȟ ωωȟ comm);
upc_all_reduceD ȣ Ƞ

Rank 1

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Recv ȣȟ πȟ ωωȟ comm);
upc_all_reduceD ȣ Ƞ

Rank 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Bcast ȣȟ πȟ comm);
upc_all_reduceD ȣ Ƞ

Rank 1

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
MPI_Bcast ȣȟ πȟ comm);
upc_all_reduceD ȣ Ƞ

29/37T. Hoefler: Writing Parallel Libraries with MPI

Hybrid Programming (The Ugly)

ÅMixing MPI with other programming

models is rather unspecified

ÅSeems straight forward

ÅDangerous (and rare) pitfalls

ÅĄ looks harmless but is dangerous!

ÅOften conservative programming model

ÅBarrier, switch model, barrier, slow

ÅComplex interaction with threads

MPP

Many Core

Many Thread

J. Dinan et al.: Hybrid Parallel Programming with MPI and Unified Parallel C

30/37T. Hoefler: Writing Parallel Libraries with MPI

Thread-safe Message Probing (The Ugly)

ÅProbe is important for dynamic applications

ÅE.g., active messages in message-driven algs.

ÅIssues with threading (discussed last year)

ÅTwo threads can probe/receive concurrently

ÅShared ñMPI stateò leads to wrong matching

ÅFix on the way for MPI-3.0 (passed)

ÅSee EuroMPIô10 publication

ÅWas hard to communicate, even to the experts!

T. Hoefler: Efficient MPI Support for Advanced Hybrid Programming Models

31/37T. Hoefler: Writing Parallel Libraries with MPI

Control Transfer (The Ugly)

ÅThreaded libraries may consume PEs

ÅPotentially shared with application threads

ÅHow is control passed to a threaded library?

ÅFour scenarios:

1. ST app calls ST lib (trivial)

2. ST app calls MT lib (library is only consumer)

3. MT app calls ST lib (requires synchronization)

4. MT app calls MT lib (requires resource management)

32/37T. Hoefler: Writing Parallel Libraries with MPI

Thread Resource Management

ÅState of the art:

ÅAd-hoc: Query the number of CPUs and pin threads

ÅOS: time sharing (thread scheduling, low performance)

ÅLibrary issues:

ÅSpace sharing (one library may not ñownò all cores)

ÅHow to broker resources (cores) among all clients?

ÅE.g., polling threads vs. compute threads

ÅOS-based core allocation (e.g., Lithe)

H. Pan et al.: Lithe: enabling efficient composition of parallel libraries

33/37T. Hoefler: Writing Parallel Libraries with MPI

Communication Endpoints (A Solution)

ÅObservation:

ÅRunning one MT MPI process per node cannot

exploit full communication potential

ÅBut shared memory is useful

ÅSolution (MPI-3.0 proposal):

ÅIntroduce multiple MPI endpoints per process

ÅThreads can ñgrabò endpoints

ÅMPI-3.0 endpoints act like MPI-2.2 processes

M. Snir: Endpoints Proposal for MPI-3.0

34/37T. Hoefler: Writing Parallel Libraries with MPI

Library Developerôs Best Practices

ÅUse communicators for:

ÅMessage privatization

ÅSpatial decomposition

ÅState caching (attributes)

ÅPassing library state (exclusively)

ÅHandle (MPI) errors internally (error handlers),

provide library-specific messages

ÅInitialization can be done explicitly or implicitly

ÅDup has issues with nonblocking libraries!

35/37T. Hoefler: Writing Parallel Libraries with MPI

Doôs and donôts!

ÅDonôt use MPI_COMM_WORLD

ÅHinders future extensions / avoid globals!

ÅDonôt synchronize at entry/exit

ÅCosts performance

ÅUse overlapping communicators if necessary!

ÅE.g., 2D-decomposed FFT

ÅThink about progress

ÅñManualò vs. ñasynchronousò

