
MODESTO: Data-centric Analytic Optimization of Complex
Stencil Programs on Heterogeneous Architectures

Tobias Gysi
Dep. of Computer Science

ETH Zurich
tobias.gysi@inf.ethz.ch

Tobias Grosser
Dep. of Computer Science

ETH Zurich
tobias.grosser@inf.ethz.ch

Torsten Hoefler
Dep. of Computer Science

ETH Zurich
htor@inf.ethz.ch

ABSTRACT
Code transformations, such as loop tiling and loop fusion, are of
key importance for the efficient implementation of stencil compu-
tations. However, their direct application to a large code base is
costly and severely impacts program maintainability. While re-
cently introduced domain-specific languages facilitate the appli-
cation of such transformations, they typically still require manual
tuning or auto-tuning techniques to select the transformations that
yield optimal performance. In this paper, we introduce MODESTO,
a model-driven stencil optimization framework, that for a stencil
program suggests program transformations optimized for a given
target architecture. Initially, we review and categorize data lo-
cality transformations for stencil programs and introduce a sten-
cil algebra that allows the expression and enumeration of different
stencil program implementation variants. Combining this algebra
with a compile-time performance model, we show how to auto-
matically tune stencil programs. We use our framework to model
the STELLA library and optimize kernels used by the COSMO
atmospheric model on multi-core and hybrid CPU-GPU architec-
tures. Compared to naive and expert-tuned variants, the automat-
ically tuned kernels attain a 2.0–3.1x and a 1.0–1.8x speedup re-
spectively.

Categories and Subject Descriptors
D.3.4 [Processors]: Optimization

Keywords
stencil; tiling; fusion; performance model; heterogeneous systems

1. INTRODUCTION
Stencil computations on regular domains are one of the most

important algorithmic motifs in embedded, high-performance, and
scientific computing. Applications range from climate modeling [4],
seismic imaging [8], fluid dynamics, heat diffusion and electromag-
netic simulations [14] through image processing [11] to machine
learning. Given their importance, numerous optimization strate-
gies [1, 5, 10] and domain-specific languages [2, 11, 15] exist. Yet,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3559-1/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2751205.2751223.

most of these schemes consider the optimization of a single sten-
cil in isolation. Many applications, however, require nested sten-
cils [18] that are applied in succession. The data dependencies of
these nestings can form complex directed acyclic stencil graphs
where multiple stencils need to be optimized in tandem to achieve
highest performance.

Stencils programs perform element-wise computations on a fixed
neighborhood called the stencil. Such stencils often have low arith-
metic intensity because they have a fixed number of operations per
loaded value. The biggest challenge is to map stencil programs
to modern architectures with a growing gap between memory and
compute bandwidth. Such architectures require data-centric opti-
mizations that arrange data accesses to efficiently use the available
memory bandwidth. Complex stencil graphs can be optimized us-
ing various techniques such as loop fusion, tiling, and various com-
munication strategies on subgraphs. We model all possible combi-
nations of optimizations for a particular stencil program (graph) as
an application algebra and apply mathematical optimization tech-
niques to find the best combination specific to an abstract hierar-
chical machine model.

Since typical stencil programs contain hundreds of stencils ar-
ranged in paths with dozens of stages and several input arrays,
manual tuning of all options is infeasible. In fact, the number of
stencil program variants is usually exponential in the number of
stencils. In addition, the optimal stencil program variant is spe-
cific to each architecture. We show how to fully automate the opti-
mization and implement it in our open-source1 tool MODESTO, a
MOdel DrivEn STencil Optimization framework.

We demonstrate the efficacy of our method using the real-world
application COSMO [4], a numerical weather prediction and re-
gional climate model used by more than 10 national weather ser-
vices and many other institutions. The dynamical core of COSMO,
a central part of its implementation, applies more than 150 stencils,
each operating on 13 arrays on average. This most performance-
critical code has been rewritten using the STELLA library and was
carefully tuned by experts for optimal performance. MODESTO-
optimized stencil graphs match or improve upon the expert-tuned
code by a factor of 1.0-1.8x. This demonstrates how our technique
enables next generation stencil libraries that completely abstract
optimizations from the library interface. Hence, we are able to
improve usability as well as performance portability compared to
state-of-the-art stencil libraries such as STELLA [6] or Halide [11].
In summary, we make the following contributions:

• We introduce a set of data-centric code transformations,
an algebraic formulation of the transformation space, and
a compile-time performance model that facilitate the auto-
matic optimization of complex stencil programs.

1
http://spcl.inf.ethz.ch/Research/Parallel_Programming/MODESTO/

1

http://spcl.inf.ethz.ch/Research/Parallel_Programming/MODESTO/

• We evaluate our approach by modeling the optimization of
stencil codes written using the STELLA library and success-
fully tune kernels of a real-world application.

• We formulate the automatic tuning of stencil programs as
a mathematical optimization problem and solve it using dy-
namic programming techniques.

2. STENCIL ALGEBRA
Although the stencil motif appears in a wide range of codes from

various application domains, common patterns can be identified.
Using them, we introduce a stencil algebra that formalizes stencil
computations and facilitates their analysis and optimization.

2.1 Definition of a Stencil Program
The following core elements describe a stencil program:

A field F defines a dense, multi-dimensional and commonly hy-
perrectangular set of data values, which can be read and modified.

A stencil S is a computation that derives a value located in an
output field from a set of input field values located within bounded
distance to the output value. It is described by the triple (ops, out,
in). The first element, ops, specifies the (possibly approximated)
computational cost of executing this stencil. The second element,
out, is the output field of the stencil. The third element, in, is a set
that defines the input elements of the stencil. The elements of the
input set are so-called “named vectors” that are named according to
the field the input is read from and the vector itself describes the lo-
cation of the input element as a relative offset to the position of the
element the stencil computes. The set of input elements in is not al-
lowed to contain elements of the output field. We define an example
stencil s that computes the value F0(i, j) from the inputs F1(i, j),
F1(i, j+1) and F2(i, j) with 5 computational operations using the
following notation: s := (5, F0, {F1(0, 0), F1(0, 1), F2(0, 0)})

A stencil program P = T ∪ O consists of a set of temporary
stencils T as well as a set of output stencils O, where the results
computed by the output stencils form the result of the stencil pro-
gram, but the results of the temporary stencils are not made avail-
able outside of the stencil program. All stencils and fields have the
same dimensionality.

The program definition just introduced is formulated minimal-
istically and with a strong focus on stencil graphs. As a conse-
quence, it omits aspects that in the context of our article are of
limited importance, e.g., boundary conditions, variable input field
dimensionality, as well as complex dynamic control flow. How-
ever, programs which use such concepts can in many cases still be
modeled. For example, stencils with varying input sets, due to the
use of special boundary conditions, can often be modeled with an
over-approximated input set and iterative stencil computations can
be modeled by (partially) unrolling the relevant time loop.

