
Communication Optimization for Medical Image

Reconstruction Algorithms

Torsten Hoefler1, Maraike Schellmann2, Sergei Gorlatch2, and Andrew
Lumsdaine1

1 Open Systems Lab, Indiana University, Bloomington IN 47405, USA,
{htor,lums}@cs.indiana.edu

2 Institute of Computer Science, University of Münster, Germany
{schellmann,gorlatch}@uni-muenster.de

Abstract. This paper presents experiences and results obtained in opti-
mizing the parallel communication performance of a production-quality
medical image reconstruction application. The fundamental communi-
cation operations in the application’s principal algorithm are collective
reductions. The overhead of these operations was reduced by transform-
ing the algorithm to overlap its computation and communication. Sev-
eral different approaches to communication progress were studied, both
user-directed and asynchronous. Experimental results comparing the new
approach to the previous implementation show overall application per-
formance improvements of up to 8%, when run on 32 nodes.

1 Introduction

Modern medical methods for diagnosis and treatment require very accurate,
high-resolution 3D images of the inside of a human body. In order to pro-
vide the required accuracy and resolution, reconstruction algorithms in medi-
cal imaging are becoming more complex and time-consuming. In this paper, we
study Positron Emission Tomography (PET) reconstruction, where one of the
most popular, but also most time-consuming algorithms—the list-mode OSEM
algorithm—requires several hours on a common PC in order to compute a 3D
reconstruction. With advanced algorithms that incorporate more physical as-
pects of the PET process, computation times are rising even further [1]. This
motivates the parallelization of the algorithm on multiprocessor machines [2].

Our current parallel implementation uses Message Passing Interface (MPI)
[3] collective operations and OpenMP. Collective operations allow the program-
mer to express high-level communication patterns in a portable way, such that
implementers of communication libraries provide machine-optimized algorithms
for those complex communications. Our earlier work showed that many parallel
algorithms can be implemented with exclusive use of collective communications
and that portability, readability, programmability, code maintenance and per-
formance are often improved in this case [4].

In this paper, we use non-blocking collective operations to reduce the com-
munication overhead of the parallel list-mode OSEM algorithm. Non-blocking

collective operations are a new class of collective operations that combines all
benefits of collective operations with the ability to overlap communication and
computation [5]. They also relax the tight bond between computation and com-
munication by performing communication tasks in the background. In our case
study, the scalability for the fixed problem size (strong scaling) is limited by
a collective data reduction operation in which the message size is independent
of the number of MPI processes (in our example 48 MiB). To reduce the com-
munication overhead, we transform our code to leverage non-blocking collective
operations offered by LibNBC [6], which provide—additionally to the overlap-
ping of communication with computation— high-level communication offload
using the InfiniBand network. We analyze the code transformations and provide
an analytical runtime model that identifies the overlap potential of our approach.

The rest of the paper is organized as follows: we start with an introduc-
tion to the list-mode OSEM algorithm in Section 1.1 and describe its current
parallelization in Section 1.2. In Section 2, we show the necessary changes to
our implementation that allow overlapping of communication and computation,
and in Section 3, we discuss the optimization of LibNBC to maximize overlap.
Conclusions are presented in Section 4.

1.1 List-Mode OSEM Algorithm

PET is a medical imaging technique that displays metabolic processes in a hu-
man or animal body. PET acquisition proceeds as follows: A slightly radioactive
substance which emits positrons when decaying is applied to the patient who
is then placed inside a scanner. The detectors of the scanner measure so-called
events: When the emitted positrons of the radioactive substance collide with an
electron residing in the surrounding tissue near the decaying spot (up to 3 mm
from the emission point), they are annihilated. During annihilation two gamma
rays emit from the annihilation spot in opposite directions and form a line, see
Fig. 1. These gamma rays are registered by the involved detectors; one such
registration is called event.

Fig. 1. Detectors register an event
in a PET-scanner with 6 detector
rings

f o r each (i t e r a t i o n k){
f o r each (s u b i t e r a t i o n l){
f o r (event i ∈ Sl){

compute Ai

compute cl+ = (Ai)
t 1

Aifk

l

}

fk

l+1 = fk

l cl}

fk+1

0 = fk

l+1}

Listing 1.1. Sequential list-mode
OSEM algorithm.

During one investigation, typically 107 to 5 · 108 events are registered, from
which a reconstruction algorithm computes a 3D image of the substance’s dis-
tribution in the body.

In this work, we focus on the very accurate, but also quite time-consuming
list-mode OSEM (Ordered Subset Expectation Maximization) reconstruction
algorithm [7] which computes the image f from the m events saved in a list.

