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Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and
concepts to improve our ability to cope with climate change. EVEs aim to provide interactive
and accessible climate simulations and data for a wide range of users. They combine
high-resolution physics-based models with machine learning techniques to improve the fidelity,
efficiency, and interpretability of climate projections. At their core, EVEs offer a federated data
layer that enables simple and fast access to exabyte-sized climate data through simple
interfaces. In this article, we summarize the technical challenges and opportunities for
developing EVEs, and argue that they are essential for addressing the consequences of climate
change.

We are all witnessing the effects of climate change. Hotter summers, prolonged
droughts, massive flooding, or ocean heat waves are examples of extreme weather and
climate events that are growing in frequency and intensity. Many agree that
addressing climate mitigation and adaptation is the biggest problem humanity faces
today. A large group of scientists and practitioners from different climate-related
domains, including some computer scientists, got together for a week in Berlin this
July to discuss the concept of “Earth Virtualization Engines” (EVEs). The summit
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kicked off with the question: “If climate change is the most critical problem today,
why are we not using the largest computers to help solve it?”.

The question proved provocative in two ways. One, many people think we are using
them already, although we aren’t, while others fear that a focus on technologies masks
the many other, mostly human and social dimensions of the problem. Through intense
discussions over multiple days, the participants were able to reconcile these different
viewpoints in their summary statement. Here, a subset of the participants outline their
common understanding of the technical landscape and constraints and a possible
technical realization. This article distills many productive conversations into a set of
observations and ideas to form a basis to guide future investments and more detailed
investigations. This is by no means meant as a final design, it should be seen as an
initial technical contribution to the journey that will enable humanity to assess the
detailed risks of climate change from the local to the global scale.

Climate models are currently our central source of information on how climate will
continue to change in the future. Thus, any improvement we make to their fidelity,
combined with improved theoretical understanding, is likely to directly benefit the
quality of climate prediction. Today’s exascale computing will enable global climate
simulations with a grid resolution approaching 1 kilometer within the next few years.
This resolution allows us to explicitly resolve a number of critical physical processes,
such as convection in the atmosphere, which are not captured correctly in models
typically employed today. Some of the largest improvements when using high
resolution models are seen in the simulation of key variables such as precipitation or
in capturing orographic effects [prein15]. However, such km-scale models produce
tens of exabytes of data to analyze for diverse uses. Additionally, these climate models
are computationally expensive, hard to optimize, let alone use, and link to climate
impact studies. This greatly limits the number of groups worldwide who can operate
these models, contribute to their development and benefit from the data they generate.

The Berlin EVE summit recognized that in order to cope with the consequences of
climate change, many more users have to have equal access to such climate data and
the capability to extract information relevant to them. To this end, one of the most
critical elements of EVE consists of an interactive data access layer that allows
simple navigation, extraction, and application of the climate simulation data. In a
simple form, we imagine an interface such as Google’s Earth Engine, or Microsoft’s



Planetary Computer’s “Explore” interface (see Fig. 1) – albeit with much better
climate predictions. Behind the scenes, the data of these predictions will be served by
a distributed system federating multiple centers running kilometer-scale models as
data generators and distilled into actionable information by a layer of custom-built
climate tools and services. Such an interactive data layer would also empower local
communities – agronomists in India, water managers in Peru – to link their tools to
the data. Furthermore, accessing details of the dataset, climate scientists can better
understand and reason about simulated changes. Deploying and operating such an
interactive system is a grand infrastructure and engineering challenge. Given its
intended use, care must be exercised to ensure that its use is not restricted to industry
(e.g., cloud providers such as Microsoft) or large-scale research laboratories at the
forefront of climate research endeavors (e.g., Max Planck or US DOE).

Fig 1: Microsoft Planetary Computer Explorer: Sea Surface Temperature (source:
planetarycomputer.microsoft.com).

Machine Learning (ML) techniques, which boosted Artificial Intelligence (AI) with
Large Language Models (LLMs), and related techniques are invigorating climate
sciences, as they are many other fields. Summit participants recognized the need to



combine physics-based simulations with ML techniques to accelerate and improve
predictions, and the scope of data-driven methods was widely discussed. Crucially,
ML/AI was identified as essential to opening new opportunities for making the
data accessible by extracting information that can empower users to act.

What is Climate Modeling?

Climate is the statistics of weather typically taken over a 30-year period. Weather is
what we observe today and what we can predict in the next few days with relatively
small uncertainty given accurate initial conditions. Yet, processes in the atmosphere
and ocean are chaotic, which limits our ability to predict the weather beyond two to
three weeks ([lorenz72]). Thus, climate modelers do not aim to predict the weather on
a specific day in the distant future but rather want to understand how the statistics of
weather are changing given alterations in greenhouse gas forcings, aerosols, or other
earth system components. Put differently: what type of weather might we expect in a
warmer world?