2.2 Example
We now present an example stencil program which is derived

from a horizontal diffusion kernel used by the COSMO atmo-
spheric model [4]. We define the stencil program Phd in terms
of the temporary stencils slap, sfli, and sflj necessary to evaluate
the output stencil sout. A data dependency either refers to an in-
put field loaded by the stencil program, such as in or wgt, or to a
temporary field computed by the corresponding temporary stencil,

a

d = c (a ᴜ b)

in

wgt

out

fli

flj

lap

b

c

d

Figure 1: Horizontal diffusion dependency graph annotated with
stencil (c) and stencil program (a, b, and d) access patterns

1 // Allocate temporary storage
2 Field[double] lap(ibegin,iend),
3 fli(ibegin,iend), flj(ibegin,iend);
4 // Apply the lap stencil
5 for(int i=ibegin-1; i<iend+1; ++i)
6 for(int j=jbegin-1; j<jend+1; ++j)
7 lap(i,j) = -4.0 * in(i,j) +
8 in(i-1,j) + in(i+1,j) + in(i,j-1) + in(i,j+1);
9 // Apply the fli stencil

10 for(int i=ibegin-1; i<iend; ++i)
11 for(int j=jbegin; j<jend; ++j)
12 fli(i,j) = lap(i+1,j) - lap(i,j);
13 // Apply the flj stencil
14 for(int i=ibegin; i<iend; ++i)
15 for(int j=jbegin-1; j<jend; ++j)
16 flj(i,j) = lap(i,j+1) - lap(i,j);
17 // Apply the out stencil
18 for(int i=ibegin; i<iend; ++i)
19 for(int j=jbegin; j<jend; ++j)
20 out(i,j) = wgt(i,j) *
21 (fli(i-1,j) - fli(i,j) + flj(i,j-1) - flj(i,j));

Figure 2: Naive implementation of the simplified horizontal diffu-
sion example used by the COSMO [4] atmospheric model

such as fli, flj, or lap:

slap := (5, lap, {in(−1, 0), in(1, 0), in(0,−1), in(0, 1), in(0, 0)})
sfli := (1, fli, {lap(1, 0), lap(0, 0)})
sflj := (1, flj, {lap(0, 1), lap(0, 0)})
sout := (5, out, {fli(−1, 0), fli(0, 0), flj(0,−1), flj(0, 0),wgt(0, 0)})
Phd := {slap, sfli, sflj} ∪ {sout}

Figure 1 illustrates the data flow of the stencil program using a
directed graph, whose black and white nodes represent input fields
and stencils respectively. Arrows that do not point to a node and
consequently exit the stencil graph model the outputs of the stencil
program. A directed edge in the graph corresponds to a flow de-
pendency between two nodes. We annotate each incoming edge of
a stencil with the access pattern necessary for a single stencil eval-
uation. For instance, a single evaluation of the lap stencil accesses
the in field at the five offsets shown by c. In addition, we annotate
all outgoing edges of a stencil or an input field with the accumu-
lated access pattern necessary to evaluate the out stencil at a single
position. E.g., the lap stencil is evaluated at the positions defined
by the union of the sets a and b. We compute the accumulated in
field access pattern d as the Minkowski sum d = (a ∪ b)⊕ c, with
a⊕ b = {a′ + b′ | a′ ∈ a, b′ ∈ b}. Figure 2 shows a naive imple-
mentation of the horizontal diffusion kernel, which executes each
stencil using a separate loop nest. While such an implementation
may be straightforward to write, it is not efficient in terms of data
locality, memory usage, or parallelism.

2.3 Data Locality Transformations
To improve the data locality of stencil programs, we discuss code

transformations that combine loop tiling and loop fusion. While
tiling sub-divides the loop domain into typically hyperrectangular
tiles of limited size, fusion substitutes a sequence of loops by a sin-
gle loop. Applied to stencil codes, we divide the stencil evaluation

2

hs

i-
d

im
en

si
o

n

hpofno tiling

Figure 3: Tile shapes (shaded) for different tilings applied to a sub-
set of the horizontal diffusion example projected to the i-dimension

domain into tiles and apply multiple stencils tile-by-tile. Conse-
quently, we can store temporary values in smaller buffers that hold
the working set of a single tile instead of the full evaluation domain.

While tiling increases the data locality, it causes additional syn-
chronization efforts at the tile boundaries. As shown in Figure 1,
a single stencil evaluation depends on one or more input or tem-
porary fields accessed in a local neighborhood. When combining
multiple stencils the neighborhoods grow depending on the stencil
access patterns and the longest path in the dependency graph. We
call all dependencies outside of the tile domain the halo points of a
tile. In addition, we suggest three halo strategies that trade off par-
allelism against computation. Figure 3 shows the iteration space
of one dependency path in the horizontal diffusion example, once
without any tiling and then with different tiles as they result from
the suggested halo strategies. Shaded regions mark the points that
belong to a specific tile.

Computation on-the-fly (of) satisfies all halo point dependen-
cies using redundant computation at the tile boundaries. Hence,
we load input fields and evaluate temporary stencils in an extended
domain covering the tile itself as well as its halo points. Using
computation on-the-fly, we can update different tiles independently
postponing synchronization at the cost of additional computation.
As shown by Figure 3, computation on-the-fly results in overlap-
ping tiles and is therefore often referred to as overlapped tiling [7,
21, 11].

Halo exchange parallel (hp) satisfies all halo point dependen-
cies using communication with neighboring tiles. More precisely,
we update all tiles in parallel and perform at least one halo ex-
change communication per edge in the longest dependency chain of
the stencil dependency graph. Hence, halo exchange parallel avoids
redundant computation at the cost of additional synchronizations.

Halo exchange sequential (hs) modifies the tile shape such that
all unsatisfied halo point dependencies point in one direction. By
iterating over the tiles in reverse dependency direction, we can
update all tiles sequentially using a single sweep. While halo
exchange sequential in general applies to one-dimensional tilings
only, we can complement it with other halo strategies to support
higher dimensional tilings. In summary, halo exchange sequential
avoids redundant computation and synchronizations at the cost of
being sequential.

As the surface to volume ratio decreases with increasing tile size,
we preferably update small tiles using halo exchange communica-
tion and large tiles using computation on-the-fly. Depending on
the hardware architecture high synchronization costs make com-
putation on-the-fly attractive. Overall, choosing the optimal data

(256, 256) / of

(32, 32) / hp

(32, 32) / hp

lap fli

flj out

in in lap

lap

lap

fli

fli

fljwgt wgt

Figure 4: Stencil dependency graph of the horizontal diffusion ex-
ample annotated with two tiling hierarchy levels.

locality transformations is not straight forward and motivates the
use of a performance model.

2.4 Stencil Algebra Definition
Using the data locality transformations introduced in the pre-

vious section, we are able to generate a large number of stencil
program implementation variants. In particular, we can repeatedly
apply our tiling transformations to obtain a hierarchical tiling that
leverages multiple levels of the memory hierarchy. By combining
our data locality transformations, we are therefore able to cover
most of the established stencil implementation techniques. Next,
we formally define a stencil algebra whose elements express dif-
ferent stencil program implementation variants and show how to
enumerate them. Figure 4 shows an implementation variant of the
horizontal diffusion example, introduced in Section 2.2, annotated
with two tiling hierarchy levels. Each white node corresponds to a
stencil and each black node to a storage region that buffers either
an input or a temporary field. We extend the dependency graph
with boxes that represent the tiling hierarchy. More precisely, the
boxes form a tiling tree where each box corresponds to a tiling that
executes all contained boxes respectively stencils. Finally, we an-
notate each box with the tile size and the halo strategy of the tiling.
In Figure 4 we employ an on-the-fly tiling at the bottom of the tiling
hierarchy with two nested halo exchange parallel tilings.