The algorithm works block-iteratively: in order to speed up convergence, a
complete iteration over all events is divided into s subiterations (see Listing 1.1).
Each subiteration processes one block of events, the so-called subset. The starting
image vector is f0 = (1, ..., 1) ∈ R

N , where N is the number of voxels in the image
being reconstructed. For each subiteration l ∈ 0, ..., s−1, the events in subset
l are processed in order to compute a new, more precise reconstruction image
fl+1, which is used again for the next subiteration as follows:

fl+1 =
1

At
norm1

︸ ︷︷ ︸

:=a

flcl; cl =
∑

i∈Sl

(Ai)
t 1

Aifl

, (1)

where Sl are the indices of events in subset l, 1 = (1, ..., 1). For the i-th row Ai of
the so-called system-matrix A ∈ R

m×N , element aik denotes the length of inter-
section of the line between the two detectors of event i with voxel k. The so-called

normalization vector a =
1

At
norm1

is independent of the current subiteration and

can thus be precalculated. In the computation of fl+1 the multiplication of aflcl

is performed element by element.
After one iteration over all subsets, the reconstruction process can either be

stopped, or the result can be improved with further iterations over all subsets
(see pseudocode in Listing 1.1). Note that the optimal number of events per
subset ms = m/s only depends on the scanner geometry and is thus fixed (for
our scanner [8], it is ms = 106).

1.2 Algorithm Parallelization Concept

Two strategies to parallelize the list-mode OSEM algorithm exist: PSD (Pro-
jection Space Decomposition) and ISD (Image Space Decomposition). In [2] we
showed that PSD outperforms ISD in almost all cases and we therefore chose the
PSD strategy that distributes the events among the processes for our paralleliza-
tion: Since fl+1 depends on fl we parallelize the computations within one subset.
We decompose the input data, i.e., the events of one subset into P (=number of
nodes) blocks and process each block simultaneously. The calculations for one
subset includes four steps on every node j (∀ j = 1, . . . , P) (cf. Fig. 2):

1. read ms/P events

2. compute cl,j =
∑

i∈Sl,j
(Ai)

t 1

Aifl

. This includes the on-the-fly computation

of Ai for each event in Sl,j .
3. sum up cl,j ∈ R

N (
∑

j cl,j = cl) with MPI Allreduce

4. compute fl+1 = flcl

We implemented steps 1 and 3 (i.e., the reading of data and the actual communi-
cation of the parallel algorithm) using MPI File Read and blocking MPI Allreduce.
We start one process per node and use the SMP node in a cluster by additionally
parallelizing steps 2 and 4 using OpenMP.

Fig. 2. Parallel list-mode OSEM algorithm on four nodes with the blocking
MPI Allreduce using four OpenMP threads per node

2 Parallel Algorithm with Non-Blocking Collectives

In order to optimize the parallel algorithm, we reduce the overhead arising from
the allreduce step by overlapping its communication with computations that
are independent of the communicated data. We use LibNBC’s [6] non-blocking
version of MPI Allreduce called NBC Iallreduce, and the MPI Wait counterpart
NBC Wait.

We overlap the reading of events for subset l and the computation of the
corresponding sub-matrix Al (which is composed of rows i ∈ Sl) with the com-
munication of cl−1 of the preceding subset (see Fig. 3). Hence, the non-blocking
parallel algorithm on nodes j (∀ j = 1, . . . , P) reads as follows:

1. read ms/P events in the first subset

2. compute cl,j =
∑

i∈Sl,j
(Ai)

t 1

Aifl

. This includes the on-the-fly computation

of Ai for each event in Sl,j in the first subset. Beginning from the second
subset, rows Ai have already been computed in parallel with NBC Iallreduce

3. start NBC Iallreduce for cl,j (
∑

j cl,j = cl)
4. in every but the last subset, each node reads the ms/P events for subset

l + 1 and computes Ai for subset l + 1
5. perform NBC Wait to finish NBC Iallreduce

6. compute fl+1 = flcl

Note that in this approach, Al has to be kept in memory. If not enough memory
is available, one part Al can be computed as in the original version in step 2
and the other part in step 4. Also, since Ai is precomputed, the computation of

cl+ = (Ai)
t 1

Aifl

could cause CPU cache misses that influence the performance.

2.1 Analyzing the Overlap Potential

In order to identify the overlap potential of our approach, we develop an analyt-
ical runtime model for the overlappable computations. We denote the sequential
time to compute the ms rows of Al by t1Al

(ms) and the time to read each node’s

Fig. 3. Parallel list-mode OSEM algorithm on four nodes with the non-blocking
NBC Iallreduce using four OpenMP threads per node

ms/P events by tPread(ms/P). If we assume that tPread(ms/P) ≈ tPread(ms)/P ,
we obtain a computational overlap time per subset with one thread on each of
the P nodes of

tPCompOver = tPread(ms/P) + t1Al(ms)/P ≈ (tPread(ms) + t1Al(ms))/P (2)

We will verify our model (2) with experiments in Section 3.2.
On q cores per node, the ideal parallel efficiency with our OpenMP paral-

lelization would be β(q) = t1Ai
/(tqAi

·q) = 1. However, with an increasing number
of threads sharing the cache, cache misses increase considerably and thus our
OpenMP implementation scales worse than ideally on multi-core machines. For
example, on a quad-core processor, efficiency is β(4) = 0.5.

