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Abstract. MPI’s derived datatypes provide a powerful mechanism for
concisely describing arbitrary, noncontiguous layouts of user data for
use in MPI communication. This paper formulates self-consistent per-

formance guidelines for derived datatypes. Such guidelines make per-
formance expectations for derived datatypes explicit and suggest rele-
vant optimizations to MPI implementers. We also identify self-consistent
guidelines that are too strict to enforce, because they entail NP-hard op-
timization problems. Enforced self-consistent guidelines assure the user
that certain manual datatype optimizations cannot lead to performance
improvements, which in turn contributes to performance portability be-
tween MPI implementations that behave in accordance with the guide-
lines. We present results of tests with several MPI implementations,
which indicate that many of them violate the guidelines.

1 Introduction

Self-consistent performance requirements for MPI are an invitation to MPI im-
plementers to ensure consistent performance among interrelated functionalities.
In addition to guarding against unpleasant performance surprises, such guide-
lines can support performance portability among MPI implementations: They
avoid the need for hand optimizations to compensate for unsatisfactory per-
formance of specific functions in specific contexts, systems, or MPI implementa-
tions, which could also be counterproductive on other systems, implementations,
or circumstances. Self-consistent MPI performance guidelines can be construed
as performance expectations for application programmers, recommendations for
MPI implementers, or even requirements that would be desirable to fulfill.

Performance expectations for MPI communication functions were formulated
in [11] and for MPI-IO in [3]. This paper proposes performance expectations and
guidelines for the derived datatype mechanism in MPI. We identify a number of
guidelines for the performance of the MPI datatype mechanism that an MPI im-
plementation should meet so as to enable and encourage performance-portable
programming. We also present the results of simple experiments to validate MPI
implementations. Our measurement results for several implementations indicate
that many of them violate the performance guidelines, which can lead to un-
pleasant surprises for users. This result should serve as an encouragement for
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further research and implementation work on improving the handling of MPI
derived datatypes.

1.1 Related Work

The derived datatype mechanism is one of the central concepts of the MPI stan-
dard. It separates communication operations from the structure of data being
communicated [7, Chapter 4] and is vital for the MPI-IO specification for dis-
tributed file structures [7, Chapter 13]. The generality and expressive power
of the derived datatype mechanism is one feature that sets MPI apart from
other interfaces with similar intentions and scope. Describing complex, local
data layouts by derived datatypes makes it possible for the MPI implementa-
tion to handle such structures by efficient packing and unpacking mechanisms
that interact closely with (pipelined) communication algorithms or by exploiting
available hardware support for noncontiguous data communication. Achieving
similar or better effects by hand is tedious and in many cases non-portable per-
formance wise. The ultimate goal of an efficient MPI implementation of the
datatype mechanism is, in some loose sense, never to be worse than what the
application programmer can achieve by hand packing/unpacking and commu-
nicating the packed buffers. This paper is an attempt toward defining this goal
more precisely.

Providing efficient implementations of MPI datatypes has therefore been the
focus of several groups [2, 4, 9, 10, 12], and much progress has been achieved,
although there are still situations where datatype performance is less satisfac-
tory as we discuss in Section 7. The use of MPI datatypes to provide better
performance within applications has been explored in several studies, e.g., [1, 5,
6]. Benchmarks for datatypes focusing on the complexity of the different con-
structors were defined in [8]. We are not aware of any work directly addressing
performance expectations and guidelines for MPI datatypes.

2 Derived Datatype Constructors

MPI derived datatypes can be thought of as concise descriptions of layouts of
data in process memory. MPI derived datatypes are described in [7, Chapter
4], which the reader should consult for precise definitions (constructors, type
signatures and maps). There are five main MPI functions for constructing new
datatypes out of old ones. Let n be the value of the count argument supplied to
the constructors. We omit all arguments that are not essential for the discussion.

1. MPI Type contiguous(n,T ): n successive blocks of type T , denoted as contig(n,-
T )

2. MPI Type vector(n,m,T ): n strided blocks of m instances of type T , denoted
as vector(n,m, T )

3. MPI Type create indexed block(n,m,T ): n blocks of m instances of type T
each with own displacement, denoted as index block(n,m, T )
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4. MPI Type indexed(n,mn,T ): n blocks of type T each with own count mi

(0 ≤ i < n) and displacement, denoted as index(n,mn, T ). The total number
of blocks is

∑n

i=0
mi.

