
Hybrid MPI: Efficient Message Passing for Multi-core
Systems

Andrew Friedley
Indiana University

Greg Bronevetsky
Lawrence Livermore National

Laboratory

Torsten Hoefler
ETH Zurich

Andrew Lumsdaine
Indiana University

ABSTRACT
Multi-core shared memory architectures are ubiquitous in
both High-Performance Computing (HPC) and commodity
systems because they provide an excellent trade-off between
performance and programmability. MPI’s abstraction of ex-
plicit communication across distributed memory is very pop-
ular for programming scientific applications. Unfortunately,
OS-level process separations force MPI to perform unneces-
sary copying of messages within shared memory nodes. This
paper presents a novel approach that transparently shares
memory across MPI processes executing on the same node,
allowing them to communicate like threaded applications.
While prior work explored thread-based MPI libraries, we
demonstrate that this approach is impractical and performs
poorly in practice. We instead propose a novel process-based
approach that enables shared memory communication and
integrates with existing MPI libraries and applications with-
out modifications. Our protocols for shared memory mes-
sage passing exhibit better performance and reduced cache
footprint. Communication speedups of more than 26% are
demonstrated for two applications.

1. INTRODUCTION
With the end of processor frequency scaling performance and
efficiency improvements in processor designs are achieved
primarily by increasing the number of cores on a process-
ing chip. The most common type of architecture for these
designs is based on fully-featured compute cores connected
via coherent shared memory, which provides significantly
higher application developer productivity than alternative,
more constrained designs. MPI is the de facto programming
model for large-scale computing, used to implement the vast
majority of scalable scientific applications. However, it was
originally designed for systems where single-core compute
nodes were connected by an inter-node network. Even as
the MPI standard and individual MPI implementations have
worked to adapt to new types of systems, the poor support
MPI implementations provide for many-core shared mem-

ory architectures has forced developers to use alternative
programming models such as OpenMP [17] or OpenCL [1]
to parallelize computations on such hardware, using MPI
only for inter-node communication.

Despite the limitations of today’s MPI implementations, its
programming model is actually highly compatible with the
needs of future applications. In particular, since communi-
cation is expected to make up the bulk of application power
use in the future, algorithms are expected to limit their com-
munication and memory use. MPI simplifies this by default-
ing memory to be private to each computation thread and
requiring the developer to explicitly indicate any commu-
nication. The challenge of MPI implementations is to pro-
vide developers this efficient abstraction across a wide range
of architectures, including those where memory is actually
shared or where only restricted communication primitives
are available.

This paper focuses on the design of MPI libraries for many-
core processors connected via shared memory hardware.
Given the wide variety of applications that use MPI and
systems on which they run, our goal is to ensure that
peak shared memory communication performance is avail-
able to these applications without sacrificing (i) portabil-
ity, (ii) inter- and intra-node communication performance,
and (iii) with no need for administrative access to mod-
ify the system. We present and evaluate the design of a
new MPI library called Hybrid MPI (HMPI) that is opti-
mized for intra-node shared memory communication. HMPI
composes with traditional MPI libraries optimized for inter-
node communication by using only standardized MPI opera-
tions to inter-operate with them. The resulting composition
of HMPI for intra-node communication with a traditional
MPI for inter-node communication produces a comprehen-
sive communication system for clusters of shared-memory
nodes. We demonstrate this experimentally by composing
HMPI with MVAPICH2 [13] and Blue Gene/Q MPI [14].

The intuition of our design is that efficient use of shared
memory hardware requires the memories of MPI ranks run-
ning on the same shared memory to be shared with each
other (in MPI terminology a “rank” is an execution con-
text that may be an OS process, thread or some other en-
tity). As discussed in Section 2 this makes it possible for
MPI to transfer data directly from a sender’s buffer to a
receiver’s buffer with no additional copies to overcome OS
separations between their address spaces. Further, it en-

ables novel shared-memory optimizations such as ownership
passing [2] where the sender passes a pointer to its data
buffer to the receiver, allowing the receiver to copy the data
directly into its internal data structures without the need to
first copy it into a receive buffer. Fundamentally, sharing
memory among MPI ranks allows MPI applications to uti-
lize shared memory hardware as efficiently as threaded ap-
plications, making it possible for developers to achieve high
performance on modern architectures without significantly
changing their applications.

These observations have also been made by the MPI Forum,
which introduced shared memory windows in MPI-3.0 [6].
Those windows allow creation of shared memory regions for
direct sharing of data. However, the programmer needs to
distinguish between on- and off-node communication explic-
itly and encode either direct data access (on-node) or mes-
sage passing (off-node) in the application. While MPI offers
a mechanism to query the node topology to distinguish be-
tween the two, the resulting program code is still rather
complex and hard to maintain. We will demonstrate how
much of the benefits of shared memory communication can
be utilized without changing applications.

Prior work on sharing memory across MPI ranks has focused
on implementing ranks as threads within the same OS pro-
cess. While multiple threads appear to be the natural solu-
tion to sharing memory, this approach suffers from several
challenges that reduce its generality and performance. In
our approach, we transparently share heap memory among
OS processes. This transition from threads to processes en-
ables HMPI to work seamlessly with existing MPI appli-
cations and without the performance issues of the thread-
oriented approach. Our approach works entirely in user
space on commodity x86 systems with no kernel extensions
or modification of system libraries.

Sections 4, 5, and 6 experimentally evaluate the performance
of our approach, showing that it outperforms native MPI li-
braries on multiple benchmarks. We analyze HMPI’s affect
on the processor cache in detail to show that it also im-
proves performance by utilizing caches more efficiently and
interfering less with the application’s own use of the cache.

