
A NEW APPROACH TO MPI COLLECTIVE
COMMUNICATION IMPLEMENTATIONS

Torsten Hoefler,1,4 Jeffrey M. Squyres,2 Graham Fagg,3 George Bosilca,3

Wolfgang Rehm,4 and Andrew Lumsdaine1

1Indiana University, Open Systems Lab, Bloomington, IN 47404 USA
{htor,lums}@cs.indiana.edu
2Cisco Systems, San Jose, CA 95134 USA
jsquyres@cisco.com
3University of Tennessee, Dept. of Computer Science, Knoxville, TN 37996 USA
{fagg,bosilca}@cs.utk.edu
4Technical University of Chemnitz, Dept. of Computer Science, Chemnitz 09107 Germany
{htor,rehm}@cs.tu-chemnitz.de

Abstract
Recent research into the optimization of collective MPI operations has resulted

in a wide variety of algorithms and corresponding implementations, each typi-
cally only applicable in a relatively narrow scope: on a specific architecture, on
a specific network, with a specific number of processes, with a specific data size
and/or data-type – or any combination of these (or other) factors. This situation
presents an enormous challenge to portable MPI implementations which are ex-
pected to provide optimized collective operation performance on all platforms.
Many portable implementations have attempted to provide a token number of
algorithms that are intended to realize good performance on most systems. How-
ever, many platform configurations are still left without well-tuned collective
operations. This paper presents a proposal for a framework that will allow a
wide variety of collective algorithm implementations and a flexible, multi-tiered
selection process for choosing which implementation to use when an application
invokes an MPI collective function.

Keywords: Collective Operation, Message Passing (MPI), Automatic Selection, Framework, Open MPI

1. Introduction
The performance of collective operations is crucial for the runtime and scal-
ability of many applications [Rabenseifner, R., 1999]. Decades of collective
communication research have yielded a wide variety of algorithms tuned for
specific architectures, networks, number of participants, and message sizes.
The choice of optimal algorithm to use therefore not only depends on the sys-

46 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

tem that the application is running on, but also the parameters of the collective
function that was invoked (e.g., number of peers, data size, data type). The
sheer number of algorithms available becomes a fundamental problem when
optimizing a portable Message Passing Interface (MPI) library – how should it
choose which algorithm to use at runtime?

Our work aims at providing the capability to automatically select the optimal
collective implementation for each system and MPI argument set. Such an
approach can potentially result in a large performance gain for each collective
function invocation [Pjesivac-Grbovic, J. et. al., 2005; Hoefler, T. et. al.,
2005; Mitra et al., 1995].

Predictive performance models of point to point communications (such as
LogP [Culler, D. et. al., 1993] or LogGP [Alexandrov, A. et. al., 1995]) can
return a reasonable approximation of collective communication performance
upon which we can base the selection of the collective implementation. Hence,
invoking modeling functions at runtime to estimate the algorithm performance
is one approach to determine which should be used.

However, such modeling techniques are not necessarily relevant for hardware-
assisted collective operations (or other implementations not based on point-to-
point operations). Indeed, hardware-based collectives typically outperform
even the best software-based algorithms; it is a reasonable optimization to di-
rectly invoke available hardware-based collectives and bypass any modeling
evaluation.

Based on these considerations and the ideas proposed in [Squyres, J. M. et.
al., 2004], we present the design of a next-generation collective framework with
the following goals:
1. Enable fine-grained algorithm selection such that a selection atom is an in-
dividual function.
2. Perform efficient run-time decisions based on the MPI function arguments.
3. Enable a “fast path” for trivial decisions (e.g., hardware implementations).
4. Enforce a modular approach, preserving the simplicity of adding (and re-
moving) algorithms – especially by third parties.
5. Enable all algorithms – even those added by third parties – to be automatically
used by user applications, testing, and benchmarking tools.

The rest of this paper is divided as follows: Section 2 discusses related work.
Section 3 describes the architecture of our approach. The logic for selecting
which algorithm to use is described in Section 4, followed by an analysis of
its applicability to a set of real world applications. The last section draws
conclusions and points out further work.