5. MPI Type create struct(n, mn, Tn): n blocks of types Ti each with own count
mi (0 ≤ i < n) and displacement, denoted as struct(n,mn, Tn)

The constructors can be applied recursively, so T can be a primitive, ba-
sic datatype or a previously constructed, derived datatype. In addition, there
are convenience functions for creating datatypes representing subarrays and dis-
tributed arrays. Another special constructor makes it possible to change the
extent of a (derived) datatype, which is important when using nested type con-
structors, see for instance [1].

A first benchmark measures the basic communication performance for strided
layouts described by each of the five constructors. The benchmark can be pa-
rameterized in type T (here we use only the basic MPI DOUBLE type), stride s and
number of blocks n. Communication performance is measured by point-to-point
ping-pong communication in order to be able to focus as far as possible on the
datatype component.

Benchmark 1 The same strided layout of a n repetitions of type T with stride
s described by the five different type constructors. Communication time for the
five types as a function of number of repetitions n.

On a given architecture the layout of the data elements in memory eventually
determines the performance of communication operations involving the derived
datatype. Alignment of the basic datatypes might be good or bad, the basic
datatypes may be blocked, or strided or otherwise regularly spaced which might
be advantageous for some architectures, there might be special hardware that can
exploit certain structures in the layout, etc. For these reasons it is not possible to
pose absolute performance requirements on MPI operations involving datatypes.
A natural user expectation, however, would be that hardware support, e.g., for
strided memory access or communication, bulk transfers etc. be utilized wherever
possible by the MPI library.

However, what can be done, and this is the key point, is to relate the many
different ways that a given type map can be described by the derived datatype
mechanism (e.g., as in Benchmark 1). A self-consistent MPI performance guide-
line for datatypes would state that the performance of an MPI communication
operation with some datatype T describing the given (non-contiguous) layout
should be no worse than the same operation with any other datatype T ′ that
describes the same layout. Otherwise, the user could improve performance by
possibly tedious and non-portable redefinitions of the datatype description of
the application data.

Another user expectation which we discuss in more detail in Section 5 is that
MPI operations with datatypes perform at least as well as manually packing the
data into a contiguous buffer before the MPI operation.

Each of the type constructors describes a sequence of n blocks. The con-
tiguous and vector types do so with constant extra information, the indexed
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block requires one array for the displacements, the indexed one extra array for
the block lengths, and the structure yet one more array for the datatypes of
the blocks. We formalize this by associating the penalties 0, 0, 1n, 2n, 3n, plus
some constant O(1) overhead, with the five constructors, accordingly. The to-
tal penalty of a datatype is defined recursively as the penalty of the top-level
constructor times the penalty of the subtype, or, for the struct constructor, the
sum of the penalties of the subtypes. The intuition is that in order to process a
layout described by a datatype with some total penalty h, Ω(h) operations are
required just to parse the type map. The strictest, self-consistent performance
guideline then says that the performance of an MPI function with datatype T
should be no worse than the performance with a datatype T ′ that has minimal
total (considering possibly recursive type specifications) penalty.

3 Trivial Expectations

We will use the following notation to express performance expectations and
guidelines: MPI A(n, TA′) � MPI B(n, TB′) shall mean that MPI function A op-
erating on n elements as described by datatype TA′ is not slower than MPI
function B with type TB′ for almost all n, all other things, including in particu-
lar the type map of the datatypes TA′ and TB′ , being equal.

Expectation (1) comes directly from the MPI standard which states that a
call to a communication function with a count and a datatype argument is func-
tionally equivalent to the same call where the count and the datatype have been
encapsulated in a contiguous datatype [7, Section 4.1.11]. It would be sensible
to expect that these two equivalent call forms would also perform similarly:

MPI A(1, contig(n, T )) ≈ MPI A(n, T ) (1)

This should hold for any type T . Exhaustive verification is of course not pos-
sible, but a simple benchmark will indicate whether the expectation is reasonably
fulfilled.

Benchmark 2 Six basetypes T0 = T , T1 = contig(k, T ), T2 = vector(k, T ),
T3 = index block(k, T ), T4 = index(k, T ), and T5 = struct(k, T ) with repetition
count n, versus T0, . . . , T5 encapsulated in a contiguous type with count n; for
T0 repetition count is kn so as to have the same number of element in all six
cases. Communication performance with the two versions for the six types.

This benchmark measures both sides of Equation 1. It should be extended
with more irregular layouts, e.g., from the following benchmarks.