The key contributions of our work are the following:

1. An analysis of thread-based MPI design and identifi-
cation of its limitations.

2. A shared memory allocator technique for transparently
enabling shared memory between local MPI ranks
without modifying application code.

3. Two new point-to-point protocols for message passing
that utilize a shared address space for better perfor-
mance.

4. Analysis of shared-memory message passing perfor-
mance on an x86 system using our shared memory
allocator technique, and on Blue Gene/Q, a system
providing a shared address space feature.

2. MPI ON SHARED MEMORY SYSTEMS
In this paper, we discuss three different approaches to mem-
ory layout and intra-node communication in MPI. Sec-
tion 2.1 discusses the traditional (process-based) approach
used in practice by most implementations. Previous work
has investigated the idea of a thread-based MPI design in
which each rank is a thread sharing memory with all ranks
on the same node. For reasons we will discuss in Section 2.2,
this approach is not prevalent in practice. We contribute a
third approach, discussed in Sections 3 and 4, that assigns
each rank to its own process but shares heap memory among
all ranks in a node. Our approach combines the benefits of
process-based and thread-based MPI design.

2.1 Process-based MPI
Although the MPI standard does not prescribe how MPI
ranks are implemented, the traditional assumption has been
that each rank is an OS process with its own private mem-
ory. Figure 1 illustrates this layout. The advantage of the
process-based design is that it makes it easier to coordinate
inter-node communication by multiple cores. Since each core
is used by a separate process, their MPI libraries maintain
separate state and thus require no synchronization. Since
network interfaces are typically designed to provide each
process a separate context in which to coordinate its out-
going and incoming communication, no MPI-level synchro-
nization is required to access the network.

Process 2! Process 3!Process 1!

Code!

Global!
Variables!

Process 4!

Stack!Stack!Stack!Stack!

Global!
Variables!

Global!
Variables!

Global!
Variables!

Code! Code! Code!

Heap! Heap! Heap! Heap!

Figure 1: Memory layout in the traditional process-based
MPI design. No application-visible memory is shared when
MPI ranks are processes.

The limitation of this design is in communicating among
different ranks that are executing within the same shared
memory node. MPI libraries often use a FIFO connection
(one for each pair of local ranks) for small messages, and one
or more shared memory regions mapped by multiple ranks
for larger messages. Either case inherently requires two copy
operations per message. The sender copies from its private-
memory send buffer into the FIFO queue or shared memory
region, and the receiver copies back out into its separate
private-memory receive buffer. A common optimization for
large messages is to overlap and pipeline the two copies by
breaking the message into blocks, allowing the sender and
receiver to perform their respective copies simultaneously.

FIFOs are a pair-wise connection, and shared memory re-
gions may also be created on a pair-wise basis to simplify
communication. Thus, the number of resources grows as the
square of the number of MPI ranks per node, which is often
the number of cores per node. Such an approach will con-
sume too many resources as the amount of memory available
per core continues to decrease on HPC systems.

Thread 2! Thread 3!Thread 1! Thread 4!

Stack!

Shared Heap!

Stack!Stack!Stack!

Global Variables!

Code!

Figure 2: Memory layout in the thread-based MPI design.
All application visible memory is shared when MPI ranks
are threads.

2.2 Thread-based MPI
The limitations of process-oriented MPI implementations
has motivated research on implementations where MPI
ranks are implemented as OS threads, all of which execute
within the same process [7, 20, 21]. Figure 2 illustrates this
layout. Threads are an excellent choice since they share all
their memory by default. However, many MPI applications
are written with the assumption that global variables are
private to each MPI rank. While threading gives each rank
its own stack and heap within he shared address space, one
set of global variables is shared among all MPI ranks in a
node. Application state becomes corrupted as different MPI
ranks write to the common global variables, which may exist
within the application and in any libraries they link with.

Developers of thread-oriented MPI implementations have at-
tempted to resolve this problem in two ways. First, they
have developed techniques to privatize global variables so
that each thread is provided its own copy. At the source code
level, privatization can be done using thread-local storage,
using the __thread keyword available in many C compil-
ers, or using compiler transformation tools [16, 20]. There
has been work on tools that modify object files to privatize
global variables when the source code is not available [16].

Given the complexity of privatization, especially in library
code, an alternative approach is to adjust the use of libraries
to ensure that no globals are used. This involves replacing
regular library calls with their thread-safe variants, for ex-
ample using strtok_r instead of strtok. Where thread-safe
alternatives are not available (e.g., the getopt function uses
static variables internally) locks are required to protect ac-
cess to the function. While it is possible to build compiler
tools to perform this replacement, they would require knowl-
edge about each library and its thread safety guarantees.

2.2.1 Network Performance
Where high performance is desired, MPI implementations
must use a network interface directly. Depending on the
network, issues can arise due to the use of multiple threads.
For example, not all network interfaces provide thread safe
APIs. Any MPI using multiple threads must protect all
inter-node communication using a lock. Process-based MPI
implementations face no such requirement. Unfortunately,
an MPI-level network lock results in high contention for net-
work resources and reduced performance. Figure 3 shows the
effect of this contention on the MiniMD1 application. We

1See Section 6.1 for details on MiniMD.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14 16

C
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

(s
e

c
o

n
d

s
,

lo
w

e
r

is
 b

e
tt

e
r)

MPI Ranks Per Node (16 nodes)

Processes (no lock)
Threads (network lock)

Figure 3: Affect of overhead due to lock contention for net-
work resources in the MiniMD application with strong scal-
ing. However, when using threads, the communication over-
head increases due to lock contention.

measured the time taken by the communication portions of
MiniMD, using varying numbers of ranks on 16 nodes of
the Cab system. Cab has an InfiniBand-based Performance
Scaled Messaging (PSM) network that is not thread-safe.
Network resource contention will be a problem when using
any network that does not support multiple threads as effi-
ciently as multiple processes.