In order to specify an element of our stencil algebra, we initially
define a tiling hierarchy. More precisely, we define a tile size tl ∈
Zn for each level l of the tiling hierarchy. In case of the horizontal
diffusion example we define two tiling hierarchy levels:

t1hd = (256, 256) t2hd = (32, 32)

Next, we specify a stencil program implementation variant as a
bracket expression. We put all stencils that correspond to a specific
tiling hierarchy level into brackets. Therefore, a hierarchical tiling
results in a nested bracket expression with the outermost bracket
term representing the bottom of the tiling hierarchy. We can define
the horizontal diffusion implementation variant shown by Figure 4
using a twofold nested bracket expression.

[[slap, sfli], [sflj, sout]]

In the following, we call each bracket term representing a tiling
hierarchy a stencil group. A stencil group can be seen as a node of
the tiling tree containing nested stencils or stencil groups that as a
whole define the stencil program implementation variant.

Let g be a stencil group, then g.child is the set of all children of
the stencil group g, where a child is either a stencil or a nested sten-
cil group. In addition, g.sten is the set of all stencils in the subtree
defined by the stencil group g. Finally, g.in and g.out define the
input and output sets of a stencil group g, where an input and an
output correspond to an incoming respectively to an outgoing data

3

dependency. As an example, we provide the stencil properties of
the horizontal diffusion example shown in Figure 4.

g0 = [g1, g2] g1 = [slap, sfli] g2 = [sflj, sout]

First, we define the tree properties.

g0.child = {g1, g2} g0.sten = {slap, sfli, sflj, sout}

Next, we define the external data dependencies.

g0.in = {in,wgt} g0.out = {out}

We enumerate all stencil program implementation variants using
two operations: 1) shuffle the stencils respecting their topological
order and 2) group stencils on different tiling hierarchy levels.

2.5 Performance Modeling
In order to understand the performance characteristic of a stencil

program implementation variant, we next introduce a performance
model. Similar to the Roofline model [19], we estimate the execu-
tion time based on the peak compute and communication through-
put of the target hardware. In addition, we do not only distinguish
between cached and global memory accesses but model additional
memory hierarchy levels.

To model our target hardware we use an abstract machine that is
built around a processing unit that performs computations on a lim-
ited set of local registers. All data is by default stored in a global
memory (e.g., DRAM) with limited bandwidth to the processing
unit. Data is transferred from global memory to local registers be-
fore any computation is performed and the results of a computation
are transferred back to global memory before becoming externally
visible. Between global memory and local registers there is a set of
additional hierarchically organized memory levels, each with lim-
ited size, but increasing bandwidth to the processing unit.

When mapping a parallel hardware architecture to our model,
the bandwidth of a given memory hierarchy level is the combined
bandwidth of all (possibly multiple) memories at this level. The
size of a memory hierarchy level is not the combined size, but the
size of an individual memory at this level. E.g., assuming there
are multiple L1 caches, we consider the size of a single L1 cache.
Finally, assuming sufficient parallelism to simultaneously use all
processing resources, the compute throughput of our model is the
combined peak compute throughput of the hardware architecture.

We now consider again Figure 4, an illustration of a stencil pro-
gram implementation variant with two tiling hierarchy levels that
was introduced in the previous section. Each tiling hierarchy tar-
gets one specific level of the memory hierarchy, such as the DDR
memory or the L1 cache of a CPU. We assume all input and tempo-
rary values of a stencil group are stored in the associated memory
hierarchy level. Whenever a stencil program communicates data
from one tiling hierarchy level to the next higher one, we model the
communication time using the bandwidth of the associated memory
hierarchy level. Therefore, we define a communication bandwidth
V l ∈ R as well as a memory capacity M l ∈ Z for each level l of
the tiling hierarchy. In addition to this vertical communication, a
stencil code might also perform lateral halo exchange communica-
tion between neighboring tiles of the tiling hierarchy. Hence, we
define a lateral communication bandwidth Ll ∈ R for each level l
of the tiling hierarchy. Typical representatives of lateral communi-
cation links are interconnect networks or the scratch pad memory
of a GPU. Finally, we define the compute throughput C ∈ Z of
the target architecture. Thereby, we define storage sizes in terms
of floating point values instead of bytes. In case two nested tiling
hierarchy levels are associated to the same memory hierarchy level,
we set the vertical communication bandwidth to infinity. Like the

tlap tfli

t[lap,fli]

t[[lap,fli],[flj,out]]

t[flj,out]

tflj tout

time

til
in

g
hi

er
ar

ch
y

Figure 5: The time estimation for the horizontal diffusion example

Roofline model, we assume that we can overlap communication
and computation on all communication links respectively compute
units of the system.

When modeling the performance of a stencil program, we as-
sume that the arithmetic intensity remains constant during the exe-
cution of a single stencil. On the other hand, the arithmetic intensi-
ties of different stencils might vary. Figure 5 illustrates the time es-
timation for the horizontal diffusion implementation variant shown
by Figure 4. At the top of the tiling hierarchy, black boxes denote
the stencil execution times. Below, gray boxes (with flashes) denote
the communication times between parents and children in the tiling
hierarchy. Furthermore, white boxes denote the stencil group exe-
cution times computed as the sum of the maximum between stencil
execution times and communication times.

In particular, we estimate the execution time ts of a stencil s that
performs cs floating point operations as the time needed to compute
the stencil without considering any communication cost.

ts = cs/C

Using the child execution time tc of a child stencil or stencil group
c that causes vc vertical and l1c , . . . , l

l
c lateral data movements, we

compute the execution time tg of a stencil group g that corresponds
to level l of the tiling hierarchy as the sum of the maximum of
the child execution times, the vertical communication between the
stencil group and its children, and the lateral communication nec-
essary to update the halo points of the temporary fields. We thereby
optimistically assume the lateral communication overlaps with the
child execution, which assumes the later communication is suffi-
ciently balanced over the stencil group execution.

tg =
∑

c∈g.child

max(tc, vc/V
l, l1c/L

1, . . . , llc/L
l)

We model the performance of an entire stencil program as the esti-
mated execution time of the stencil group at the bottom of the tiling
hierarchy. Furthermore, we complement the performance estima-
tion with a feasibility check that compares the storage requirements
of the stencil program to the available memory capacity on all tiling
hierarchy levels.

2.6 Stencil Program Analysis
In order to evaluate our performance model, we analyze sten-

cil programs using the mathematical concept of affine sets and
affine maps. In particular, we show how to count the number of
floating point operations, data movements, and storage locations
required during the stencil program execution. Using the perfor-
mance model introduced in Section 2.5, our analysis finally allows
estimating execution time and feasibility of a stencil program.

4

2.6.1 Affine Sets and Maps
An affine set S = {~i | ~i ∈ Zn ∧ cons(~i)} is a set of n-

dimensional integer vectors, where the elements of the set are
constrained by a Presburger formula cons(~i). Presburger formu-
las consist of comparisons (<,≤,=, 6=,≥, >) between expressions
(quasi-)affine in vector dimensions and external parameters that are
combined by Boolean operations (∧,∨,¬). For affine sets set op-
erations such as union, intersection, subtraction, projection as well
as cardinality are defined.