Predicting the coming weekend’s weather can be seen as using physics to extrapolate
from today’s weather. However, predicting the climate in 30 years, with a potentially
doubled CO2 concentration requires improved understanding of climate processes.
The probability of different weather states may change gradually, but tipping points
would accelerate changes, with locally and globally potentially devastating
consequences. Understanding, simulating, and especially predicting tipping points is
very challenging and Monte-Carlo methods are essential to estimate associated
uncertainties. Because it is impossible to know exactly what greenhouse gasses will
be emitted in the future and how humans might respond to the impacts of climate
change, simulations span a range of different scenarios.

Another difference from a scientific perspective is how we develop and test tools for
climate modeling: We can assess the quality of a weather prediction after some days
comparing it against reality. However, we only have one realization of past climate
change that models are typically tuned to capture and we cannot wait 30 years to
understand if our projections were correct. Validating climate projections is thus
especially tricky, if not impossible, making proper verification of model



implementation essential. Thus, it is extremely important to develop our theoretical
understanding and at the same time tightly control statistics and uncertainty!

How do we Model the Climate?

Climate simulations are weather predictions run over several decades to centuries but
add physical processes relevant for climate projections to explicitly simulate changing
CO2 concentration. The same governing equations are used for atmospheric processes
and one can share large parts of the code between weather predictions and climate
simulations. The principal difference is that coupled atmosphere-ocean simulations
are necessary to simulate climate, and full “Earth System Models” also include land,
ice and biosphere models. Most of the computational effort is spent in the atmosphere,
although this depends on the complexity of other processes included, such as ice-sheet
and vegetation components.

Many weather forecasting centers participated at the EVE Summit, e.g., ECMWF,
who offer forecasts as a service. They do this by constantly integrating (or
``assimilating’’ [klinker00]) measurement data from satellites, airplanes, or weather
stations into a running simulation as an initial condition for a prediction. ECMWF
also uses its data assimilation and modeling capabilities to generate reanalysis
products that provide best estimates of the historic weather for the past decades
[hersbach20].

It’s All About the Scales!

Climate simulations discretize the Earth’s atmosphere, ocean and land surface into a
finite set of roughly equally sized tiles, or voxels, which then determines the
simulation’s resolution. Each grid box represents an average of the physical or
chemical properties within. Today’s grid resolutions are about 100 km - i.e., we
average an area of approximately 10,000 km2 (or about a quarter of Switzerland) into
a single number. This makes it impossible to represent processes that are locally
relevant, e.g., because they impact parts of cities. Weather modelers have long ago



learned the value of simulating at finer resolution, which is, for instance, why the
Swiss National Weather Service is developing weather forecast models with a
resolution of kilometers. Coarser grid resolutions cause significant uncertainties in
climate simulations. Even global metrics such as the Equilibrium Climate Sensitivity
(ECS) show high uncertainties at current resolutions. ECS assesses the average
increase in Earth’s surface temperature, assuming the CO2 in the atmosphere doubled,
which ranges from 2-5 ˚C, where the uncertainties are mainly due to the
representation of cloud changes [forster21].

The grid resolution indeed has an even bigger impact: physical processes at scales
smaller than the grid resolution are not captured by the physical simulation model and
need to be represented empirically (using so-called parametrizations). Such
parametrizations introduce significant inaccuracies. The accuracy of weather models
can be increased significantly by reducing the grid spacing to a few kilometers
[schaer21]. Specifically, at such resolutions, the dynamics in deep convective
processes, such as large tropical thunderstorms, are simulated explicitly, leading to
much higher accuracy in cloud feedbacks [schneider17]. A 100m grid would further
improve the representation of shallow convective clouds, another significant step
towards higher-fidelity modeling based on first principles, and one particularly
relevant for quantities like ECS. Thus, increasing the resolution of climate models is
also expected to increase the global prediction quality significantly.

High-resolution climate models are likely our best path forward to improve
predictions of the future climate. Yet, a full Earth simulation at kilometer resolution
would require about 510 million tiles for each vertical level and second-scale time
stepping over decades of simulated time, making simulations exorbitantly expensive.