Driver thread-safety also creates issues when using mul-
tiple threads with a process-based MPI implementation.
If MPI is running in MPI THREAD SINGLE mode, ap-
plication threads must use locking to control access to
MPI, which creates contention. However, if MPI provides
MPI THREAD MULTIPLE mode, then the library’s calls
to the network drivers from the various threads must also be
locked inside MPI because the drivers are not thread-safe.
This is one of the reasons why multi-threaded MPI applica-
tions are not common and perform sub-optimally [22].

All in all, the above observations suggest that thread-based
MPI implementations are not a practical approach for the
future of multi- and many-core HPC systems. We note that
no thread-based MPI has been widely adopted in practice.

3. SHARED MEMORY IN PROCESSES
The goal of our work is to develop an implementation of
MPI that is (i) optimized for shared memory hardware, (ii)
works on existing operating systems with no root access,
(iii) is compatible with any inter-node MPI implementa-
tion and (iv) provides peak performance for both intra- and
inter-node communication. Given the challenges faced by
MPI implementations that use threads to implement MPI
ranks, we have chosen to implement them using OS pro-
cesses. The challenge of this approach is to share memory
across processes by developing some mechanism to circum-
vent the memory protections typically enforced by the OS.

A number of solutions for sharing memory between pro-
cesses already exist on HPC systems. XPMEM [18, 24]
is a Linux kernel extension that allows processes to map
memory from another process, and is commonly found on
SGI and Cray systems. Blue Gene/Q systems have a fea-

ture that shares heap memory among all MPI ranks in
a node, and is enabled by setting an environment vari-
able (BG MAPCOMMONHEAP) [14]. LIMIC [25] and
KNEM [4] are kernel extensions adopted by MVAPICH and
Open MPI, respectively, that enable single copy communi-
cation. However, they require modification of the OS kernel,
and due to the overhead of system calls only provide per-
formance benefits for large messages. The LIMIC authors
report in [25] that there is only an improvement for 4 KiB
and larger message sizes. [4] states that KNEM is not com-
petitive for small messags, usually less than 16 KiB.

For Linux-based clusters without such functionality built in,
we have developed a replacement for the default memory al-
locator that shares heap memory among all processes in a
similar manner. Our shared memory heap allocator enables
the same shared-memory techniques on all Linux systems
without requiring installation of kernel extensions, modifica-
tion of system libraries, or administrative permissions. Our
shared heap allocator is stand-alone and not MPI specific;
we imagine it is also useful for other forms of shared memory
communication.

3.1 Shared Memory Heap Allocator
In order to make our system fully transparent, we override
the system’s default memory allocator to allocate memory
from a specially crafted shared memory pool. Normally, the
memory allocator incrementally requests memory from the
operating system using the sbrk or mmap system calls. We
implement our own version of sbrk that requests memory
from a shared memory region mapped on all MPI processes.
Using this approach, we have modified both Doug Lea’s mal-
loc library (dlmalloc) [11] and Google’s tcmalloc [8] library
to transparently provide shared memory from malloc and
related routines. All HMPI results shown in this paper use
our modified dlmalloc library, while the MPI results use the
Linux default system allocator (which is also based on dl-
malloc).

To provide memory for a shared heap, we allocate and map
a large shared memory region (larger than physical mem-
ory) to the same address on each MPI rank using mmap.
The shared region is divided evenly among the ranks on the
node, and each rank allocates memory only from its part
of the region. This approach eliminates the need for any
synchronization between processes within the memory al-
locator. On the Cab system with 32 GiB RAM per node,
we were able to reserve 32 GiB of virtual memory per MPI
rank, for a total of 32GiB · 16ranks = 512GiB. Without
swap, total memory usage cannot exceed physical memory,
but this larger shared region allows for unbalanced memory
usage across ranks.

Figure 4 illustrates how our shared memory allocator con-
nects multiple processes together. Stack, global variables,
and code are private to each process, but the heap is shared.
Our memory allocator provides the same shared-heap bene-
fits as thread-based MPI and systems with kernel extensions.
However, we incur none of the global variable privatization
challenges encountered by thread-based MPIs and do not
rely on specific operating systems, resulting in maximum
portability. Our approach works on any platform that al-
lows shared memory, allows overriding memory allocation

Process 2! Process 3!Process 1!

Code!

Global!
Variables!

Process 4!

Stack!

Shared Heap!

Stack!Stack!Stack!

Global!
Variables!

Global!
Variables!

Global!
Variables!

Code! Code! Code!

Figure 4: Memory layout of processes with our shared heap
allocator. Dark red segments are private to each process,
while the light blue heap segment is shared among all pro-
cesses in a node.

calls (e.g., via weak symbols), and provides an MPI library.

In addition to the heap, MPI allows communication buffers
located in global variables and the stack segment. Sec-
tion 2.2 discussed why sharing global variables is problem-
atic and undesirable. Sharing stack memory would not cause
problems, but there is no good mechanism for doing so. If
the application’s main routine only operates on local vari-
ables before calling a routine we control (i.e., malloc or
MPI_Init), it is possible to use the swapcontext et al. rou-
tines to switch to a stack located in shared memory. More
generally, a compiler tool could transform the application’s
source code or object files to enable sharing of stack memory.
Since the benchmarks and applications we have considered
so far primarily communicate using heap memory, we have
not implemented any form of shared-memory stack. Our
library falls back to single-copy communication if the re-
ceiver’s buffer is not shared, and two-copy communication if
the sender’s buffer is not shared (see Section 4.2).