An affine map M = {~i → ~j | ~i ∈ Zn,~j ∈ Zm ∧ cons(~i,~j)}
is a relation, that relates n-dimensional input (domain) vectors with
m-dimensional output (range) vectors. The elements are again con-
straint by a Presburger formula cons(~i,~j). Besides the normal set
operations, there exist map-specific operations such as the applica-
tion of a map m on a set s (m(s)), the composition of two maps
(m0 ◦ m1), or the inverse of a map (m−1), which switches input
and output of a map. We define the following set of important map
operations in more detail.
The range product of two maps R1 and R2 is defined as:

R1 ×ran R2 = {~i→ (~j1,~j2) |~i→ ~j1 ∈ R1 ∧~i→ ~j2 ∈ R2}

The range intersection of a map R with a set S is:

R ∩ran S = {~i→ ~j |~i→ ~j ∈ R ∧~j ∈ S}

The range-projection of a map R projects the n output dimensions
of a map onto the first k + 1 output dimensions:

P ran
[0−k](R) = {~i→ (j0, . . . , jk) | ∃xk+1, . . . , xn−1 ∈ Z :

~i→ (j0, . . . , jk, xk+1, . . . , xn−1) ∈ R}

R+ is the transitive closure of R:

R+ = {~i→ ~j | ∃m ≥ 0 : ~j = (R ◦ · · · ◦R︸ ︷︷ ︸
m times

)(~i)}

We use |S| to specify the cardinality of a set and |R| to specify the
cardinality of a map, where the cardinality of a map is defined as
the number of related domain and range pairs.

We also define named sets and named maps as affine sets and
maps that contain so-called “named vectors”. The elements of these
sets can either be written as tuples of a string and a vector, for exam-
ple {(“A”,~i), (“B”,~j) | ~i ∈ Zn,~j ∈ Zm}, or as named vectors
{A(~i), B(~j) | ~i ∈ Zn,~j ∈ Zm}. Named sets (maps) allow differ-
ently named elements to have vectors of different dimensionality.
On named sets and maps the operations introduced above are ap-
plied individually to subsets or submaps that share the same name
and dimensionality. To extract a set from a named set S, we define a
bracket operator S[“x”] = {(“x”,~i) | (“x”,~i) ∈ S}. The bracket
operator applied on a map, filters the maps according to the name
of their domains R[“x”] = {(“x”,~i) → (name,~j) | (“x”,~i) →
(name,~j) ∈ R}.

Computations on integer sets can be performed with isl [16] and
counting of integer sets is possible with barvinok [17].

2.6.2 Data Dependencies
Given a stencil program P the set of flow dependencies in P can

be derived from the stencil data dependencies. To obtain them, we
define for each stencil s ∈ P a map Ds that associates the stencil
evaluations to the corresponding input data dependencies.

Ds = {s.out(~u)→ d(~u+ ~v) | d(~v) ∈ s.in}

Next, we define the union of all stencil data dependencies.

D =
⋃
s∈P

Ds

2.6.3 Stencil Tiling Maps
We model the tiling transformations discussed in Section 2.3 us-

ing affine maps that relate the stencil evaluation domain to the tile
domain. More precisely, we define for each stencil a tiling map
that maps each point in the n-dimensional stencil evaluation do-
main to an n-dimensional tile identifier, such that all points that
belong to the same tile are associated with a common tile identifier.
We initially consider only a single tiling level and later generalize
the concept to nested tilings.

Given a multi-dimensional tile size vector ~t = (t0, . . . , tn−1) ∈
Zn, we define a hyperrectangular tiling of a single stencil s as a
named map T2

s that associates each point~i = (i0, . . . , in−1) ∈ Zn

of the stencil evaluation domain with exactly one tile identifier.

T2
s = {(s,~i)→ (bi0/t0c, . . . , bin−1/tn−1c)}

Depending on size and alignment of tiles and stencil evaluation do-
mains, such a tiling may yield truncated tiles at the stencil evalu-
ation domain boundaries. In case a given dimension of the stencil
evaluation domain should not be tiled (indicated by tile size ∞),
the corresponding dimension of the tile identifiers is set to zero.

We represent the tiling of a stencil group g by computing a
named map that contains a tiling map for each stencil of the sten-
cil group. We distinguish here between the three halo strategies
introduced in Section 2.3.

Computation on-the-fly satisfies halo point dependencies using
redundant computation. The corresponding tiling map is therefore
a relation which maps the halo point stencil evaluations at the tile
boundaries to multiple overlapping tiles. Given a stencil group g,
we construct a tile map Tg in two steps. First, all output stencils of g
are tiled with a rectangular tiling map. This does not yet introduce
any redundant computation. Next, we compute for each tile all
stencil evaluations that are required to compute the output points
already assign to this tile. We do this by first defining the set of
data dependencies Dg that are local to g and then composing the
inverse transitive hull of Dg with the tiling map already defined
for the output stencils. The resulting map connects the temporary
stencil evaluations via the dependent output stencil evaluation to the
corresponding tile identifier. This map may now possibly relate one
temporary stencil evaluation to multiple tiles and can consequently
introduce redundant computation.

Tg =
⋃

s∈g.out

T2
s ◦ (D+

g)
−1

Halo exchange parallel satisfies halo point dependencies using
communication. We therefore assign each point in the stencil eval-
uation domain to exactly one tile and use tiles of identical size,
shape and alignment for all stencils in our stencil group. The tiling
map Tg describes such a tiling for a stencil group g.

Tg =
⋃

s∈g.sten

T2
s

Halo exchange sequential is a variant of halo exchange parallel,
whose tiling map is constructed accordingly. In contrast to halo
exchange parallel, we shift the stencil tiling maps such that all un-
satisfied halo point dependencies between tiles point in one direc-
tion. Figure 3 illustrates the tile shape of shifted stencil tiling maps
and their halo point dependencies. We define a shifted tiling map
by subtracting the shift offset form the stencil evaluation domain
before computing the associated tile identifiers.

5

of - of hp - of of - hp

i-
d

im
en

si
o

n

hp - hp

(0,1)

(0,0)

(0,-1)

(0,2)

(0,0)

(0,1)(0,1)

(0,0)(0,0)

(0,1)

Figure 6: Tile shapes (shaded) for a nested tiling applied to a subset
of the horizontal diffusion example projected to the i-dimension

Nested Tilings.
We now describe the construction of nested tilings, tilings that

result from recursively applying the previously introduced tiling
transformations. To give a first intuition of such tilings, Figure 6
shows the different nested tilings that can be constructed from com-
bining on-the-fly and halo exchange parallel tiling on two tiling lev-
els. It shows for each combination one full outer tile, one full inner
tile, and, using dashed lines, the remaining inner tiles placed inside
the outer tile. Most combinations are rather straightforward, but it
is interesting to note, that in case of on-the-fly tiling being nested
inside halo exchange parallel tiling, the redundant computation of
the on-the-fly tiles may require the computation of points located
outside of the surrounding tile.