2. Related Work
Many research groups inherently limit the selection problem by implementing
only a subset of the standardized collective operations to fit their particular needs

MPI Collective Operation Implementation 47

and assume that those algorithms are globally applicable [Huse, 1999; Chan,
E.W. et. al., 2004]. Some MPI implementations (as MPICH [Gropp, W. et.
al., 1996], MPICH2 [MPICH2 Developers, 2006], LAM/MPI [Burns, 1994])
do their selection of the collective implementation to use either statically at
compile time or based on a limited number of arguments at runtime. The
selection decision is typically based on the communicator and/or data size and
does not take into account network characteristics (such as bandwidth and/or
latency) and ignores the physical network topology.

FT-MPI [Fagg, G.E. et. al., 2004] and current generations of Open MPI
[Gabriel and et al., 2004] base their decisions on an augmented set of parameters
which include the network characteristics. However, in order to make the right
selection, a decision table must be built prior to the execution by a benchmarking
tool. This input file has to be generated by an external tool after running
intensive set of benchmarks. The cost of building the decision table on the
full set of possible combination of arguments can be prohibitive (especially for
large clusters); a subset of all available nodes and/or algorithms may need to be
used, leading to the selection of a sub-optimal algorithm in some cases. Even
though this approach can provide an increase in performance, it is difficult to
add a new algorithm since both the decision function and the benchmark tool
have to be modified in order to include the new algorithm.

Similar modular approaches were described by Vadhiyar et. al. [Vadhiyar,
S.S. et. al., 2000] and Hartmann et. al. [Hartmann, O. et. al., 2006]. Both
propose methods and show the potential benefits of selecting between collec-
tive algorithms during runtime. However, these approaches are limited to a
small set of implemented algorithms and not easily extensible by third party
implementers.

3. Framework Architecture
We propose a hierarchical framework architecture composed of collective com-
ponents, collective modules and collective functions. A collective component
is the software entity which is provided by the module implementer and it
generates communicator specific modules on request (called query in the fol-
lowing). Each component is loaded, queried and unloaded by the framework.
A collective module is a software instance of a collective operation bound to a
specific communicator. A collective component may return an arbitrary num-
ber of collective modules during the query. A collective module may have one
or more (opaque) collective functions to perform the collective operation avail-
able. Additionally, each module defines an evaluation function which returns
a collective function pointer and an estimated time for each MPI argument set.

We divide the architecture into three main parts. The software architecture
defines the nesting of software entities. The usage and interaction of the soft-
ware entities during the program run is defined in the runtime architecture. The

48 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

decision architecture, which can be omitted with the “fast path”, defines the
decision logic used during function invocation and possible optimizations.

Software Architecture
The software architecture is explained by example in Fig. 1. This example
shows only a subset of all available collectives. However, a basic implemen-
tation of all collectives is provided with the framework, therefore at least one
collective function is available at any time. The example shows two avail-
able collective components, called “Component A” and “Component B”. Both
components are loaded by the framework during start-up and maintained on

Broadcast Module
*broadcast_fn_1
*broadcast_fn_2
*broadcast_eval_fn

Barrier Module
*barrier_fn
*barrier_eval_fn

Alltoall Module
*alltoall_fn_1
*alltoall_fn_2
*alltoall_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

...

Component A

Gather Module
*gather_fn_1
*gather_fn_2
*gather_eval_fn

...

Component B

Figure 1. Software Architecture

a list of active components. The initialization of the framework during start-
up (MPI INIT), where all available components are loaded and initialized, is
shown in Fig. 2. The user can select specific components via framework pa-

did
the user force

anything?

list
return component

component if it
wants to run

open no

unload it
close it and

yes

no

components
load all available load selected

components

Figure 2. Actions during MPI INIT

rameters. Each loaded component may disable itself during start-up if not all
requirements (e.g., special hardware) are met. Fig. 1 shows that implementa-
tions for MPI BCAST, MPI BARRIER, MPI GATHER, and MPI ALLTOALL