4. HYBRID MPI

Node!Node!

App! App!

Hybrid MPI!

MPI!

App! App!

Hybrid MPI!

Figure 5: Hybrid MPI sits between applications and an ex-
isting MPI. Intra-node communication is handled by HMPI,
while an MPI is used across nodes.

We have implemented a ‘Hybrid’ MPI (HMPI) library to
investigate single-copy message passing techniques. Rather
than building an entire MPI implementation from the
ground up, we have taken the approach of layering HMPI
on top of any existing MPI library. Figure 5 illustrates how
HMPI layers between applications and MPI. We did not use
the PMPI (Profiling MPI) interface, but instead redefined
MPI routines using a header file. PMPI remains instact at
the underlying MPI layer below HMPI, though we believe it
can be supported at the HMPI layer as well. There are two
advantages to our approach: portability and transparency.

Portability : HMPI works on top of any existing MPI library
simply by linking it into the application. We are able to

extend both open- and closed-source MPI implementations
on multiple platforms.

Transparency : No code transformations, object file or li-
brary modifications are needed. Neither the application nor
the underlying MPI or memory allocator library need to be
changed or made aware of HMPI’s presence.

The combination of these advantages allows us to experi-
ment with new message passing techniques on multiple plat-
forms (including those with closed-source, proprietary MPI
implementations) with minimal effort. In this paper, we fo-
cus on point-to-point techniques in HMPI. Prior work [12]
has explored NUMA-aware collective communication algo-
rithms using HMPI and shared memory.

PACX-MPI [3, 9] is an earlier layered library MPI design
for grid systems. In their case, they implemented cross-
cluster MPI communication in their library and relied on
the native MPI libraries for communication within each sep-
arate cluster. Like our work, their motivation is achieving
performance productivity by leveraging existing work on
platform-optimized MPI libraries. Instead of inter-cluster
communication, we focus on optimizing intra-node commu-
nication and providing extensions to MPI for further lever-
aging shared memory performance.

To implement shared-memory message passing, HMPI as-
sumes that memory used for communication is mapped to
the same virtual address in every process on a node. We
show experimental results using our shared memory heap
allocator on a commodity x86 cluster (‘Cab’), and using the
BG MAPCOMMONHEAP feature on Blue Gene/Q (‘Se-
quoia’). Section 6 describes these systems in detail.

4.1 Message Matching
We implement two incoming message queues per receiver us-
ing linked lists. Figure 6 illustrates our design. One queue is
globally accessible by all ranks. Senders add messages to the
global queue owned by the rank for which the message is des-
tined. Each global queue is protected by an MCS lock [15].
An important benefit of the MCS lock is guaranteed FIFO
ordering of lock acquisitions. When using a lock without
this property (e.g., a simple compare and swap lock), some
ranks could be blocked for long, unpredictable periods wait-
ing to add a message to a receiver’s queue. FIFO ordering
ensures fairness.

The second queue is private. When a receiver attempts to
match incoming sends to local receives, it drains its global
queue and adds incoming sends to its private queue. Since
the queues are linked lists, the draining operation only in-
volves updating two pointers. The receiver then attempts
to match sends on its private queue to local receives. A sec-
ond private queue enables the receiver to loop many times
without need for synchronization, and ensures that messages
cannot be matched out of order due to senders adding new
messages to the queue. Our dual queue technique minimizes
contention between processes.

4.2 Communication Protocols
Although single-copy message transfer was our goal with
HMPI, we have discovered that simply using memcpy to

Shared!
Queue!

Private!
Queue!

2. Receiver drains shared queue!

Message!

1. Sender inserts
message into queue!

Message!
Message!
Message!

Lock!
3. Receiver matches
sends to receives!

Figure 6: HMPI’s matching design. Each receiver has two
queues, one shared and one private. Senders insert messages
into the shared queue protected by a lock. The receiver
drains the shared queue into its private queue and enters a
loop to match incoming sends to local receives.

Message size <
immediate
threshold?!

Allocate shared
memory and copy!

No!Is send buffer in
shared heap?!

Copy to immediate
buffer in message!

Yes!

Queue message on
receiver for matching!

Yes!

No!

Figure 7: Sender protocol flow. The sender ensures its buffer
is in the shared heap and uses the immediate transfer pro-
tocol for small messages.

transfer the data is often not the fastest method possible.
We use an ‘immediate’ protocol for small messages less than
the immediate threshold (currently 256 bytes, Section 4.2.1),
and a ‘synergistic’ protocol for messages larger than the syn-
ergistic threshold (currently 4 or 16 kB, Section 4.2.2). We
support buffers from global variables or the stack by check-
ing the location of each buffer given to HMPI by the applica-
tion. If the buffer address lies outside of our shared memory
heap, we fall back to a two-copy transfer mechanism.

Before queuing a message, the sender goes through a series
of checks as shown in Figure 7. If the message is small, we
go into the immediate protocol, inlining the message data
with the message’s matching information. If the applica-
tion’s send buffer is not located in the shared heap, we al-
locate a shared buffer and copy the data over. Finally, the
message is queued on the receiver’s shared queue.

Once a message is matched, the receiver decides how to
transfer data from the send buffer to the receive buffer. Fig-
ure 8 shows the decision process. If the receive buffer is not
on the shared heap or if the message is too small to use the
synergistic protocol, we use memcpy to transfer the data. For
larger messages we enter the synergistic protocol.

4.2.1 Immediate Transfer Protocol

Is receive buffer
in shared heap?!

Transfer using
memcpy()!

No!

Message size <
synergistic
threshold?!

Yes!