As visible in the illustration just discussed, we identify each
nested tile with a tile vector whose first and second entry corre-
spond to the tile identifiers of the first and second tiling level re-
spectively. Hence, we can model a nested tiling with l tiling hi-
erarchy levels with a tiling map that relates each point in the n-
dimensional stencil evaluation domain to a tile identifier with n · l
dimensions. To construct such a map for a given stencil group g
nested in another stencil group p we first define tiling maps for the
output stencils of g. These tiling maps are formed by combining
for each stencil the tiling map Tp[s] that we derive for this sten-
cil from p (not considering any nested groups) with an additional
hyperrectangular tiling that uses the tile sizes specified for g. We
define the tiling map Tg,s of such a stencil s as the range product of
the tiling map T2

s with the recursively computed parent tiling map
Tp[s].

Tg,s = Tp[s]×ran T
2
s

When computing the tiling map of a nested stencil group Tg , we
adapt the previously introduced on-the-fly and halo exchange tiling
maps to use Tg,s instead of T2

s . The resulting tiling maps for halo
exchange parallel and on-the-fly tiling are

Tg =
⋃

s∈g.sten

Tg,s and Tg =
⋃

s∈g.out

Tg,s ◦ (D+
g)
−1.

We can now define for each stencil a tiling map Ts that maps each
evaluation of this stencil to a tile identifier with l · n dimensions,
that identifies for all levels of the tiling hierarchy the tiles the stencil
evaluation is assigned to. We obtain Ts by extracting the tile map
that corresponds to s from the tile map of the stencil group g at the
top of the tiling hierarchy that contains s.

Ts = Tg[s]

When constructing hierarchical tilings that involve halo ex-
change sequential, we inherit the shift offsets introduced by the
sequential execution to all nested tiling hierarchy levels. Thereby,
we align the nested tiles to the parent tile boundaries.

2.6.4 I/O Maps

While the tiling maps alone allow the analysis of computational
aspects, we introduce auxiliary maps that support the analysis of
data movements and storage usage.

First, we define for each stencil s an input map Is that relates a
set of inputs (stencil evaluations or input fields) used by a certain
evaluation of s to the tile(s) this evaluation is assigned to. The con-
struction of Is is similar to the construction of the on-the-fly tiling.
We compose the stencil tiling map Ts with the reversed stencil data
dependencies D−1

s . Furthermore, we define the input map of an
entire stencil group g as the union of all nested stencil input maps.

Is = Ts ◦D−1
s Ig =

⋃
s∈g.sten

Is

Second, we define for each child stencil or stencil group c an
output map Oc that relates the set of outputs written by the child
to the tiles they are assigned to. In case the parent stencil group
applies halo exchange communication, we define the output map
Oc as the union of the child output stencil tiling maps.

Oc =
⋃

s∈c.out

Ts

In case the parent stencil group applies computation on-the-fly, we
compute the output map by following the data dependencies start-
ing from the parent stencil group output stencils. While this con-
struction is similar to the computation of the on-the-fly stencil eval-
uation tiling map, it differs by the fact that we only consider the
data dependencies of the stencils executed after the child stencil or
stencil group. Thereby, we make sure we do not consider inter-
nal dependencies between the output stencils of the child stencil
group. Initially, we define the partial input map Ip,c of a parent
stencil group p and a child stencil or stencil group c considering all
input dependencies of children executed after the child c.

Ip,c =
⋃

ci∈p.child
c<ci

Ici

Then the output map Oc of a child stencil or stencil group is the
union of all partial input and parent output dependencies.

Oc =
⋃

s∈c.out

(
Ip,c[s] ∪

(⋃
o∈p.out

Tp,o

)
[s]
)

2.6.5 Tile Selection
We analyze the characteristics of a stencil program by counting

stencil evaluations, data movements, or storage requirements on a
limited domain. As we are interested in the relative rather than the
absolute performance and as our performance model does not con-
sider low hardware utilization due to strong scaling, we can choose
an arbitrary but limited domain size. We therefore perform our
analysis on the origin tile of the lowest tiling hierarchy level. As-
suming m tiling hierarchy levels, we select the origin tile of the
lowest tiling hierarchy level using the tile selection set S that con-
tains all tile identifiers with the first n-dimensions fixed to zero.

S = {(x0, . . . , xn−1, yn, . . . , ynm) | xi = 0 ∧ yj ∈ Z}

When analyzing the storage requirements, we want to make sure a
single tile fits the memory capacity of the corresponding memory
hierarchy level. We therefore define an additional tile selection set
S∗ that selects the origin tile on all levels of the tiling hierarchy.

S∗ = {(x0, . . . , xnm) | xi = 0}

In order to limit the domain of a tiling map, we finally intersect the
range of the tiling map with a selection set.

6

2.6.6 Analysis
Relying on the previously introduced stencil program formula-

tion, we now discuss the analyses we use to obtain the program
properties needed for evaluating the performance model introduced
in Section 2.5. Using the previously introduced maps, we count the
points that correspond to the number of stencils evaluations, the
amount of data moved, and the amount of storage used when eval-
uating a given stencil program on a limited domain.

Computation.
In order to analyze the amount of computation performed by a

stencil program, we count the stencil evaluations associated to the
origin tile of the lowest tiling hierarchy level. We obtain these eval-
uations by intersecting the range of the stencil evaluation tiling map
with the origin tile selection set S. We then count all stencil evalu-
ations associated to the remaining tile identifiers. Hence, we define
the amount of computation cs performed by a stencil s as the car-
dinality of the constraint tiling map times the number of floating
point operations performed by a single stencil evaluation.

cs = |Ts ∩ran S| · s.ops

Vertical Communication.
As discussed in Section 2.5, vertical communication refers to the

data movements between a parent stencil group and its child sten-
cils or stencil groups. We therefore analyze the number of loads
and stores performed by a child stencil or stencil group when exe-
cuted by a parent stencil group. We analyze the vertical communi-
cation on a restricted domain that corresponds to the origin tile of
the lowest tiling hierarchy level.

In order to compute the number of loads performed by a stencil
or stencil group c, we count the elements in the constraint input
map of c. More precisely, we intersect the range with the origin tile
selection set and project out any dimension above the parent stencil
group tiling hierarchy level l. Due to the projection, the points in
the resulting map describe all elements loaded by the child stencil
or stencil group not considering redundant stencil evaluations on
nested tiling hierarchy levels. Hence, we define the number of loads
lc performed by a child stencil or stencil group c as the cardinality
of the constraint and projected child input map.

lc =
∑

s∈c.in

|P ran
[0−nl](Ic[s] ∩ran S)|

Accordingly, we define the number of stores sc performed by a
child stencil or stencil group c as the cardinality of the constraint
and projected child output map.

sc =
∑

s∈c.out

|P ran
[0−nl](Oc[s] ∩ran S)|

Finally, we define the total amount of vertical communication of a
child stencil or stencil group c as the sum of its loads and stores.

vc = lc + sc

Lateral Communication.
Lateral communication refers to the halo exchange communica-

tion between neighboring tiles of the same tiling hierarchy level.
We therefore compute the lateral communication performed by a
stencil group as the difference between the amount of computed
and the amount of consumed temporary values, which corresponds
to the unsatisfied halo point dependencies between the children
of the stencil group. We analyze the lateral communication on a

restricted domain that corresponds to the origin tile of the lowest
tiling hierarchy level.

