TORSTEN HOEFLER
DEPARTMENT OF COMPUTER SCIENCE, ETH ZÜRICH

HPC vs. Irregular Applications
Killer Irregular Application(s)?

- Not sure if there is a killer yet …
 - Unless we talk about Ebola simulation(s)

- Graph databases in particular:
 - Shape search is hopeless for anything complex
 - Complexity is double exponential
 [The Complexity of Evaluating Path Expressions in SPARQL]

- Is the analytics part of the database?
 Or is it an in-memory graph computation?
Should we Make Programming Easy?

- Yes, always!

- Can we do it without loosing performance?
 - Tough question, may not be possible in the near future
 - We don’t even quite all agree on the right abstraction:
 Vertex-centric? [Pregel]
 Edge-centric? [GraphLab]
 Traversal-centric? (e.g., BFS) [PGBL]
 Building blocks? [Galois]
 Linear-algebra-centric? [Kepner et al., GraphBLAS]
 Communication-centric? [Active Pebbles]

- How to make this easy?
 - Common denominator: data-centric* (defer to Keshav)

(*) Unless you’re from Germany
Is it really only memory?

- It’s always about balance [Kung’86]
- But what is the balance … ranging from dense linear algebra through sparse linear algebra (simulating physical objects)
- to irregular graph (linear algebra)

H. Kung: “Memory requirements for balanced computer architectures.”, ‘85, Comp. Arch. News
Accelerators – yeah or nay?

- Depends again on the balance
- GPUs: fine until you have to use more than one!
- Xeon Phi: a bit more challenging (even on one)
- Graph-specific (Convey) – great! (but expensive)
- So for large-scale assuming bad separators: nay!
- There is hope: NVLINK
Graph Processors? FPGAs?

- Why not? It’s interesting!
- A new trend:
 - Example: NoSQL 😊

Google goes back to the future with SQL F1 database

'Can you have a truly scalable database without going NoSQL? Yes!'

By Jack Clark, 30 Aug 2013

- Non-von Neumann? Automata CPUs?

 So far only string matching examples (which also vectorize & parallelize very well)
Standardization? Library? Benchmarks?

- **Standard Interfaces**
 - Can we please agree on an abstraction first?
 - cf. BLAS, MPI, …

- **Is it GraphBLAS?**
 - Can it capture all graph algorithms efficiently?

 Seems to be an open research topic

 - cf. BLAS forms a complete basis for all of linear algebra

- **Standard Benchmarks**
 - Important for many reasons - need to be chosen wisely

 - **Goodhart's law**: If a benchmark becomes an optimization target than it looses its value as benchmark!

 - My advice: HPC shall not ignore the datacenter folks (and vice versa)

Graph500 vs. LDBC?
Energy Efficiency?

- Most important (Onur will tell us more)
 - Must drive architecture innovations
 - But current DRAM protocols are really suboptimal!
 Think bout RAS/CAS!
 Start a No-DDR movement?

- Watch the Green Graph 500
 - Records progress over time
 Same benchmark as Graph500

MTEPS/W

<table>
<thead>
<tr>
<th></th>
<th>June ‘13</th>
<th>Nov. ‘13</th>
<th>June ‘14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Data</td>
<td>64.1</td>
<td>153.2</td>
<td>445.9</td>
</tr>
<tr>
<td>Big Data</td>
<td>5.4</td>
<td>6.7</td>
<td>59.1</td>
</tr>
</tbody>
</table>

See Graph500 BoF: Tue, 12:15pm, 286
Push vs. Pull?

- Data to computation or computation to data?
- Look at the execution DAG, assign costs, solve for balance
 - → done!

H. Kung: “Memory requirements for balanced computer architectures.”, ‘85, Comp. Arch. News