Transfer using
memcpy() !

Yes!

Transfer using
synergistic protocol!

No!

Figure 8: Receiver protocol flow. A single memcpy is used if
the receive buffer is not in the shared heap or if the message
is too small for the synergistic protocol.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 2 4 8

 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

1
k

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Message Size (bytes)

MVAPICH2
Memcpy

Immediate

Figure 9: Intra-socket small message latency on Cab.

For small messages, the best latency is achieved by utilizing
a two-copy method with the message data located immedi-
ately after the matching information. The performance ad-
vantage stems from the following simple observation: When
a message is matched, the receiver accesses the source mes-
sage information (source rank, tag, communicator), incur-
ring a cache miss. With a single-copy data transfer ap-
proach, copying the message data will incur another cache
miss, since that data has not been seen by the receiver. In-
lining the message after the sender’s matching information
causes the hardware to bring the data into cache at the same
time as the matching information, avoiding the second cache
miss when copying the data.

As seen in Figure 7, the sender will perform the additional
copy before queuing the message at the receiver. From the
receiver’s point of view, the immediate protocol is the same
as single-copy transfer—just copy the data from the location
provided by the sender. For small messages, the time saved
by avoiding the cache miss more than makes up for the cost
of doing two copies.

Figures 9 and 10 show intra- and inter-socket small mes-
sage latency on Cab3 using the NetPIPE [23] benchmark.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 4 8

 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

1
k

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Message Size (bytes)

MVAPICH2
Memcpy

Immediate

Figure 10: Inter-socket small message latency on Cab.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

1
k

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Message Size (bytes)

IBM MPI
Memcpy

Immediate

Figure 11: Small message latency on Sequoia.

Based on these results, we chose a threshold of 256 bytes,
below which we use the immediate protocol. Above that,
we use memcpy or the synergistic protocol. Figure 11 shows
small message latency on the Sequoia3 system (one socket
per node). Since we observe no benefit from the immediate
protocol on this system, we conditionally disable it if com-
piling for a Blue Gene/Q machine and fall back to memcpy.

4.2.2 Synergistic transfer protocol
For large messages, bandwidth is most important. We can
achieve higher data transfer rates than possible with a single
memcpy by having both the sender and receiver participate in
copying data from the send buffer to the receive buffer. To
do this, we break the data into blocks and utilize a shared
counter that is atomically updated by the sender and re-
ceiver. When the receiver matches a message, it initializes
the counter (used as a byte offset) and begins copying data
one block at a time. Before copying each block, the counter
is incremented. If the sender enters the MPI library and sees
that the receiver is copying in block mode, it also begins in-
crementing the counter and copying blocks of data until the
entire message has been copied.

In the worst case, the sender does not participate (it is either

3Details on the Cab and Sequoia systems can be found in
Section 6.

 0

 5000

 10000

 15000

 20000

 25000

 5
1

2

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

3
2

m

B
a

n
d

w
id

th
 (

m
e

g
a

b
y
te

s
 /

 s
e

c
o

n
d

)

Message Size (bytes)

MVAPICH2
Memcpy

4kb Block
12kb Block

Figure 12: Intra-socket large message bandwidth on Cab.

executing application code or helping with other transfers),
and we see the same bandwidth as a memcpy, which is the
peak bandwidth achievable by one core. The sender can
enter and assist the transfer at any point. Bandwidth im-
provement then depends on when the sender begins assisting
and on the peak bandwidth achievable by two cores.

The advantage of this protocol is that communication-
computation overlap is greater than that of existing pro-
tocols when the sender has other work to do. Unlike the
two-copy protocols used in current MPI implementations,
the receiver can perform the entire data transfer without
the sender, and does so when beneficial. Communication
performance is dynamically accelerated when the sender is
able to assist the receiver in copying data.

Figures 12 and 13 show intra- and inter-socket large mes-
sage bandwidth on the Cab system. Based on experimenta-
tion, we chose two different block sizes: 4kb and 12kb. For
messages smaller than twice the block size, we use a single
memcpy, since the synergistic protocol needs multiple blocks
to provide a benefit. Starting at 8kb, we use the synergistic
protocol with a 4kb block. For messages greater than 24kb,
we switch to a 12kb block. In some cases peak bandwidth
is more than double that of MPI or memcpy.

Figure 14 shows large message bandwidth on Sequoia, which
has one socket per node. Based on experimental results, we
chose block sizes of 16kb and 64kb.

NetPIPE represents the ideal case for the synergistic
protocol—both the sender and receiver are always ready and
available to assist in data transfer. In practice, the band-
width seen by applications will vary somewhere between that
of memcpy and the peak synergistic bandwidth depending on
communication-computation overlap.

5. COMMUNICATION ANALYSIS
While raw communication performance is important, an-
other way that MPI libraries affect application performance
is their effects on the cache and the application data struc-
tures within it [19]. We thus studied the effect that HMPI’s
and MPI’s communication protocols have on the cache via
the micro-benchmark in Figure 15, which models the typical

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5
1

2

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

3
2

m

B
a

n
d

w
id

th
 (

m
e

g
a

b
y
te

s
 /

 s
e

c
o

n
d

)

Message Size (bytes)

MVAPICH2
Memcpy

4kb Block
12kb Block

Figure 13: Inter-socket large message bandwidth on Cab.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 5
1

2

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

3
2

m

B
a

n
d

w
id

th
 (

m
e

g
a

b
y
te

s
 /

 s
e

c
o

n
d

)

Message Size (bytes)

IBM MPI
Memcpy

Block 16kb
Block 64kb

Figure 14: Large message bandwidth on Sequoia.

interaction between the application and the MPI library. It
reads the elements of a data buffer to bring it into the cache,
then performs a ping-pong communication and finally reads
the data buffer again. We conducted experiments on Cab
with buffer sizes between 128 bytes and 32kb (the size of
Cab’s L1 Data cache) where the read loop either accesses
buffer entries in sequential or random order and each cache
line is accessed exactly once. Further, we studied config-
urations where separate buffers were used for both data
and communication or a common buffer for both (in this case
message size was ≤ buffer size). To understand how the
different types of communication protocols affect the appli-
cation’s use of the cache we measure the number of cache
misses the benchmark incurs during the second read loop.