We compute the amount of lateral communication necessary to
update the outputs of a child stencil or stencil group, as the differ-
ence of the elements used by subsequent children and the elements
written by the child itself. Therefore, we intersect the range of
the partial input map and output maps with the origin tile selection
set and project out any dimensions above the parent stencil group
tiling hierarchy level l. Hence, we define the amount of halo points
lc communicated by a child stencil or stencil group c as the cardi-
nality of the difference between the projected and constraint partial
input and output maps.

lc =
∑

s∈c.out

|P ran
[0−nl]((Ip,c[s] \Oc[s]) ∩ran S)|

In case multiple nested tiling hierarchy levels employ halo ex-
change communication, we possibly run lateral communication on
all these levels. By projecting out one level after the other, we as-
sign the lateral communication to the different levels of the tiling
hierarchy. Thereby, we get the sum of the lateral communication
on the remaining tiling hierarchy levels not yet projected out. By
computing the difference of adjacent levels, we finally get the lat-
eral communication assigned to exactly one level.

Storage Requirements.
We analyze the feasibility of a stencil program by computing an

upper bound for the storage necessary in order to execute a single
tile on each level of the tiling hierarchy. We therefore analyze the
storage requirements on a restricted domain that corresponds to the
origin tile on all levels of the tiling hierarchy. In case the upper
bound exceeds the capacity of one memory hierarchy level, we say
a stencil program is infeasible.

We compute the storage requirement of a stencil group as the
amount of storage necessary to evaluate the stencil group on a sin-
gle tile. As shown by Figure 4, we reserve storage for each input
and temporary field used during the evaluation of the stencil group.
In contrast, output fields are immediately written to storage man-
aged outside of the stencil group. Thereby, we overestimate the
storage requirement as the limited life time of some fields might
allow sharing a common buffer. We evaluate the storage require-
ments using the input map intersected with the tile selection set S∗.
Furthermore, we project out any dimension above the parent sten-
cil group tiling hierarchy level l. Hence, we define the amount of
storage mp required by a parent stencil group p as the cardinality
of the constraint and projected input maps.

mp =
∑

c∈p.child

∑
s∈c.in

|P ran
[0−nl](Ip[s] ∩ran S

∗)|

In order to determine the feasibility of a stencil program, we com-
pare the memory requirements of each stencil group to the available
memory capacity.

3. CASE STUDY
We evaluate our approach using the real-world application

COSMO. Its dynamical core was recently rewritten using the
STELLA [6] stencil library, which exposes the possibility to manu-
ally fuse or split stencils on multiple tiling hierarchy levels. In this
case study we show how to automatically tune STELLA programs.

3.1 STELLA
STELLA is a domain specific embedded language for finite dif-

ference methods that is designed to separate the stencil specifica-
tion from the hardware architecture specific implementation strat-

7

Hierarchy Vertical Tile Size Strategy

1 DDR (256, 256, 64) of
2 L2 (8, 8, 64) of

Table 1: CPU tiling hierarchy

Hierarchy Vertical/Lateral Tile Size Strategy

1 GDDR/- (256, 256, 64) of
2 GDDR/- (64, 4, 64) of
3 Register/Register (∞,∞, 1) hs
4 Register/Shared (1, 1, 1) hp

Table 2: GPU tiling hierarchy

egy. When executing a stencil program STELLA uses two levels of
parallelism: 1) coarse grained parallelization that decomposes the
stencil evaluation domain into blocks executed on different pro-
cessing units and 2) fine grained parallelization that executes the
individual blocks on a single processing unit possibly using vec-
torization and hardware threads. STELLA supports stencil fusion
on three different tiling hierarchy levels. We can apply consecutive
stencils using a single loop over a block, using multiple separate
loops over a block, or using multiple separate loops over the full
domain.

At compile-time, STELLA generates target architecture specific
loop code using C++ template meta-programming. With two avail-
able backends, STELLA can currently target CPU and GPU archi-
tectures using the OpenMP and CUDA programming models re-
spectively. Thereby, STELLA employs a fixed but platform specific
tiling hierarchy, which we will model using our stencil algebra.

We model the CPU backend of STELLA using the two tiling hi-
erarchy levels shown by Table 1. As discussed in Section 2.6, we
compute all stencil program performance characteristics for the ori-
gin tile of the base tiling hierarchy level. Therefore, we introduce a
first tiling hierarchy level that represents the stencil program eval-
uation domain. A second tiling hierarchy level models the coarse
grained parallelism of STELLA. Currently, the CPU backend does
not implement fine grained parallelism. Hence, there is no need to
model the third tiling hierarchy level of STELLA.

We model the GPU backend of STELLA using the four tiling
hierarchy levels shown by Table 2. Just as in case of the CPU back-
end, we introduce two tiling hierarchy levels to model the sten-
cil program evaluation domain and the coarse grained parallelism.
Furthermore, we introduce two additional tiling hierarchy levels
that represent the fine grained parallelism. The GPU backend al-
locates one thread per ij-position (tiling hierarchy level 4) that it-
erates over all points in the k-dimension (tiling hierarchy level 3).
Thereby, different threads communicate via shared memory, while
different loop iterations communicate via registers. Moreover, tile
size infinity denotes no tiling in the corresponding dimension.

3.2 Stencil Program Optimization
When implementing a stencil program using STELLA, we have

multiple degrees of freedom. As discussed in Section 2.4, we can
change the stencil evaluation order and fuse or split the execution
of successive stencils on multiple levels of the tiling hierarchy. We
therefore split the optimization in two steps and apply different op-
timization methods: 1) we optimize the stencil evaluation order us-
ing brute force search 2) we optimize the tiling for a given stencil
evaluation order using dynamic programming. During our opti-
mization we do not consider tile size choices, but rely on the tile
sizes that are used by COSMO and have proven robust for a wide
range of stencil programs and their implementation variants.

In order to optimize the stencil evaluation order, we enumerate
all topological sorts of the stencil dependency graph using brute
force search. In general, a graph may have up to O(n!) valid topo-
logical orders. However, due to its data dependency chains a typical
stencil dependency graph has less topological orders resulting in a
much smaller search space.

In a second step, we search the optimal tiling given a stencil
evaluation order. Using a tiling hierarchy and an abstract machine
model, we search for a tiling with minimal estimated execution
time and a storage requirement that fits all levels of the memory
hierarchy. We estimate execution time and storage requirements
using the analysis introduced in Section 2.6. In order to enumer-
ate the search space, we fuse all pairs of subsequent stencils on all
levels of the tiling hierarchy. Thereby, we assume the subsequent
stencils are executed by nested stencil groups that represent the full
tiling hierarchy. Given m tiling hierarchy levels and n stencils, up
to m tiling hierarchies can be split between each pair of neighbor-
ing stencils. Overall, this means there are O(mn) ways to split the
stencil program. Assuming we have a set of all stencil program
implementation variants I and the functions t(x) and ml(x) that
estimate the execution time and the maximal storage requirement
at the level l of the tiling hierarchy respectively, we define the fol-
lowing optimization problem:

minimize
x∈I

t(x)

subject to ml(x) ≤M l l = 1, . . . ,m

We can either solve the optimization problem using brute force
search or employ our dynamic programming approach reducing the
search space fromO(mn) toO(mn4) elements. We can apply dy-
namic programming as the problem has optimal substructure. In
particular, we compute for each tiling hierarchy level an n2 ma-
trix that contains the optimal stencil group executing a continuous
subset of the stencil program. Thereby, one matrix dimension cor-
responds to the start index and the other matrix dimension to the
stop index of the subset. We compute a matrix entry using a second
dynamic programming algorithm2 that constructs the optimal sten-
cil group using a combination of the previously computed optimal
child stencil groups. More precisely, we compute the optimum for
a given start and stop index either using the optimal child stencil
group containing all stencils or using a child stencil group contain-
ing all stencils from an intermediate index to the stop index plus
the recursively computed optimum from the start index to the inter-
mediate index. By increasing the intermediate index step-by-step
and storing partial solutions, we compute a single entry of our n2

matrix using O(n2) steps.

