APPLICATION-CENTRIC BENCHMARKING AND MODELING FOR CO-DESIGN

Torsten Hoefler
Exascale Applications and Software Conference
Edinburgh, Scotland, UK
Why Modeling and Co-Design?

- Number of PEs grows exponentially
- Bottlenecks shift quickly
 - e.g., to data serialization
- Some aspects are over-engineered
 - At least for the “average application”
- How do we know what applications need?
 - At scale?
Performance Modeling

- Allows to:
 1. Predict performance at a different scale [1,2]
 2. Predict performance on a different machine [3,4]
 3. Predict performance for a different problem [5,6]
 5. Find performance bugs [to appear]
 6. Determine application requirements [this talk]

[1]: Zhai et al.: “Phantom: predicting performance of parallel applications on large-scale [...]”, PPoPP’10
[2]: Lee et al.: “Methods of inference and learning for performance modeling of parallel applications.”, PPoPP’07
[3]: Marin, Mellor-Crummey: “Cross-architecture performance predictions for scientific applications [...]”, SIGMETRICS’04
[4]: Yang et al.: “Cross-platform performance prediction of parallel applications using partial execution.”, SC’05
[5]: Hoefler et al.: “Performance modeling for systematic performance tuning”, SC’11
[6]: Kerbyson et al.: “Predictive performance and scalability modeling of a large-scale application.”, SC’01
[7]: Bauer et al.: “Performance Modeling and Comparative Analysis of the MILC Lattice QCD Application su3 rmd”, CCGrid’12
SIMPLEST EXAMPLE — MATRIX MULTIPLICATION

```c
for(int i=0; i<N; ++i)
    for(int j=0; j<N; ++j)
        for(int k=0; k<N; ++k)
            C[i+j*N] += A[i+k*N] * B[k+j*N];
```

- **Semi-Analytic Perf. Modeling [1]:**
 - Algorithmic (analytic) Parameters
 - $T(N) = tN^3$
 - $t=2.2\text{ns}$

 ![Graph showing model accuracy](image)

 <0.8% model error

[1]: Hoefler et al.: “Performance modeling for systematic performance tuning”, SC’11
Requirements Modeling

- Dual to performance modeling
 - What we get vs. what we need!
- Allows to model requirements of applications
 - E.g., FLOPs, Memory Bandwidth, ...
 - Rules of thumb: “1 Byte/Word per FLOP”
 - Better: “balance principles” [1]
- Burton’s interpretation of Little’s law
 - concurrency = latency x bandwidth

Model Requirements

- System features
 - Memory/Network Latency, Bandwidth, Flops, ...

- Requirements space of system X
 - Feature vector F defines limits
 - Each application run has a requirement vector R
 - In general R < F
 - Bottlenecks are easily identified

[1]: Hoefler et al.: “Performance modeling for systematic performance tuning”, SC’11
Parametric Requirements Model

- Requirements vectors are not enough
 - Back to our simple example: Matrix Multiplication!
 - $2N^3$ FLOP/s
 - Memory bandwidth?
 - LLC Misses:
 - $C(N) = aN^3 - bN^2$
 - $a=3.8e-4$
 - $b=2.7e-1$

“Algorithmic Parameters”

“Architectural Parameters”

[1]: Hoefler et al.: “Performance modeling for systematic performance tuning”, SC’11
HOW IS THE BALANCE?

- MM needs $< \frac{1}{2}$ memory bandwidth
- Small problems even less
A REAL (SIMPLE) APPLICATION

- MILC – MIMD Lattice Computation, su3_rmd
- Well understood and modeled [1]
 - Five phases: FL, LL, CG, GF, FF
- Phase detection can be automated

[1]: Bauer et al.: “Performance Modeling and Comparative Analysis of the MILC Lattice QCD Application su3 rmd”, CCGrid’12
MILC BALANCE?

Thanks to Greg Bauer
MILC Balance?

Floating Point Performance (GF)

Operational Intensity (F/B)

Cache-aware programming

10x10x10x10

6x6x6x6

GF

FL

CG

FF

Thanks to Greg Bauer
MILC BALANCE?

Floating Point Performance (GF)

Operational Intensity (F/B)

Thanks to Greg Bauer
Simple! What are the Pitfalls?