MPI Collective Operation Implementation 49

are available to the framework. All available components are queried with each
communicator during its construction, including the default communicators
MPI COMM WORLD and MPI COMM SELF. This procedure is shown in
Fig. 3. Each component returns an array of available modules to the frame-

to the avail_<op> array
add returned modules

are

left?

yes any components

no

query component
with comm

left?
no

yes

at the communicator
put the decision function

for each collective operation

is there
only one module

at the communicator
put it as direct callable

construct function list
unify module array

Figure 3. Actions during Communicator Construction

work which adds the modules to a list of runnable modules (avail_<op>) on
each communicator. A unification, typically represented by a global opera-
tion, of this list ensures that all selectable modules are available on all nodes
of this communicator (some of them may not have the right hardware require-
ments). Finally, the runtime architecture of this communicator is initialized by
the framework. This architecture is described in detail in the next section.

Runtime Architecture
Each instantiated module offers an evaluation function to the framework. This
evaluation function returns the function pointer to the fastest internal implemen-
tation. This means that more than one implementation may exist inside a single
module. Our example in Fig. 1 depicts a single MPI BCAST implementation
and two opaque MPI BCAST functions implemented in “Component A”. This
shows that the module is allowed to implement opaque functions and to select
between them independently of the framework. This offers the possibility to
implement a more sophisticated selection inside a single module if the module
implementer is able to simplify the decision. This reduces the number of mod-
ules, the memory footprint, and the decision costs which are discussed later.
However, the component is free to return any number of collective modules
for a single collective operation. So does “Component B” and offers two dis-
tinct MPI BCAST implementations which can be turned into two MPI BCAST
modules.

Fig. 4 shows the runtime architecture for two communicators, “Communi-

50 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

Legend:

is initialized on
is implemented by

Communicator 1

...

Communicator 2
Barrier Module

Broadcast Decision

Broadcast Module

Broadcast Module

Broadcast Decision
Broadcast Module

Broadcast Module

...

Barrier Module

Barrier Module
Implementation

....

Implementation
Broadcast Module

Component A

Broadcast Module
Implementation

Broadcast Module
Implementation

....

Component B

Figure 4. Runtime Architecture

cator 1” and “Communicator 2”. All modules returned by queried components
are attached to communicator which was used to query the component. The
framework maintains a communicator-specific list of available modules per col-
lective operation. Each module implements a single collective operation which
meets the fine grained selection criterion in goal 1. The dashed arrows in Fig. 4
point to the collective implementation in the “Component A” or “Component
B” component which acts as a code-base for the collective module. This shows
that each component can create multiple modules which can be attached to dif-
ferent communicators. Each communicator can manage an arbitrary number
of collective modules to perform a collective operation. The module to process
a specific collective call is selected depending on the actual MPI arguments
during invocation. However, the collective function is called directly if there is
only a single module available, or a single module is enforced by the user (cf.
Fig. 3). This direct invocation is called “fast path” as it does not introduce any
additional overhead.

4. Selection Logic
The example in Fig. 4 shows that there is only a single MPI BARRIER and
MPI GATHER module available for “Communicator 1”. As a result, both op-
erations are called directly using the “fast path” without any selection overhead.
However, there are two MPI BCAST implementations available for this com-
municator which means that there has to be some intermediate layer to select
one of those depending on the arguments. This layer is called selection logic
and is implemented in a set of MPI operation specific decision functions. The
“fast path” enforces that the function arguments of these decision functions are

MPI Collective Operation Implementation 51

identical to the actual arguments of the collective functions because the upper
layer is not aware of the selection logic. This means that the call to the decision
function is completely transparent to the upper layer. The selection logic with
the MPI BCAST decision function is shown in Fig. 4 and the actions performed
during the invocation of a collective operation are shown in Fig. 5. The first

MPI
arguments in

cache?
but winner

put fastest to cache

call fastest

cleanup all modules

estimated running time
query module for

yes

no

untested
module left?

no

yes

Figure 5. Actions during a collective function call

action is to check if these arguments have already been issued and if the decision
result is in the cache. If this is true, the whole decision functionality and the
related overhead can be skipped and the fastest function is called directly via
its cached function pointer. However, if the arguments have not been called be-
fore (or have been evicted from the cache to free memory), the selection needs
to be performed for the particular argument set. This means that all runnable
modules (modules in the avail_<op> array at the communicator) are queried
for their estimated running time. The module that returns the lowest running
time is added to the cache for future calls and invoked to perform the collective
operation.