Figure 16 shows the misses in the L1 data cache on
the Cab system (32kb in size), showing the average of
10 runs. Specifically, we report the fraction of the
data buffer reads that miss: (number of L1 data misses) ∗
(cache line size)/(data buffer size). From top to bottom
the graph shows misses for cases where HMPI is used
for communication, then MPI and finally the case where
no communication was performed between the read loops.
From left to right we show data for the sequential and
random loop orders and configurations where the buffers
were the common or separate. For each configuration
we show a heat map where the x-axis is communication

unsigned char ∗data buf , ∗comm buf ;

// Read the buf fer , br ing ing i t into the cache .
for (int i = 0 ; i < x ; i++)

sum += data buf [index (i)] ;

// Perform ping−pong communication on e i t h e r
// the data bu f f e r (Common conf igurat ion) or a
// communication bu f f e r (Separate)
i f (Common) Do PingPong (data buf) ;
else i f (Separate) Do PingPong (comm buf) ;

// Read the bu f f e r in sequen t i a l or random order ,
// whi le measuring cache misses .
Start Counter s () ;
int sum ;
for (int i = 0 ; i < x ; i++)

sum += data buf [index (i)] ;
Measure Elapsed Counters () ;

Figure 15: Benchmark that models the impact of MPI com-
munication on application cache use.

Common Buffer

Read Order = Rand

Common Buffer

Read Order = Seq

Separate Buffers

Read Order = Rand

Separate Buffers

Read Order = Seq

128b
512b

1K

8K

16K

24K

32K

128b
512b

1K

8K

16K

24K

32K

128b
512b

1K

8K

16K

24K

32K

H
M

P
I−

F
ra

c
M

is
s
e

d
M

P
I−

F
ra

c
M

is
s
e

d
n

o
M

P
I−

F
ra

c
M

is
s
e

d

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

Data Buffer Size (KB)

C
o
m

m
u
n
ic

a
ti
o
n
 B

u
ff
e
r

S
iz

e
 (

K
B

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 16: Fraction of accesses to the data buffer on which
an L1 cache miss occurs. Lighter colors indicate fewer cache
misses.

buffer size and y-axis is the data buffer size with the range
[128b, 256b, ...896b, 1kb, 2kb, ...32kb]. The shade of each tile
denotes the above fraction miss metric, with all values >=3
shown in the same shade to provide high visual resolution
for the primary value range of [0-3].

The data shows that the miss rate is low when no communi-
cation is performed. It grows with the size of the data buffer
up to the 32kb size of the L1 data cache. This phenomenon
is observed for both read orders but is more significant for
sequential. Since the sequential access pattern can be
readily detected by the cache hardware, this indicates that
the cache replacement algorithm on this processor is making
sub-optimal replacement decisions.

Looking at the HMPI and MPI data, we observe both li-
braries increase the number of cache misses in the read loop.
This is caused both by evictions of data from the cache as
well as due to poor decisions by the cache replacement al-
gorithm. The impact of cache evictions can be seen in the
increased miss fractions for the separate buffer configura-
tion relative to common buffer, since in the former case the
processor touches more individual addresses.

The impact of the replacement algorithm is observed by
looking at the difference between the results for random and
sequential access orders. It can be seen that the difference
between separate and common is generally small for all the
buffer size configurations the two share. In contrast, the
sequential access order causes many more misses than the
random, indicating that the increase is due to interference
with the replacement policy. The likely cause is that the
cache access pattern of the communication code trains the
replacement algorithm to expect the same access pattern
in subsequent code and when control returns to the appli-
cation it makes poor decisions that result in unnecessary
misses. Indeed, in many cases there are more misses than
the number of lines in the data buffer, especially for small
data buffers and large communication buffers. This indicates
that the useless lines from the communication buffer are be-
ing prefetched when in fact the application is attempting to
access the data buffer.

Figure 17 shows the miss fraction metric of HMPI divided
by the same metric of MPI. Values closer to 0 (HMPI has
fewer misses) are shown in light shades while values close to
1.0 (HMPI and MPI are the same) are shown as dark. The
data shows that for random reads HMPI induces fewer appli-
cation misses across all data buffer sizes when communica-
tion buffers are smaller than 8kb (quarter of the L1 cache).
The same is true for sequential reads where data buffers
are smaller than 16kb (half the L1 cache) The conclusion
is that for applications that operate on and communicate
with buffers of a few kilobytes (expected to be the norm as
the same amount of data is divided among more comput-
ing cores), HMPI has a significantly smaller impact on the
application’s use of the cache.