4. EVALUATION
We evaluated our framework using three example kernels from

the COSMO atmospheric model. In addition to the horizontal diffu-
sion kernel “hd” introduced in Section 2.2, we use two kernels that
are part of the most time-consuming component in COSMO, the
sound wave forward integration. More precisely, the “uv” kernel
updates the horizontal wind velocity components by computing the
horizontal pressure gradient, whereas the “div” kernel computes the
divergence of the three-dimensional wind field. Figure 7 illustrates
all kernels used during the evaluation including a combination of
the “uv” and “div” kernels.

We perform our experiments using adapted standalone kernels:
1) we replace divisions by multiplications to increase the numerical
stability on random input data and 2) we replace one-dimensional
2

Our nested dynamic programming step is not guaranteed to find the optimal solution. For all four example kernels
discussed in Section 4, exhaustive search based tests confirmed the optimality of the dynamic programming results for
several stencil evaluation orders.

8

uv divhd uv&div

2inputs
1output
4stencils

8inputs
2outputs
8stencils 10inputs

3outputs
11stencils

5inputs
1output
3stencils

Figure 7: Example kernel stencil dependency graphs

Hierarchy Vertical (V) Memory (M)

1 26 GB/s ∞
2 768 GB/s 512 KB

Table 3: Intel Core i5-3330

constant fields by scalar constants as our framework does only sup-
port n-dimensional fields. We implement for each kernel three dif-
ferent variants: 1) “no fusion” refers to a naive implementation
without loop fusion, 2) “hand-tuned” refers to a manually tuned
implementation as used in production by COSMO, and 3) “opti-
mized” refers to an automatically tuned version using MODESTO.
All kernel variants are written using STELLA and therefore are
parallel and employ tiling. Similar to the production configuration,
we run our experiments using a (256, 256, 64) point domain that
provides sufficient parallelism to fully utilize the hardware.

We measure the performance of our example kernels using two
target architectures: 1) an Intel Core i5-3330 CPU with a dual
channel DDR3-1600 memory interface and 2) a Nvidia Tesla K20c
GPU. Table 3 and Table 4 define the machine model of the target
architectures for the STELLA tiling hierarchy discussed in Sec-
tion 3.1. Thereby, we use the peak bandwidth of the individual
memory hierarchy levels, except for the register file and shared
memory where we assume infinite bandwidth and one half of the
peak bandwidth respectively. More precisely, we divide the peak
bandwidth of memories used for lateral communication by two as
each communication corresponds to a write and a read access. Fur-
thermore, we underestimate the capacity of the GPU register file as
it is used for additional tasks such as index computations. Finally,
we set the peak performance C of the target architectures to 48
Gflops and 585 Gflops respectively (without fused multiply add).

To evaluate the accuracy of our performance model, we compare
the measured execution time of our example kernels to the modeled
execution time. Figure 8 shows the accuracy of the model for both
target architectures. Using linear regression, we fit trend lines that
show a close correlation of modeled and measured performance.
Hence, the relative performance of modeled and measured execu-
tion times for different kernels are in accordance, which is of key
importance for our approach. However, we consistently overesti-
mate the absolute performance as the kernels can not leverage the
peak performance of both target architectures. Our performance

Hierarchy Vertical (V) Lateral (L) Memory (M)

1 208 GB/s - ∞
2 208 GB/s - ∞
3 ∞ 1174 GB/s 4096 Registers
4 ∞ ∞ 32 Registers

Table 4: Nvidia Tesla K20c

m ~ 1.6e

0

40

80

120

0 20 40 60 80m
 =

 m
e

as
u

re
d

 t
im

e
[m

s]

e = estimated time [ms]

(a) Accuracy CPU

m ~ 1.5e

0

4

8

12

0 2 4 6 8m
 =

 m
ea

su
re

d
 t

im
e

[m
s]

e = estimated time [ms]

(b) Accuracy GPU
Figure 8: Comparison of measured and estimated execution time

1
.0

1
.0

1
.0

1
.0

3
.1

2
.7

2
.1 2

.4

3
.1

2
.7

2
.1 2

.4

hd uv div uv&div

no fusion hand-tuned optimized

(a) Speedup CPU

1
.0

1
.0

1
.0

1
.0

2
.3

2
.1

1
.1 1

.5

2
.3 2
.4

2
.0 2
.1

hd uv div uv&div

no fusion hand-tuned optimized

(b) Speedup GPU
Figure 9: Speedup of hand-tuned and optimized kernels

model shows that our kernels, like most stencil computations, are
heavily memory bandwidth limited. Consequently, the correlation
factors of 1.5x respectively 1.6x can be attributed to the fact that the
kernels attain only a fraction of the peak main memory bandwidth.

Figure 9 shows the speedup of hand-tuned and automatically
tuned implementation variants for both target architectures. As dis-
cussed in Section 3.2, MODESTO optimizes topological order and
stencil fusion. Overall, MODESTO achieves the same or better
performance compared to the hand-tuned kernels used by COSMO.
Starting from a naive STELLA implementation, we are able to im-
prove the performance by a factor 2.0x–3.1x. The first three exper-
iments achieve optimal performance by fusing all stencils on the
highest level of the tiling hierarchy. In contrast, for the last exper-
iment fusing all stencils exceeds the memory capacity. Hence, the
optimization splits the stencils in two separate groups. To verify
this decision, we implemented an additional variant of the last ex-
periment that fuses all stencils. On CPU and GPU fusing all stencils
results in a 10% and 8% performance reduction respectively.

5. RELATED WORK
Optimal and close-to-optimal stencil arrangements have been in-

vestigated for several decades. Many approaches rely on empirical
methods to derive efficient implementations. Datta et al. [3] opti-
mize an example stencil for a wide range of hardware architectures
using autotuning. Patus [2] is a DSL autotuning framework for
single stencil computations on multi-core CPUs and single GPUs.
Zhang et al. [20] present an iterative compilation approach for sin-
gle stencil computations on single and multi GPU systems which
focuses on deriving optimal block sizes.

Overtile [7] is a DSL code generator for iterative stencils that
uses overlap tiling to generate efficient GPU code also relying on
iterative compilation. There is also a cache-oblivious tiling strat-
egy for iterative stencil computations [5] for which the number of
expected cache misses has been analytically computed and empiri-
cally evaluated for single CPU systems and one caching level.

For stencil graphs, there is Halide [11], a DSL based approach
focused on image processing. Halide uses again compilation based
autotuning to choose stencil program implementation variants con-
sidering a set of tiling strategies and further optimizations. Poly-
Mage [9] is an image processing DSL that guides the optimization
using a model-driven heuristic. Basu et. al [1] perform loop fu-

9

sion, overlapped tiling and wave front execution for optimizing a
geometric multigrid stencil graph. They do not consider hierar-
chical tiling and do not use any analytical model. Olschanowsky
et al. [10] optimize an iterative, but multi-kernel stencil computa-
tion resulting from solving partial differential equations and study
different inter-loop optimizations using empirically evaluation on
multi-core CPUs.