Simulation Computational Requirements

Running and calibrating high-resolution climate simulations requires the world’s best
experts working with the world’s best research infrastructures. At the same time,
much of the insight in climate research is generated in thousands of small-scale
research labs by students and research staff who often do not have easy direct access
to the simulation setup and data output. Connecting the simulations to the users
through frictionless data access interfaces would empower a wide group of



researchers and practitioners, help develop and engage talent globally, and fuel new
breakthrough ideas.

Furthermore, the relation between increasing the number of ensemble members to
capture the probability distribution better and increased resolution to improve the
accuracy of each “trajectory” remains complex. Fig. 2 shows a sketch of this
relationship and several axes of potential improvement. We note that the performance
measured in simulated years per day (SYPD) scales linearly in the number of
ensemble members but worse in resolution. Furthermore, the amount of simulation
data produced scales rapidly with the resolution. Code optimization or computing
speed improvements of the machine will move us to the right in the plot, towards
EVE’s target. Machine learning “inside” the simulation to replace costly model
components offers a potential joker and can lead to exceeding the goal. ML can also
combine the benefits of ensembles and resolution in post-processing “on top” of the
simulation to get a better approximation of the distribution [groenquist21].

Figure 2: Resolution vs. number of ensemble members and the computational boundaries to be
pushed with EVE. The x-axis shows increasing resolution and the number of ensemble members is
shown on the y-axis. The x-axis also shows the approximate simulation output data size for one
variable over 30 years. A central speed metric is Simulated Years per Day (SYPD) — it is limited by
how simulations perform on today’s computers. The illustration shows the limits of existing climate
simulations on several machines as blue lines: ICON running on Levante at DKRZ, LUMI, and
projected on Fugaku and Frontier, which we estimate to perform within 15% of each other for this



workload based on their HPCG performance. In red, we outline the historic frontiers based on the
available compute capability in the past. We also outline some opportunities for “ML inside” and
“ML on top” in green [bauer23]. Typical model resolution today is 100 km, higher-resolution models
use 25-50 km [haarsma16].

Based on a rough extrapolation of benchmarking data [schulthess18], we expect that
top-class supercomputers such as Frontier or, soon, Alps should be able to execute
optimized decadal climate simulations at 1 km resolution if the machine was
exclusively dedicated to the task for multiple weeks. Yet, the produced data volume is
expected to be many tens of exabytes [schulthess18].

It’s Really All About (Accessing and Interacting With) The Data!

From a technical perspective, a climate simulation produces an output array of values
at each grid point at specific output intervals (e.g., 15 minutes). The potentially many
ensemble members sample the probability distribution of each of those values. So a
simulation’s output can be identified by a multi-dimensional tensor: The horizontal i, j
(surface) dimensions of the grid, the vertical k (atmospheric or ocean) dimension, the
time dimension t, and the ensemble dimension e for each variable of interest (e.g.,
temperature).

A single variable, for example, the surface temperature, stored as 8-bit value sampling
in 15 minute intervals for a typical 30-year simulation requires 0.5 PiB of storage. Yet,
the temperature at different height levels controls cloud formation, such that one
would need to store more than 100x this value in the vertical dimension
[schulthess18]. Because the climate is described by many variables (tens to hundreds),
and tens of simulations are required to sample internal variability, naive output
strategies can easily produce many exabytes to characterize a single climate change
scenario.

Given the exabyte storage requirements, EVE must offer a storage backend that
supports highly-optimized domain-specific compression [huang22,kloewer21].
Furthermore, EVE’s access protocols must be extremely lightweight and efficient to
enable fastest low-overhead access to the data. Most importantly, such a planetary,



federated data serving ecosystem for climate data that is globally accessible simplifies
rapid development of ML applications on top and avoids data copies. In fact, simple
access through a global index and compatible access protocols will foster
collaboration, reproducibility, and progress.

We envision a simple interface that can be accessed by users with very different levels
of sophistication (Fig. 3). EVE’s data layer has different access roles: scientists,
consultants and policymakers, and citizens and laypeople - each of which have
different requirements. Experts want access to all data fields and can deal with vast
unfiltered gridded variable data; consultants want interpreted access to the simulation
data; and citizens want analyses of interest in a digestible format such as maps of risk
of flooding or wildfires.

The raw data can be accessed through the Cartesian Data Interface as a sparse
multi-dimensional tensor. The dimensions include the spatial dimensions i, j, and k of
the grid, and additional ones to index the variable of interest, generating model and
model configuration. The tensor is sparse to also support observation data as well as
fill-in non-existing information. The latter could be offered using automated (e.g.,
ML-based) interpolation of non-existing elements and return an uncertainty for each
queried point. This results in a query interface similar to getPoint(i, j, k, t, e, var,
model, setup, …) that returns a point and its certainty. Similarly, region-queries return
sub-tensors or neighborhoods. It could be served through RESTful APIs like the
ECMWF’s polytope server or a faster low-level cluster API using Remote Direct
Memory Access (RDMA), for example. This could be invisible to users if EVE offers
language bindings. A discovery interface would allow to enumerate dimensions such
as all available simulation setups. Unifying this storage of climate information would
require agreement on the same grid, e.g., HEALPix.