6. APPLICATION ANALYSIS
The various micro-benchmark results shown in Sections 4
and 5 give a picture of HMPI’s shared memory communica-
tion performance in isolated scenarios. In this section, we
compare the performance of HMPI to MPI for two applica-

Common Buffer

Read Order = Rand

Common Buffer

Read Order = Seq

Separate Buffers

Read Order = Rand

Separate Buffers

Read Order = Seq

128b

512b

1K

8K

16K

24K

32K

H
M

P
I−

M
P

I−
R

a
tio

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

1
2

8
b

5
1

2
b

1
K

8
K

1
6

K

2
4

K

3
2

K

Data Buffer Size (KB)

C
o
m

m
u
n
ic

a
ti
o
n
 B

u
ff
e
r

S
iz

e
 (

K
B

)

0.2 0.4 0.6 0.8 1.0 1.2

Figure 17: The fraction of accesses to the data buffer on
which an L1 cache miss occurs with HMPI, divided by
the same with MPI. Lighter colors indicate fewer misses in
HMPI compared to MPI.

tions: MiniMD and LULESH. We show results for one node
(where our shared memory protocols are used exclusively in
HMPI) as well as up to 64 nodes.

All figures in this section show ‘percent improvement’ on
the y-axis calculated as Y = 100∗ (HMPI/MPI) using the
respective HMPI and MPI wall clock times. We report the
improvement in application time as well as the time taken
specifically by each application’s communication phases.

The ratio of speedup between application and communica-
tion time varies based on the ratio of communication to com-
putation in the application, which in turn depends on several
factors such as problem size and ratio of processing speed
to memory bandwidth. All of our results show weak scaling
with a fixed problem size per rank.

We show results for two different systems. Cab has two
Xeon ES-2670 (eight core, 2.6 GHz) processors (16 cores
total), 32 GiB of RAM per node, and a PSM InfiniBand
network. MVAPICH2 v1.9rc1 was used as our comparison
MPI on Cab. Sequoia is a Blue Gene/Q system with one
PowerPC A2 (sixteen core, four threads per core, 1.6 GHz)
processor (64 tasks total) and 16 GiB of RAM per node.
IBM’s MPICH-based MPI library was used on Sequoia.

6.1 MiniMD
MiniMD is part of the Mantevo [5] mini-application suite,
which consists of several mini-applications representing
larger application classes. Such mini-applications are in-
creasingly used in exascale research for their combination of
simplicity and relevance. MiniMD is a molecular dynamics
simulation that computes atom movement over a 3D space
decomposed into a processor grid. The primary communi-
cation pattern is a 3D, 6-point nearest neighbor exchange
performed twice per work iteration.

Figures 18 and 19 show performance comparisons for Min-
iMD. We ran 2500 iterations and scaled the problem size so
that each rank had approximately 1,000 atoms. On Cab, we

 0

 2

 4

 6

 8

 10

 12

 14

 16

16 32 64 128 256 512 1024 2048

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

Communication
Application

Figure 18: HMPI performance gains relative to MPI for
MiniMD on the Cab system (16 ranks per node).

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1024 2048 4096

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

Communication
Application

Figure 19: HMPI performance gains relative to MPI for
MiniMD on the Sequoia system (64 ranks per node).

 0

 10

 20

 30

 40

 50

8 64 512 1728

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

Communication
Application

Figure 20: HMPI performance gains relative to MPI for
Lulesh on the Cab system (16 ranks per node).

 0

 5

 10

 15

 20

64 512 1728 4096

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

Communication
Application

Figure 21: HMPI performance gains relative to MPI for
Lulesh on the Sequoia system (64 ranks per node).

observe communication speedups ranging from 3.1-15.7%,
resulting in total application time improvements of 1.5-7.9%.
Sequoia shows improvements of 2.2-26.2% communication
time and 0.2-4.1% application time. Compared to Cab, Se-
quoia has more memory and network bandwidth per FLOP.
As a result, a smaller portion of execution time is spent
communicating on Sequoia. Thus, changes in communica-
tion time have a smaller impact on overall application per-
formance.

6.2 LULESH
LULESH, also known as Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics [10], is the mini-
application version of a full-size hydrodynamics code in
use at Lawrence Livermore National Laboratory. LULESH
simulates the Sedov blast wave problem on a uniform 3D
mesh decomposed spatially among MPI ranks. In each time
step, multiple exchanges with up to 27 neighbors are per-
formed. Each data exchange is implemented using non-
blocking sends and receives.

Figures 20 and 21 show performance comparisons for

 0

 5

 10

 15

 20

 25

 30

 35

16 32 64 128 256 512 1024

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

L2 cache misses
L3 cache misses

Figure 22: Reduction of total application cache misses in
HMPI compared to MPI for MiniMD on Cab.

LULESH. LULESH requires that the number of ranks be
a perfect cube (i.e., NP = x3). A fixed problem size of 153

per rank was used. On Cab, we see communication time
speedups of 11-46.1% and application time speedups of 14.1-
19.5%. Communication time speedups of 4.2-20.1% and ap-
plication time speedups of 7.9-10.1% are seen on Sequoia. As
we saw with MiniMD, communication time speedups have a
smaller impact on Sequoia compared to Cab.

6.3 Application Cache Locality
In addition to wall clock performance, we also compared L2
and L3 cache misses incurred by the entire application when
using HMPI and MVAPICH2. Figures 22 and 23 show re-
sults on the Cab system for MiniMD and LULESH, respec-
tively. Cab’s processors have three levels of cache. L1 (32kb)
and L2 (256kb) are exclusive to each core, while L3 (20mb)
is shared by all 8 cores.

HMPI reduces both L2 and L3 cache misses for both appli-
cations. We observe reductions of 8-28% for MiniMD and
8.3-40% for LULESH. In LULESH, the 8 rank L3 cache re-
sults appear to be an outlier. Cab has 16 cores per node, so
only half of the available cores are utilized. More L3 cache
is available per rank, resulting in fewer total misses for both
HMPI and MPI.