There has also been work that discusses analytical performance
models. There is work not limited to stencil computations that pro-
vides lower bounds for tile sizes selection [13]. Renganarayana
et al. [12] use geometric optimization to model tiling and related
problems on one and multiple levels and to derive optimal tile sizes.
Zhou et al. [21] present work on hierarchical overlapped tiling and
optimize OpenCL programs for multi-core CPUs. They provide
basic performance models for the number of stencils to fuse into
one tile focusing on (possibly unrolled) kernels that process only
one stencil repeatedly and do not consider varying tiling and fusion
strategies. Finally, Wahib et al. [18] take arbitrary stencil graphs
from larger scientific applications and present an analytical perfor-
mance model for choosing an optimal execution strategy. Even
though closely related, they limit themselves to kernel fusion using
computation on-the-fly only considering shared memory and apply
their work on NVIDIA GPUs only.

6. CONCLUSION
With MODESTO we have presented an approach for modeling

and automatically selecting efficient implementation strategies for
stencil programs. Focusing not only on single, possibly iterative
applications of stencils, but on directed acyclic graphs of stencils
we consider the effects of three different tiling strategies in combi-
nation with different fusion choices, all applied on possibly multi-
ple hierarchy levels. We model the effects of these implementation
strategies on the use of both lateral and vertical memory bandwidth,
and estimate the cost of possibly redundant computation by using a
analytical model that allows to predict the amount of data transfer
and computation for a given stencil program implementation vari-
ant. In combination with a given CPU or GPU model we estimate
the relative performance of the different implementation variants
and show using a combination of exhaustive search and dynamic
programming how to choose the best implementation variant.

We evaluated MODESTO by means of the STELLA stencil li-
brary that implements different stencil program transformations for
CPU and GPU architectures. In particular, we successfully model
the tiling hierarchy of STELLA and automatically tune kernels of
the COSMO atmospheric model. Thereby, we achieve speedups
of 2.0–3.1x against naive and speedups of 1.0–1.8x against expert-
tuned implementation variants.

Acknowledgments
This publication has been funded by Swissuniversities through the Plat-
form for Advanced Computing Initiative (PASC). We thank Oliver Fuhrer
(MeteoSwiss) and Carlos Osuna Escamilla (ETH) for helpful discussions,
Armin Größlinger (University of Passau) for providing isl bindings for Java,
as well as the Swiss National Supercomputing Center (CSCS) for their con-
tinuous support.

7. REFERENCES
[1] P. Basu, A. Venkat, M. Hall, S. Williams, B. Van Straalen, and

L. Oliker. Compiler generation and autotuning of
communication-avoiding operators for geometric multigrid. In High
Performance Computing (HiPC), Int. Conf. on, pages 452–461.
IEEE, 2013.

[2] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation
and autotuning framework for parallel iterative stencil computations

on modern microarchitectures. In Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE Int., pages 676–687, May 2011.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures. In Proc. of the 2008 ACM/IEEE Conf. on
Supercomputing, SC ’08, pages 4:1–4:12. IEEE Press, 2008.

[4] G. Doms and U. Schättler. The nonhydrostatic limited-area model
LM (lokal-model) of the DWD. Part I: Scientific documentation.
Technical report, German Weather Service (DWD), Germany, 1999.

[5] M. Frigo and V. Strumpen. The memory behavior of cache oblivious
stencil computations. The J. of Supercomputing, 39(2):93–112, 2007.

[6] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming,
M. Bianco, A. Arteaga, and T. Schulthess. Towards a performance
portable, architecture agnostic implementation strategy for weather
and climate models. Supercomputing frontiers and innovations, 2014.

[7] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on GPU architectures. In
Int. Conf. on Supercomputing, Proc. of, pages 311–320. ACM, 2012.

[8] G. A. McMECHAN. Migration by extrapolation of time-dependent
boundary values*. Geophysical Prospecting, 31(3):413–420, 1983.

[9] R. T. Mullapudi, V. Vasista, and U. Bondhugula. Polymage:
Automatic optimization for image processing pipelines. In Proc. of
the Twentieth Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 429–443,
New York, NY, USA, 2015. ACM.

[10] C. Olschanowsky, M. M. Strout, S. Guzik, J. Loffeld, and
J. Hittinger. A study on balancing parallelism, data locality, and
recomputation in existing PDE solvers. In Proc. of the Int. Conf. for
High Performance Computing, Networking, Storage and Analysis,
SC ’14, pages 793–804, NJ, USA, 2014. IEEE Press.

[11] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing
pipelines. In Proc. of the ACM Conf. on Programming Language
Design and Implementation, PLDI ’13, pages 519–530. ACM, 2013.

[12] L. Renganarayana and S. Rajopadhye. Positivity, posynomials and
tile size selection. In ACM/IEEE Conf. on Supercomputing, Proc. of,
SC ’08, pages 55:1–55:12, NJ, USA, 2008. IEEE Press.

[13] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet, J. Ramanujam,
P. Sadayappan, and V. Sarkar. Analytical bounds for optimal tile size
selection. In Compiler Construction, pages 101–121. Springer, 2012.

[14] A. Taflove. Review of the formulation and applications of the
finite-difference time-domain method for numerical modeling of
electromagnetic wave interactions with arbitrary structures. Wave
Motion, 10(6):547 – 582, 1988. Special Issue on Numerical Methods
for Electromagnetic Wave Interactions.

[15] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The Pochoir stencil compiler. In Proc. of the Twenty-third
Annual ACM Symp. on Parallelism in Algorithms and Architectures,
SPAA ’11, pages 117–128, New York, NY, USA, 2011. ACM.

[16] S. Verdoolaege. isl: An integer set library for the polyhedral model.
In Mathematical Software–ICMS’10, pages 299–302. Springer, 2010.

[17] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric polytopes
using barvinok’s rational functions. Algorithmica, 48(1):37–66, 2007.

[18] M. Wahib and N. Maruyama. Scalable kernel fusion for
memory-bound GPU applications. In Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 191–202, Piscataway, NJ, USA, 2014. IEEE Press.

[19] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun.
ACM, 52(4):65–76, Apr. 2009.

[20] Y. Zhang and F. Mueller. Autogeneration and autotuning of 3d stencil
codes on homogeneous and heterogeneous gpu clusters. Parallel and
Distributed Systems, IEEE Transactions on, 24(3):417–427, 2013.

[21] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua. Hierarchical overlapped tiling. In Proc. of the Inter. Symp.
on Code Generation and Optimization, CGO ’12, pages 207–218,
New York, NY, USA, 2012. ACM.

10

	Introduction
	Stencil Algebra
	Definition of a Stencil Program
	Example
	Data Locality Transformations
	Stencil Algebra Definition
	Performance Modeling
	Stencil Program Analysis
	Affine Sets and Maps
	Data Dependencies
	Stencil Tiling Maps
	I/O Maps
	Tile Selection
	Analysis

	Case Study
	STELLA
	Stencil Program Optimization

	Evaluation
	Related Work
	Conclusion
	References