Note that on systems where file I/O and MPI communication share the same
network, the overlapping of reading of data and communication might be limited
due to the network’s bandwidth. Hence, in the worst case, with the network fully
loaded by MPI communication, tPCompOver = t1

Al(ms)/P .

3 Optimization of Non-Blocking Collectives

In this section, we explain the optimized implementation of non-blocking col-
lective operations for the needs of the parallel list-mode OSEM reconstruction
algorithm.

3.1 Implementation with LibNBC

We used the InfiniBand optimized version of LibNBC for this work. This ver-
sion uses an overlap-optimized InfiniBand transport layer which achieves bet-
ter computation/communication overlap than open source MPI implementa-
tions [9]. The algorithm that is used to all-reduce large messages in LibNBC
uses a pipelined communication scheme to maximize overlap and to use the net-
work bandwidth as efficiently as possible. On P processes, it divides the data
into P chunks. Every process receives a chunk from its left neighbor, computes
it and passes it on to the next neighbor in a ring-like fashion. This algorithm
finishes the reduction in 2 · P − 2 communication/computation cycles.

Fig. 4(a) shows a comparison of the “blocking performance”1 of LibNBC 0.9.3
with the “tuned” collective module of Open MPI 1.2.6rc2. The measurements
were done with NBCBench [10] on the odin cluster at Indiana University. Odin

consists of 128 dual core dual socket 2 GHz AMD Opteron 270 processors con-
nected with SDR InfiniBand, uses NFSv3 over Gigabit Ethernet as file system
and the Intel compiler suite version 9.1. LibNBC’s allreduce uses multiple com-
munication rounds (cf. [6]). This requires the user to ensure progress manually
by calling NBC Test or run a separate thread that manages the progression of
LibNBC (i.e., progress thread). Fig. 4(b) shows the communication overhead
with and without a progress thread under the assumption that the whole com-
munication latency can be overlapped with computation (i.e., the overhead is
a lower bound) and the progress thread runs on a spare CPU core (the over-
head with a progress thread is constantly 3µs, due to the fully asynchronous
processing, and thus at the very bottom of Fig. 4(b)).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 8 16 24 32 40 48 56 64

A
llr

e
d
u
c
e
 L

a
te

n
c
y
 (

m
s
)

Number of Nodes

Open MPI/tuned 1.2.6rc2
LibNBC/ofed 0.9.3

(a) Comparison of the Allreduce Perfor-
mance of LibNBC and Open MPI

 0

 10

 20

 30

 40

 50

 60

 70

 0 8 16 24 32 40 48 56 64

A
llr

e
d
u
c
e
 O

v
e
rh

e
a
d
 (

m
s
)

Number of Nodes

no progress thread
progress thread

(b) Comparison of the Allreduce Over-
heads of different LibNBC Options

Fig. 4. Allreduce Performance Results for a 48MiB Summation of Doubles

3.2 Benchmark Results

In our benchmarks, we study the reconstruction of data collected by the quadHI-

DAC small-animal PET scanner [8]. We used 107 events divided into 10 subsets
and performed one iteration over all events. The reconstruction image has the size
N = (150 × 150× 280) voxels. We ran a set of different benchmarks on the odin

system. We compared the non-threaded and threaded versions of LibNBC us-
ing the InfiniBand optimized transport. We progressed the non-threaded version
with 4 × P calls to NBC Test that are equally distributed over the overlapped
time. The threaded version of LibNBC is implemented by using InfiniBand’s
blocking semantics and the application did not call NBC Test at all. We bench-
marked all configurations of LibNBC and the original MPI implementation on
8, 16 and 32 nodes with 1, 2, 3 or 4 OpenMP threads per node three times and
report the average times across all runs and processes (the variance between the
runs was very low).

1
NBC Iallreduce immediately followed by NBC Wait

Computational Overlap The computational overlap time per subset tPCompOver

decreases—as expected from our model—linearly with increasing number of pro-
cesses P . The average time was 833.5 ms on 8, 469.9 ms on 16 and 241.8 ms on
32 nodes. With reading time tPread ranging from 55.4 ms on 8 to 11.2 ms on 32
nodes and computation time tPAl

ranging from 778.1 ms to 230.6 ms on 8 and 32
nodes, respectively, we are able to verify our model (2) with an error of about
6%.