Figure 3: Information flow in a potential EVE data layer design

Developing the data layer for EVE will be challenging but with exciting opportunities
for innovation, especially for the application of ML. For example, instead of
compressing the data, checkpoints at specific time intervals as proposed by SimFS
[girolamo19] could be used for resimulations (Figure 4) or ML-generated trajectories
that faithfully reproduce the distribution of simulations between checkpoints (Fig. 5).
Alternatively, innovative ML-based compression techniques could overfit model data
to reproduce a tensor of data from its coordinates [huang22]. Furthermore, users could
pre-register analyses for a large simulation run that will be executed on the fly, similar
to beam-lines in CERN [schaer21].

Figure 4: illustration of SimFS resimulation. We show 30 output steps in 15 minute intervals, each
consists of many more simulation time-steps (not shown). During the simulation, data is only written
at output steps divisible by 10, thus providing a 10x compression ratio. When, for example, step 14 is



required, the simulation would be re-started at step 10 and run for 4 output steps forward
[girolamo19].

Initial Ideas for Using Machine Learning Techniques
Three main avenues for using ML techniques in the context of EVE are possible: (1)
improving the simulation, (2) post-processing and storing the data, and (3)
interpreting the data.

Ideas for improving the simulation itself abound. One approach is to replace
parameterized parts of the simulation, such as radiation [chevallier00], with faster and
potentially more accurate ML-based models. Another, more extreme, idea is to rely
purely on data-driven forecasting and use ML-based weather models such as
Pangu-Weather or FourCastNet. Yet, those may diverge quickly from reality if they
are not constrained by physical laws, especially when used to extend into future
climate states. An intermediate approach would be to use a SimFS-style checkpointing
method running a simulation forward and storing checkpoints every k steps. Then, one
would train a “tethered” model to converge to each of those checkpoints like a
tethered boat or cable ferry. At the same time, the model could capture the statistics of
multiple trajectories between the checkpoints (Fig. 5). Of course, the tethering points
themselves should follow ensemble members from the overall distribution. The
benefits are twofold, the trained ML-tethering model generates trajectories 100–1000
times faster than a traditional climate simulation, whilst simultaneously offering a
100–1000x compression on data storage requirements.

Figure 5: Eight colored trajectories are tethered at four points at 10-output steps intervals. This way,
the overall simulation’s drift is controlled while representing the statistics. ML methods such as
generative AI could increase the number of steps between intervals to 100–1000.



A second avenue for ML use is post-processing to optimize data storage. One way to
compress data would be to explicitly model the uncertainty in the ensemble dimension
using simple statistics or advanced ML models [groenquist21]. Another opportunity
could be to use ML models to compress the fields in the tensor directly by overfitting
a model to reconstruct a block of the tensor data as exactly as possible. Earlier work
has demonstrated compression rates of 1000x and more using this technique
[dnn-comp].

The most important and probably biggest avenue for using ML techniques is
interpreting the data, i.e., extracting actionable information [bauer23]. At the highest
level, an interactive “interpretative agent” large language model would be able to
answer questions about climate scenarios in natural language, potentially supported by
output plots and data series. Fig. 3 shows this as Natural Language Interface, which
could build on other ML models that extract information in a hierarchical way at
lower levels. An exciting opportunity here is that ML not only helps achieve
interactivity but also massively scales the extraction of actionable information in
myriad user-defined, bespoke ways– exactly what is needed to realize EVE’s vision.
This area is largely unexplored but offers significant opportunities.

For each of those tasks, one could think about training foundation models that
represent the latent distribution of climate data. One could store the inherent
properties of climate data in an ML-derived latent space that could lead to faster
compression using fine-tuning. A second foundation model could be the knowledge
base for the interpretative agent language model.

Conclusions and Outlook
The Earth Virtualization Engines (EVEs) stand as a critical intersection between
computer, computational and climate sciences, necessitating collaboration among
these sectors, industry, and academia. The technical challenges EVE poses are
enormous - from creating high-resolution simulations to making Exabyte-level data
accessible for all. However, these hurdles represent remarkable opportunities for
innovation and cross-disciplinary collaboration. Together, we can make EVE a reality,
not just a vision.
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