HiPINEB Panel – MSN vs. ICN (DC vs. HPC networks)

Torsten Hoefler (on behalf of nobody, not even my institution or myself!)
Using Advanced MPI
Modern Features of the Message-Passing Interface

William Gropp
Torsten Hoefler
Rajeev Thakur
Ewing Lusk

Who am I?

Distributed Join Algorithms on Thousands of Cores

Claude Bartheis, Ingo Müller, Timo Schneider, Gustavo Alonso, Torsten Hoefler
Systems Group, Dept. of Computer Science, ETH Zürich
(firstname.lastname)@inf.ethz.ch

ABSTRACT

Traditional database operators such as join algorithms at scales usually met by modern parallel scientific applications or large match-reduce batch jobs. In the experimental evaluation, we provide a performance analysis of the distributed join running on 4,096 processor cores with up to 4.8 terabytes of input data. We explore how join algorithms balance between high bandwidth, low-latency networks we used and specialized communication libraries replace hand-written code. These two points are crucial to understand the evolution of distributed join and to facilitate the portability of the implementation to future systems.

Operating at large scale requires careful process orchestration and efficient communication. This poses several challenges when scaling out join algorithms. For example, a join operator needs to keep track of data movement between the compute nodes in order to ensure that every tuple is transmitted to the correct destination node for processing. At large scale, the performance of the algorithm is dependent on having a good communication infrastructure that automatically selects the most appropriate method of communication between two processes.

VLDB’17
Define how MSN and ICN are similar and different.

- **Parameters:**
 - Bandwidth, bandwidth, latency

- **Machine characteristic**
 - (Loose) collection of racks
 - Incremental upgrade
 - Highly available during upgrade

- **Network characteristics**
 - Multi-vendor
 - Heterogeneous (ToR vs. Spine vs. external)
 - Ethernet
 - Lossy!

- **Protocols**
 - TCP/IP

- **Parameters:**
 - Latency, bandwidth, message rate

- **Machine characteristics**
 - Single machine (supercomputer)
 - Rolled in as an atomic unit, upgrades limited
 - Shut down for extended periods

- **Network characteristics**
 - Single-vendor
 - Homogeneous
 - Ethernet
 - Lossless!

- **Protocols**
 - Specialized, highly optimized, proprietary
Should research funding agencies support research in MSN or ICN?

- Let me be overly controversial/extreme 😊
 - DC research: given a set of rather complex somewhat random constraints (Ethernet, ECMP, MPLS, TRILL, OpenFlow, RoCE, RoCEv2, VXLAN, NVGRE, SPB, ...), figure out how to improve parallel and distributed computing workloads
 - HPC: clean-slate approach, design network and protocols from scratch to fit requirements of parallel computing workloads (pioneers adaptive routing in hardware etc.)

- Which one would you rather fund?
 - Fundamental research or system cobbling? 😊

- Where will your funding have highest societal impact?
 - Facebook, Google, etc. (with their own xx billion budgets) vs.
 - Basic sciences (climate (!), drugs, cancer, physics, astronomy etc.)
 - ... not immediately clear?
Bandwidth: Do we need more bandwidth for either MSN or ICN?

- Yes
- Why? → Latency hiding!

```c
for (int i = 0; i < steps; ++i) {
    for (int idx = from; idx < to; idx += jstride)
        out[idx] = -4.0 * in[idx] +
                    in[idx + 1] + in[idx - 1] +
                    in[idx + jstride] + in[idx - jstride];
    if (lsend)
        dcuda_put_notify(ctx, wout, rank - 1,
                         len + jstride, jstride, &out[jstride], tag);
    if (rsend)
        dcuda_put_notify(ctx, wout, rank + 1,
                         0, jstride, &out[len], tag);
    dcuda_wait_notifications(ctx, wout,
                             DCUDA_ANY_SOURCE, tag, lsend + rsend);
    swap(in, out);
    swap(win, wout);
}
```

- iterative stencil kernel
- thread specific idx
- map ranks to blocks
- device-side put/get operations
- notifications for synchronization
- shared and distributed memory

MSN are more cost-conscious, compared with ICN. Should MSN providers invest in HPC ICN to help drive down cost?

- You mean they’re cheap? 😊

- Cheap is not necessarily good!
 - Let’s look at 100Gbit/s networking

$675-1,950 / NIC
$7,325 / 16 ports

$495 / NIC
$5,535 / 24 ports

- Ethernet
- OmniPath

- Side note: operators tell me that the network is not the major cost in last-generation supercomputers (only 10-15%)
 - Corollary: we should start talking about GPUs, deep learning, and pricing 😊
Will MSN and ICN converge in the future? If so, when and what will that network look like?

- Yes ...
 - Economy of scale, no matter what it will be, it will be called Ethernet
 - But what is Ethernet? CEE/PFC or not?
 - The fundamental differences remain
 - Lossless vs. lossy transport
 - Adaptive vs. static routing
 - Bare-metal vs. virtualized/tunneled

- No ...
 - HPC’s clean-slate approach fosters innovation
 - Less cruft … (this is why I love this field as a scientist)
 - HPC may always leap ahead as it did in computer architecture
 - Vectorization, GPUs, FPGAs …
 - … and network architecture
 - Packet-level adaptive routing, lossless transport, RDMA
One last point ...

- **It’s all about the endpoints anyway!**
 - Most performance is lost at the endpoint, not in the network

 We have very good networks/topologies (Slim Fly [1] of course!)
 - E.g., latency – 50-70ns/hop, 600ns at endpoints

 ... who to blame?

Example:
Cray CS Storm – MeteoSwiss supercomputer
2 cabinets, 12 hybrid computing nodes per cabinet
2 Intel Haswell 12-core CPUs per node
8 NVIDIA Tesla K80 GPU accelerators per node [2]