Fig. 5(a) shows the application running time on 32 nodes with different num-
bers of OpenMP threads per node. We see that the non-threaded version of
LibNBC is able to improve the running time in every configuration. However,
the threaded version is only able to improve the performance if it has a spare core
available because of scheduler congestion on the fully loaded system. The perfor-
mance gain also decreases with the number of OpenMP threads. This is because
we studied a strong scaling problem and the overlappable computation time gets
shorter with more threads computing the static workload and is eventually not
enough to overlap the full communication. Another issue for smaller node-counts
is that our transformed implementation is, as described in Section 2.1, slightly
less cache-friendly which limits the application speedup at smaller scale.

 0

 5

 10

 15

 20

 25

T
im

e
 t
o
 S

o
lu

ti
o
n
 (

s
)

1 thread 2 threads 3 threads 4 threads

MPI_Allreduce()
NBC_Iallreduce()

NBC_Iallreduce() (thread)

(a) Runtime on 32 Nodes with Different
Number of OpenMP Threads

 0

 1

 2

 3

 4

 5

 6

 7

C
o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 (

s
)

8 nodes 16 nodes 32 nodes

MPI_Allreduce()
NBC_Iallreduce()

NBC_Iallreduce() (thread)

(b) Communication Overhead for Differ-
ent Node Counts and a single Thread

Fig. 5. Application Benchmark for different number of OpenMP threads and nodes

Fig. 5(b) shows the communication overhead for different node counts with
one thread per node2. Our implementation achieves significantly smaller com-
munication overhead for all configurations. However, the workload per node that
can be overlapped decreases, as described above, with the number of nodes, while
the communication time of the 48 MiB Allreduce remains nearly constant. Thus,
the time to overlap shrinks with the number of nodes and limits the performance
gain of the non-blocking collectives.

4 Conclusions

We applied non-blocking collective operations to the mixed MPI/OpenMP par-
allel implementation of the list-mode OSEM algorithm and analyzed the perfor-

2 the lower part of the bars denotes the Allreduce overhead

mance gain for a fixed problem size (strong scaling) on different setups of MPI
processes and OpenMP threads.

The conducted study demonstrates that the overlap optimization potential of
non-blocking collectives depends heavily on the time to overlap (amount of work
to do while communicating) which usually decreases while scaling to larger pro-
cess counts. However, even in the worst case (smallest workload) of our example,
running 128 threads on 32 nodes, LibNBC was able to reduce the communication
overhead from 40.31% to 37.3%. In the best case, with one thread on 8 nodes
(highest workload per process), the communication overhead could be efficiently
halved from 12.0% to 5.6%.

Acknowledgments

This work was partially supported by a grant from the Lilly Endowment, Na-
tional Science Foundation grant EIA-0202048 and a gift from the Silicon Valley
Community Foundation on behalf of the Cisco Collaborative Research Initiative.
This work was also partly funded by the Deutsche Forschungsgemeinschaft, SFB
656 MoBil (Project B2).

References

1. Kösters, T., Wübbeling, F., F.Natterer: Scatter correction in PET using the trans-
port equation. In: IEEE Nuclear Science Symposium Conference Record, IEEE
(October 2006) 3305–3309

2. Schellmann, M., Gorlatch, S.: Comparison of two decomposition strategies for
parallelizing the 3d list-mode OSEM algorithm. In: Proceedings Fully 3D Meeting
and HPIR Workshop. (2007) 37–40

3. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. Technical Report, University of Tennessee, Knoxville (1997)

4. Gorlatch, S.: Send-receive considered harmful: Myths and realities of message
passing. ACM Trans. Program. Lang. Syst. 26(1) (2004) 47–56

5. Brightwell, R., Riesen, R., Underwood, K.D.: Analyzing the impact of overlap,
offload, and independent progress for message passing interface applications. Int.
J. High Perform. Comput. Appl. 19(2) (2005) 103–117

6. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI. In: In proceedings of the 2007
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC07, IEEE Computer Society/ACM (11 2007)

7. Reader, A.J., Erlandsson, K., Flower, M.A., Ott, R.J.: Fast accurate iterative
reconstruction for low-statistics positron volume imaging. Phys. Med. Biol. 43(4)
(1998) 823–834

8. Schäfers, K.P., Reader, A.J., Kriens, M., Knoess, C., Schober, O., Schäfers, M.:
Performance evaluation of the 32-module quadHIDAC small-animal PET scanner.
Journal Nucl. Med. 46(6) (2005) 996–1004

9. Hoefler, T., Lumsdaine, A.: Optimizing non-blocking Collective Operations for
InfiniBand. In: Proceedings of the 22nd IEEE International Parallel & Distributed
Processing Symposium (IPDPS). (04 2008)

10. Hoefler, T., Schneider, T., Lumsdaine, A.: Accurately Measuring Collective Oper-
ations at Massive Scale. In: Proceedings of the 22nd IEEE International Parallel
& Distributed Processing Symposium (IPDPS). (04 2008)