- Simple strategy for requirements modeling for co-design, isn’t it?
 - Can be used by system designers and architects

- Issues:
 - Underestimated requirement functions
 - Working on it, e.g., bug finding!
 - Overlooked requirement dimensions
 - Misguided optimization/-benchmarking!
 - E.g.: Serialization overheads, Routing issues

[1]: Hoefler et al.: “Performance modeling for systematic performance tuning”, SC’11
MILC: Full Performance Model

Data from POWER5
Missed Requirement I: Data Serialization

- Networks channels are serial!
- But you want to communicate this pattern:

```
  down  up  down  up  down  up
```

- Or a face- (Cartesian boundary-) exchange:

```
  down  up  down  up  down  up
```

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
Missed Requirement I: Data Serialization

Manual Packing

```c
sbuf = malloc(N/2*sizeof(int));
rbuf = malloc(N/2*sizeof(int));
for (i=1; i<N; i+=2) sbuf[i/2]=data[i];
MPI_Isend(sbuf, ...);
MPI_Irecv(rbuf, ...);
MPI_Waitall(...);
for (i=0; i<N; i+=2) data[i]=rbuf[i/2];
free(sbuf); free(rbuf);
```

Allocate extra send / recv Buffers

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12

Torsten Hoefler
Missed Requirement I: Data Serialization

Manual Packing

```c
sbuf = malloc(N/2*sizeof(int));
rbuf = malloc(N/2*sizeof(int));
for (i=1; i<N; i+=2) sbuf[i/2]=data[i];
MPI_Isend(sbuf, ...);
MPI_Irecv(rbuf, ...);
MPI_Waitall(...);
for (i=0; i<N; i+=2) data[i]=rbuf[i/2];
free(sbuf); free(rbuf);
```

Copy data to / from extra send / recv Buffers

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
Missed Requirement I: Data Serialization

Manual Packing

```c
sbuf = malloc(N/2*sizeof(int));
rbuf = malloc(N/2*sizeof(int));
for (i=1; i<N; i+=2) sbuf[i/2]=data[i];
MPI_Isend(sbuf, ...);
MPI_Irecv(rbuf, ...);
MPI_Waitall(...);
for (i=0; i<N; i+=2) data[i]=rbuf[i/2];
free(sbuf); free(rbuf);
```

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
Missed Requirement I: Data Serialization

Manual Packing

sbuf = malloc(N/2*sizeof(int));
rbuf = malloc(N/2*sizeof(int));
for (i=1; i<N; i+=2) sbuf[i/2]=data[i];
MPI_Isend(sbuf, ...);
MPI_Irecv(rbuf, ...);
MPI_Waitall(...);
for (i=0; i<N; i+=2) data[i]=rbuf[i/2];
free(sbuf);
free(rbuf);

MPI Datatypes

MPI_Datatype nt;
MPI_Type_vector(n/2, 1, 2, MPI_INT, &nt);
MPI_Type_commit(&nt);
MPI_Isend(&data[1], 1, nt, ...);
MPI_Irecv(&data[0], 1, nt, ...);
MPI_Waitall(...);
MPI_Type_free(&nt);

• No explicit copying
• Less code

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
SERIALIZATION ACCESS PATTERNS

Application Classes

- Atmospheric Science (WRF)
- Quantumchro-Modynamics (MILC_su3)
- Computational Fluidodynamics (NAS LU + MG)
- Molecular Dynamics (LAMMPS, MiniMD)
- Geophysical Science (SPECFEM3D)

Access Patterns

- Face Exchanges
- Unstructured Exchange
- Matrix Transposition

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
All packing methods take more than 80% of communication time.

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
SERIALIZATION BENCHMARK RESULTS

Data is contiguous

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
SERIALIZATION BENCHMARK RESULTS

Unstructured Exchange

[1]: Schneider et al.: “Micro-Applications for Communication Data Access Patterns and MPI Datatypes”, EuroMPI’12
Missed Requirement II: Global Bandwidth

- Observed bandwidth < peak bandwidth
- Example [1]:
 - IB full bisection bandwidth fat tree
 - Effective bandwidth: 69% of peak
 - Reason: static routing
- Conjecture:
 - Routing needs to be co-designed [2]
 - With applications and topologies (complex topic)

[1]: Hoefler et al.: “Multistage Switches are not Crossbars: Effects of Static Routing in High-Performance Networks”, Cluster’08
[2]: Prisacari et al.: “Bandwidth-optimal Alltoall Exchanges in Fat Tree Networks”, ICS’13
Co-design is becoming more important

Requirements modeling is a simple strategy!
 - Not trivial, dangers:
 - Underestimating requirements function
 - Overlooking requirements dimension

Tool support on its way
 - As automatic as possible
 - Collaboration with GRS, SPPEXA