The Graph Topology Interface

- The MPI Graph Topology in MPI-1
 - specify communication neighborhoods/topologies
 - specifies **full** graph at each process
 - process 5 knows neighbors of process 0
 - \(O(P^2) \) memory per process – \(O(P^3) \) total
 - → MPI-1 interface is non-scalable!
 - → it’s rarely used

- Why should **you** use topologies?
 - enabling optimized process mapping
 - arrange neighborhood relations in a structured manner
 - give hints to the MPI library (where are messages sent to?)
Scalable Topologies in MPI-2.2

- MPI_Dist_graph_create()
 - each process can specify any edge in the graph
 - very helpful for ParMETIS partitions
- MPI_Dist_graph_create_adjacent()
 - each process specifies incoming and outgoing edges
 - each edge is specified twice (at src and tgt)
- The interface offers weights
 - MPI_UNWEIGHTED can be specified
 - semantics of weights can be defined by info object
- Neighbor queries are local only
 - requires communication for remote query (needed?)
Topological Collective Operations

- Topological Collectives
 - MPI_Neighbor_reduce(), MPI_Neighbor_alltoall(), MPI_Neighbor_gather()
 - Hoefler, Traeff: “Sparse Collective Operations for MPI”
 - We actively seek user-feedback! Talk to us!

- Streaming Collectives
 - react to data as it comes in
 - not decided yet, is there a need for this?

- Persistent Collectives
 - persistent P2P does not seem to be used much
 - would you like persistent collectives?
Nonblocking Collective Operations

- Nonblocking Collectives are accepted for MPI-3
 - `MPI_Ibcast(&buf, 1, MPI_INT, 0, comm, &req)`
 - `/* compute */`
 - `MPI_Wait(&req, MPI_STATUS_IGNORE);`
- Concrete plans by MPI implementers
- Reference/preview implementation: LibNBC

- Three obvious use-cases:
 - overlapping communication and computation
 - relaxing synchronizations (load balance, OS noise)
 - new synchronization semantics (collective protocols)
MPICH2

Why’s did they invite this guy?

- MPICH2 v1.2.1 fully supports MPI-2.2
 - scalable topology is implemented
 - creation as low as $O(\log P)$

- Support for nonblocking collectives is planned
 - In MPICH version 3.0.x
 - works with LibNBC today (not optimized though)

- We’re seeking feedback for the MPI Forum
 - talk to your favorite MPI implementer
 - or me 😊