7. CONCLUSION
In this paper we developed a novel scheme for exploiting
shared memory hardware in MPI programs that are written
for distributed memory systems. This mechanism shares
selected subsets of memory among MPI ranks to implement
communication between them more efficiently. However, the
mechanism is not limited to MPI—it further enables opti-
mizations such as ownership passing [2] or send/receive loop
fusion, both departures from the one-copy semantics of MPI,
or other application-specific optimizations.

In addition, we utilize a layered model for implementing our
optimizations. HMPI resides on top of the MPI interface,
however, it also integrates vertically in that it hooks into
MPI’s communications and transparently optimizes them.
We showed that this model is highly portable and requires

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 64 512 1728

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

(h
ig

h
e

r
is

 b
e

tt
e

r)

MPI Ranks

L2 cache misses
L3 cache misses

Figure 23: Reduction of total application cache misses in
HMPI compared to MPI for LULESH on Cab.

no kernel extensions, system library changes, or administra-
tive access. No modifications to applications or other MPI
implementations are required.

We used these two mechanisms to develop HMPI, a fast lay-
ered MPI library that optimizes hybrid shared memory com-
munication. Our optimizations show significantly less on-
node communication overheads compared with traditional
MPI approaches. Unlike prior work with thread-based MPI
implementations, HMPI integrates transparently into legacy
applications. We demonstrate the applicability with the
MiniMD and LULESH application codes, which have com-
munication time speedups of up to 26.2% and 46.1% respec-
tively. Our shared memory communication techniques, im-
plemented in HMPI, transparently improve performance for
existing MPI applications on modern and future multi-core
HPC systems.

8. ACKNOWLEDGMENTS
This work was supported in part by the Department of En-
ergy X-Stack program and the Early Career award program.
It was partially performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344.

9. REFERENCES
[1] The OpenCL specification version 1.0, 2009.

[2] A. Friedley, T. Hoefler, G. Bronevetsky, C.-C. Ma, and
A. Lumsdaine. Ownership passing: Efficient
distributed memory programming on multi-core
systems. February 2013. PPoPP 2013.

[3] E. Gabriel, M. Resch, and R. RÃijhle. Implementing
mpi with optimized algorithms for metacomputing,
1999.

[4] B. Goglin and S. Moreaud. KNEM: a Generic and
Scalable Kernel-Assisted Intra-node MPI
Communication Framework. Journal of Parallel and
Distributed Computing, 73(2):176–188, Feb. 2013.
KNEM.

[5] M. A. Heroux, D. W. Dorfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,

E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications. 2009.

[6] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji,
B. Barrett, R. Brightwell, W. Gropp, V. Kale, and
R. Thakur. Leveraging MPI’s One-Sided
Communication Interface for Shared-Memory
Programming. In EuroMPI 2012, Vienna, Austria,
volume 7490, Sep. 2012.

[7] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI.
In International Workshop on Languages and
Compilers for Parallel Computing (LCPC), College
Station, Texas, October 2003.

[8] G. Inc. gperftools.
https://code.google.com/p/gperftools.

[9] R. Keller, E. Gabriel, B. Krammer, M. S. MÃijller,
and M. M. Resch. Towards efficient execution of mpi
applications on the grid: Porting and optimization
issues. Journal of Grid Computing, 2003.

[10] Lawrence Livermore National Laboratory.
Hydrodynamics challenge problem, 2012.

[11] D. Lea. Doug Lea’s malloc (dlmalloc).
http://g.oswego.edu/dl/html/malloc.html.

[12] S. Li, T. Hoefler, , and M. Snir. NUMA-Aware Shared
Memory Collective Communication for MPI. Jun.
2013. HPDC’13.

[13] J. Liu, J. Wu, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand.
In ACM International Conference on Supercomputing
(ICS’03), 2003.

[14] Megan Gilge. IBM system Blue Gene solution: Blue
Gene/Q application development, December 20 2012.

[15] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems, 9, 1991.

[16] S. Negara, G. Zheng, K.-C. Pan, N. Negara, R. E.
Johnson, L. V. Kale, and P. M. Ricker. Automatic
MPI to AMPI Program Transformation using
Photran. In 3rd Workshop on Productivity and
Performance (PROPER 2010), number 10-14,
Ischia/Naples/Italy, August 2010.

[17] OpenMP Architecture Review Board. OpenMP
application program interface version 3.0, May 2008.

[18] K. Pedretti and B. Barrett. XPMEM: Cross-Process
Memory Mapping.

[19] S. Pellegrini, T. Hoefler, and T. Fahringer. On the
Effects of CPU Caches on MPI Point-to-Point
Communications. In IEEE International Conference
on Cluster Computing (CLUSTER), sept. 2012.

[20] M. Pérache, P. Carribault, and H. Jourdren.
MPC-MPI: An MPI implementation reducing the
overall memory consumption. In EuroPVM/MPI,
Berlin, Heidelberg, 2009.

[21] H. Tang and T. Yang. Optimizing threaded MPI
execution on SMP clusters. In ACM International
Conference on Supercomputing (ICS), 2001.

[22] R. Thakur and W. Gropp. Test suite for evaluating
performance of multithreaded MPI communication.
Parallel Comput., 35(12), Dec. 2009.

[23] D. Turner and X. Chen. Protocol-dependent
message-passing performance on linux clusters. In

IEEE International Conference on Cluster Computing,
CLUSTER ’02, Washington, DC, USA, 2002.

[24] M. Woodacre, D. Robb, D. Roe, and K. Feind. The
SGI Altix 3000 global shared-memory architecture.
2005.

[25] H. wook Jin, S. Sur, L. Chai, and D. K. Panda. Limic:
Support for high-performance mpi intra-node
communication on linux cluster. In In International
Conference on Parallel Processing (ICPP), pages
184–191, 2005.