The decision function performs the MPI argument specific selection of col-
lective modules based on querying the evaluation function of each module. The
module’s evaluation function returns an estimated time in microseconds and a
function pointer to its fastest function. Absolute time was chosen as an evalu-
ation criterion because it denotes the least common denominator for our case.
This enables the component author to predict or benchmark the running time
of all possible collective implementations no matter if it is performed hard-
ware supported or simply on top of point-to-point messages. It is obvious that
querying all available modules each time a collective call occurs is extremely
costly and can have a catastrophic impact at the application performance. The
decision function implements an MPI-argument specific cache which stores the

52 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

collective function pointer to speed up the critical path to reduce the number
of the costly queries. The fastest collective function pointer is added to the
cache and called after each evaluation. This introduces two questions: How
much overhead does the evaluation add to the collective latency and how cache
friendly will an application really be. The overhead of the evaluation and the
cache friendliness of three MPI applications are analyzed in Section 5

For example, a direct call occurs to Component A’s Barrier Module if the ap-
plication calls MPI Barrier(Communicator 1). This shows the “fast path”
which is enabled for the barrier call on Communicator 1. The next MPI call of
the application is MPI Bcast(sbuf, 1, MPI INT, 0, Communicator 1)

which uses the decision function. This arguments are not yet in the cache (i.e.,
have not been called before). The decision function queries both Broadcast
Modules of Component A and Component B for their fastest function (-pointer)
and its estimated running time. The function pointer of the fastest function is
inserted into the cache and it is called to perform the collective. If another
call to MPI Bcast(sbuf, 1, MPI INT, 0, Communicator 1) occurs, we
already know the fastest function (in the cache) and call it without evaluat-
ing all modules. However, if a call to MPI Bcast(sbuf, 2, MPI INT, 0,

Communicator 1) occurs, we have to reevaluate all modules again.

Decision Overhead
The argument cache can be implemented as a collision-free hash-table which
has an ideal complexity of O(1). The costly part is if a cache miss occurs (i.e.,
the called argument set is not in the cache, has not been called before). This
results in a serial query to the evaluation functions of all available modules.
There are many different ways to implement this evaluation function, we will
discuss the costs of two approaches on detail.

Benchmark Based Implementation. The evaluation function could return a
time that is based on an actual benchmark which has previously been run on the
system. We assume that the benchmark data has a small memory demand and
was loaded during startup. The cost will be approximately a indirect function
call and several cache misses. The indirect function call costs has been evaluated
in [Barrett, B. et. al., 2005] and turns out to be between 2ns and 10ns. We
implemented a simple x86 RDTSC based micro benchmark to measure cache
miss penalty which was between 0.5µs and 1.5µs on all evaluated architectures
(Opteron 2.0 GHz, Xeon 2.4 GHz, Athlon MP 1.4 GHz). This shows that each
evaluation function call may take some microseconds for a benchmark based
implementation.

Model Based Implementation. The time to return could also be calculated
using a model function like LogP or LogGP. We can assume that the small set
of necessary model parameters are already in the cache. Our micro-benchmark

MPI Collective Operation Implementation 53

measures access times between 10ns and 50ns for cached items and a calcu-
lation time of 200ns up to 500ns for the evaluation of a 4th grade polynomial
(model function). The overall evaluation should take less than 1µs for this case.

This shows that well implemented evaluation functions may need up to 5µs
to return the result. This should not hurt the application performance to much,
because the expected benefits are higher (previous studies show differences
in the millisecond scale for several collective implementations). However,
the cache may even speed thing up for repeated arguments. The next section
analyzes the cache-friendliness of a small set of applications.

