
Scalable Communication Protocols

for Dynamic Sparse Data Exchange

Torsten Hoefler, Christian Siebert, Andrew Lumsdaine

PPoPP 2010, Bangalore, India

Torsten Hoefler, PPoPP 2010, Bangalore, India

The Sparse Data Exchange Problem

 Defines a generic communication problem

 Assume a set of P processes

 Each process communicates with a small set of other

processes (called neighbors)

 How do we define “sparse”?

 The maximum number of neighbors (k) is

 Dynamic vs. Static SDE

 Static: neighbors can be determined off-line

 e.g., sparse matrix vector product

 Dynamic: neighbors change during computation

 e.g., parallel BFS

2

Torsten Hoefler, PPoPP 2010, Bangalore, India

Dynamic Sparse Data Exchange (DSDE)

3

Torsten Hoefler, PPoPP 2010, Bangalore, India

Our Contribution

 Analyze well-known algorithms for DSDE:

 Personalized Exchange (MPI_Alltoall)

 Personalized Census (MPI_Reduce_scatter)

 Remote Summation (MPI_Accumulate)

 Focus on large-scale systems (large P)

 Metadata exchange easily dominates runtime!

 Propose a new, asymptotically optimal algorithm

 Uses nonblocking collective semantics (MPI_Ibarrier)

 Can take advantage of hardware support

 Introduces a new way of thinking about synchronization

4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Preliminaries

 Distributed Consensus

 All processes agree on a single value

 Lower bound: broadcast

 Personalized Census

 All processes agree on a different value for each process

 Each process sends a contribution for each other proc.

 Personalized Exchange

 All processes send different values to all other processes

5

Torsten Hoefler, PPoPP 2010, Bangalore, India

Dynamic Sparse Data Exchange (DSDE)

 Main Problem: metadata

 Determine who wants to send how much data to me

(I must post receive and reserve memory)

OR:

 Use MPI semantics:

 Unknown sender

ÃMPI_ANY_SOURCE

 Unknown message size

ÃMPI_PROBE

 Reduces problem to counting

the number of neighbors

 Allow faster implementation!

6

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PEX (Personalized Exchange)

7

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PEX (Personalized Exchange)

 Bases on Personalized Exchange ()

 Processes exchange

metadata (sizes) about

neighborhoods with

all-to-all

 Processes post

receives afterwards

 Most intuitive but least

performance and

scalability!

8

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PCX (Personalized Census)

9

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PCX (Personalized Census)

 Bases on Personalized Census ()

 Processes exchange

metadata (counts) about

neighborhoods with

reduce_scatter

 Receivers checks with

wildcard MPI_IPROBE

and receives messages

 Better than PEX but

non-deterministic!

10

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol RSX (Remote Summation)

11

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol RSX (Remote Summation)

 Bases on Personalized Census (MPI_Win_fence):

 Processes accumulate

number of neighbors

in receiver’s memory

 Receivers check with

wildcard MPI_IPROBE

and receives messages

 Faster than PEX/PCX,

non-deterministic and

requires (good) RMA!

12

Torsten Hoefler, PPoPP 2010, Bangalore, India

Nonblocking Collective Operations (NBC)

 It is as easy as it sounds: MPI_Ibarrier()

 Decouple initiation and synchronization

 Initiation does not synchronize

 Completion must synchronize (in case of barrier)

 Interesting semantic opportunities

 Start synchronization epoch and continue

 Possible to combine with other synchronization methods (p2p)

 NBC accepted for MPI-3

 Available as reference implementation (LibNBC)

Ã LibNBC optimized for InfiniBand

 Optimized on some architectures (BG/P, IB)

13

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol NBX (Nonblocking Consensus)

14

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol NBX (Nonblocking Consensus)

 Complexity - census (barrier):

 Combines metadata with actual transmission

 Point-to-point

synchronization

 Continue receiving

until barrier completes

 Processes start coll.

synch. (barrier) when

p2p phase ended

 barrier = distributed

marker!

 Better than PEX,

PCX, RSX!

15

Torsten Hoefler, PPoPP 2010, Bangalore, India

Performance of Synchronous Send

 Worst-case: 2*L

 Bad for small messages

 Vanishes for large messages

 Benchmark

 Slowdown for 1-byte messages

 Threshold = size when overhead is <1%

 Very good results for BG/P and Myrinet!

16

System L (synch) Slowdown Threshold

Intrepid (BG/P) 5.04 us 1.17 12 kiB

Jaguar (XT-4) 25.40 us 2.57 132 kiB

Big Red (Myrinet) 8.02 us 1.13 1.5 kiB

Myrinet 2000/MX

Torsten Hoefler, PPoPP 2010, Bangalore, India

LogP Comparison ïPCX vs. NBX

 k=number of neighbors, assuming L(synch) = 2*L

 NBX faster for few neighbors and large scale!

17

BlueGene/P Cray XT-4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Microbenchmark

 Each process sends to 6 random neighbors

 Significant improvements at large scale!

18

BlueGene/P Cray XT-4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Parallel Breadth First Search

 On a clustered Erdős-Rényi graph, weak scaling

 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

19

BlueGene/P –with HW barrier! Myrinet 2000 with LibNBC

Torsten Hoefler, PPoPP 2010, Bangalore, India

Are our assumptions for k realistic?

 Check with two applications:

 Parallel N-body (Barnes&Hut) (512 processes)

 Number of neighbors in rebalancing ORB step:

20

Torsten Hoefler, PPoPP 2010, Bangalore, India

Are our assumptions for k realistic?

 Sparse linear algebra (CFD, FEM, …)

 Used simple block-distribution of UFL matrices

 Graph partitioning techniques would reduce k further!

21

Torsten Hoefler, PPoPP 2010, Bangalore, India

Conclusions and Future Work

 SDSE problem is important

 Metadata exchange dominates at large scale!

 We discussed four algorithms and their complexity

 NBX is fastest for large machines and small k

 RCX is probably most “convenient”

 Hardware support for NBC crucial at large scale!

 Synchronous sends can be performance critical!

 We plan to work on an self-tuning adaptive library

 Automatic algorithm selection

 Look into large-scale applications

22

Torsten Hoefler, PPoPP 2010, Bangalore, India

Thank you for your attention!

23

Questions?

Torsten Hoefler, PPoPP 2010, Bangalore, India

Orthogonal Recursive Bisection

24

Torsten Hoefler, PPoPP 2010, Bangalore, India

Influence of the Number of Neighbors

 “sparsity”-factor is important for algorithm choice!

25

Torsten Hoefler, PPoPP 2010, Bangalore, India

Quick Terms and Conventions

 We use standard LogGP terms

 L –maximum latency between any two processes

 o –CPU send/recv overhead

 g –time to wait between network injections

 G –time to transmit a single byte

 P –number of processes in the parallel job

 One single byte messages from A to B:

 costs o on A and arrives after 2o+L on B

 We assume that o>g for simplicity

 All parallel processes start at t=0

26

