Torsten Hoefler
ETH Zürich
SC’ 14, New Orleans, LA, USA

With support of David Bader, Andrew Lumsdaine, Richard Murphy, and Marc Snir
The Green Graph500 List

- In close collaboration with Graph500 (same rules)
 - Will have a separate list and separate awards
 - http://green.graph500.org/

- Measurement techniques compatible with established practice and Green500
 - Allows comparisons and cross-analyses
 - Only real measurements, no TDP etc.
Received Submissions

- Single Node (small+efficient)
- GPU
- Smartphones
- GraphCREST Bulldozer (1 node)
- Multiple Nodes (large-very large)
- TSUBAME-KFC (32 nodes)
A Natural Split

- Small Data vs. Big Data
 - Fundamentally different categories
 - Often: single node vs. multiple nodes
 - Or: in cache vs. in memory?
 - Or: in registers???

- Graph500 doesn’t limit the “minimal submission” (yet)
 - Median of Graph500 scales
 - Nov. 2014 list: Scale 30 (unchanged)
The Small Data List

<table>
<thead>
<tr>
<th>Rank</th>
<th>MTEPS/W</th>
<th>Site</th>
<th>Machine</th>
<th>G500 rank</th>
<th>Scale</th>
<th>GTEPS</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>445.92</td>
<td>George Washington University</td>
<td>Colonial</td>
<td>20</td>
<td>122.18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>235.15</td>
<td>Kyushu University</td>
<td>GraphCREST-Xperia-Z1-SO-01F</td>
<td>20</td>
<td>1.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>230.40</td>
<td>Kyushu University</td>
<td>GraphCREST-Xperia-A-SO-04E</td>
<td>20</td>
<td>0.74</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>204.38</td>
<td>Tokyo Tech</td>
<td>EBD-GoldenBox-Prototype</td>
<td>21</td>
<td>1.64</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>180.76</td>
<td>Kyushu University</td>
<td>GraphCREST-Xperia-A-SO-04E</td>
<td>21</td>
<td>0.59</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>171.77</td>
<td>Kyushu University</td>
<td>GraphCREST-Xperia-Z1-SO-01F</td>
<td>21</td>
<td>0.91</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>170.64</td>
<td>University of Tsukuba</td>
<td>kitty6</td>
<td>25</td>
<td>35.18</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
The Big Data List

<table>
<thead>
<tr>
<th>Rank</th>
<th>MTEPS/W</th>
<th>Site</th>
<th>Machine</th>
<th>G500 rank</th>
<th>Scale</th>
<th>GTEPS</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.12</td>
<td>Kyushu University</td>
<td>GraphCREST-SandybridgeEP-2.4GHz</td>
<td>30</td>
<td>28.48</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48.28</td>
<td>Kyushu University</td>
<td>GraphCREST-Sandybridge-EP-2.7GHz</td>
<td>30</td>
<td>31.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>44.42</td>
<td>Kyushu University</td>
<td>GraphCREST-Huawei</td>
<td>32</td>
<td>55.74</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35.87</td>
<td>Tokyo Tech</td>
<td>GraphCREST-Custom #1</td>
<td>32</td>
<td>10.64</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>28.88</td>
<td>Tokyo Tech</td>
<td>MEM-CREST Node #2</td>
<td>30</td>
<td>7.98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>22.36</td>
<td>University of British Columbia</td>
<td>Alkindi26-hybrid</td>
<td>30</td>
<td>10.31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.24</td>
<td>Kyushu University</td>
<td>GraphCREST-Bulldozer</td>
<td>31</td>
<td>13.63</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
The Future of the List

- **Next list: Jun. 2015**
 - Submission deadline: aligned with Graph500
- **Submission details:**
 - Through Graph500, provide output data and energy information, or power trace
- **Watch** http://green.graph500.org/
- **Thanks for Support:**
 - Thanks to David Bader, Andrew Lumsdaine, Richard Murphy, and Marc Snir
Backup
Motivation

- Big Data analysis may dominate datacenter cost
 - Encourage vendors to provide “greener” hardware

Why not just Green500?

- **Green500 is centered around HPL**
 - HPL: extremely structured, FP/Cache intensive
 - Graph500: unstructured, no good separators, (main) memory and network intensive
- **Completely different optimization goals!**
 - Need to be addressed by vendors!
 - Maybe specialized machines?

Source: S. Borkar, Hot Interconnects 2011, Keynote
Real Comparative Measurements

Power Draw (kW)

Idle (calibrate wait) ~75 kTEPS/W 452 MFLOPS/W

Panel Bcast Scale=32

HPL
Graph500
Real Comparative Measurements

- Time
- Power Draw (kW)
- Panel Bcast
- Scale=32

- Idle (calibrate wait)
- ~75 kTEPS/W
- 452 MFLOPS/W