Analyzing the Cache Friendliness

The usage of the cache (i.e., hit and miss rates) are not easily predictable because
they depend entirely on the application. We measured two different applica-
tions to measure their cache friendliness. The first is ABINIT (http://www.-
abinit.org) which offers two distinct parallelization schemes, band par-
allelization and CG+FFT parallelization. The second application is CPMD
(http://www.cpmd.org/) which is used in its standard configuration. Both
applications have been run with a real-world input file and a special library
which logs collective calls using the MPI profiling interface. ABINIT issues
295 collective operation calls with 16 different parameter sets (hit rate: 94.6%)
for band parallelization. The CG+FFT parallelization uses 53887 collective
operations with 75 different argument sets (hit rate: 99.9%). CPMD issues
15428 collective operations with 85 different argument sets (hit rate: 99.4%).
Both applications utilize the cache very efficiently.

5. Conclusion and Future Work
We have shown that our new design to select collective implementations during
runtime is able to support all kinds of possible collective function implemen-
tations. We have also shown that the idea of the MPI argument cache to store
the optimal selection will work well with at least some real world application.
It is possible to disable the whole selection logic and call every operation via
the “fast path”. The selection logic enables scientists to add new collective
functionality easily and to use it also in productive environments. Next steps
will include the implementation and testing of the proposed approach and the
analysis of more real applications for their argument cache friendliness.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grant EIA-0202048.

54 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

References
Alexandrov, A. et. al. (1995). LogGP: Incorporating Long Messages into the LogP Model.

Journal of Parallel and Distributed Computing, 44(1):71–79.
Barrett, B. et. al. (2005). Analysis of the Component Architecture Overhead in Open MPI. In

Proc., 12th European PVM/MPI Users’ Group Meeting.
Burns, G. et. al. (1994). LAM: An Open Cluster Environment for MPI. In Proc. of Supercom-

puting Symposium, pages 379–386.
Chan, E.W. et. al. (2004). On optimizing of collective communication. In Proc. of IEEE Inter-

national Conference on Cluster Computing, pages 145–155.
Culler, D. et. al. (1993). LogP: towards a realistic model of parallel computation. In Principles

Practice of Parallel Programming, pages 1–12.
Fagg, G.E. et. al. (2004). Extending the MPI specification for process fault tolerance on high per-

formance computing systems. In Proceedings of the International Supercomputer Conference
(ICS) 2004. Primeur.

Gabriel, Edgar and et al. (2004). Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary.

Gropp, W. et. al. (1996). A high-performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–828.

Hartmann, O. et. al. (2006). A decomposition approach for optimizing the performance of MPI
libraries. In Proc., 20th International Parallel and Distributed Processing Symposium IPDPS.

Hoefler, T. et. al. (2005). A practical Approach to the Rating of Barrier Algorithms using the LogP
Model and Open MPI. In Proc. of the 2005 International Conference on Parallel Processing
Workshops (ICPP’05), pages 562–569.

Huse, Lars Paul (1999). Collective communication on dedicated clusters of workstations. In
Proc. of the 6th European PVM/MPI Users’ Group Meeting on Recent Advances in PVM and
MPI, pages 469–476.

Mitra, Prasenjit, Payne, David, Shuler, Lance, van de Geijn, Robert, and Watts, Jerrell (1995).
Fast collective communication libraries, please. Technical report, Austin, TX, USA.

MPICH2 Developers (2006). http://www.mcs.anl.gov/mpi/mpich2/.
Pjesivac-Grbovic, J. et. al. (2005). Performance Analysis of MPI Collective Operations. In Proc.

of the 19th International Parallel and Distributed Processing Symposium.
Rabenseifner, R. (1999). Automatic MPI counter profiling of all users: First results on a CRAY

T3E 900-512. In Proc. of the Message Passing Interface Developer’s and User’s Conference,
pages 77–85.

Squyres, J. M. et. al. (2004). The component architecture of Open MPI: Enabling third-party
collective algorithms. In Proc. 18th ACM International Conference on Supercomputing, Work-
shop on Component Models and Systems for Grid Applications, pages 167–185.

Vadhiyar, S.S. et. al. (2000). Automatically tuned collective communications. In Proc. of the
ACM/IEEE conference on Supercomputing (CDROM), page 3.