The five constructors are able to express more and more irregular layouts
of data in memory, but at an increasing penalty (more parameters for displace-
ments/indices, block lengths, and datatypes). For a given, regularly strided lay-
out that can be expressed with all five constructors, it is therefore natural to
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expect, for any function f(n) ≤ n (e.g., constant), that

MPI A(n, contig(f(n), T )) � MPI A(n, vector(f(n), T ))

� MPI A(n, index block(f(n), T ))

� MPI A(n, index(f(n), T ))

� MPI A(n, struct(f(n), T )) (2)

Guideline (2) says that if a given layout can be expressed with fewer pa-
rameters (less penalty), then for any MPI function A this should perform no
worse, ideally better, than expressing this layout with a datatype constructor
with higher penalty. It is a (trivial) self-consistent performance requirement: if
the higher penalty datatype constructor would perform better in some context,
the user could obtain this performance by manually rewriting his code to use
the better performing constructor. With Benchmark 1 Expectation (2) can be
checked for non-nested instances of the five constructors, and we discuss this in
Section 7.

4 Non-trivial Guidelines

Non-trivial guidelines either constrain or impose requirements on an MPI imple-
mentation. Not all MPI libraries may fulfill them, but for performance portability
reasons it is beneficial for implementations to adhere to them. This saves the user
from the temptation to look for the best performing constructor, and let him
focus instead on the most convenient, close-to-the-application-logic description.

The self-consistent principle would seem to require that MPI libraries do type
normalization of any user-defined datatype to the “most efficient” representation
that could be expressed by other datatype constructors. The MPI Type commit
function is the point where MPI libraries can do such normalization. For in-
stance, a struct(n,mn, T ) where all n blocks have the same basetype could
trivially be converted into an indexed type which has penalty 2n instead of
3n. Or an index(n,mn, T ) where all blocks have the same size could be con-
verted into an index block(n,m, T ), again with less penalty. If in addition the
indices are regularly strided the index block(n,m, T ) could be converted into
a vector(n,m, T ), now with constant penalty, and if the stride is equal to the
block length, this could also be expressed as a contig(n, T ). This is stated as
guidelines/requirements of the form

MPI A(n, struct(n′,mn′ , Tn′)) ≈ MPI A(n, index(n′,mn′ , T )) (3)

for indexed layouts where all indexed elements have the same basetype Ti = T .
From such requirements it would follow that communication with a datatype
T whose type map consists of consecutive, basic datatypes in increasing offset
order should be no worse than communication with a basic datatype alone, that
is
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MPI A(n) ≈ MPI A(n, T ) (4)

In general, self-consistency would require MPI implementations to solve the
following problem.

Definition 1. The datatype normalization problem is the problem of finding,
for given layout, the derived datatype with the lowest penalty describing the same
layout.

At the top level use of a constructor, type normalization is easy and looks
sensible. A simple scan through index, blocksize and type lists can easily discover
whether a type constructor with high penalty can be expressed in terms of a more
regular constructor with lower penalty. However, for nested types, normalization
is not trivial. A datatype layout described by the MPI constructors can be
described by a tree with repetition counts and displacement/type lists at the
nodes, and there are many trees describing the same layout. Finding the one with
least penalty is similar to hard optimization problems on trees, and the presence
of repetition counts makes the problem particularly difficult. We conjecture that
the type normalization problem is NP-hard. If this conjecture is true, it is
not reasonable to require that an MPI implementation performs optimum type
normalization in all cases.

The next benchmark is intended to test whether slightly non-trivial normal-
izations are performed. It is parameterized in a type T .

Benchmark 3 a) A strided layout where the ith element is placed at position
is+(i mod 2) described with the MPI Type create indexed block constructor (can-
not be normalized to a one level vector type) versus a two level vector of n/2
blocks of a two element vector with stride s+1 and extent 2s. The first descrip-
tion has penalty n, the second penalty O(1).

b) A layout of two elements, a stride, three elements, a stride, and a single
element is repeated n/6 times. This layout described with the MPI Type indexed

constructor versus description as two elements followed by a vector of n/3 − 1
blocks of three elements, followed by a single element. The latter description has
penalty O(1), the former penalty 2n.

Communication performance with the two versions of the layouts.

5 Packing

MPI provides functionality for packing any layout described by a derived data-
type into a contiguous buffer. It is reasonable to expect that in communication
functions this is done internally as necessary, such that first packing and then
communicating the consecutive buffer does not make sense, performance wise.
This is an example of a self-consistent performance requirement in which an
MPI functionality (namely, any communication function with a non-contiguous

6



layout) is implemented (by the application programmer) in terms of other MPI
functionality [11].

MPI A(n, T ) � MPI Pack(n, T,B) +MPI A(B) (5)

where B is the intermediate packed buffer.

Benchmark 4 The previous benchmarks in two versions: communication with
datatypes directly in the communication functions, and with a pack/unpack to/-
from contiguous buffers before/after communication. Also pack time is measured
stand alone.

As n grows large, a reasonable MPI implementation should be able to do
pipelining to overlap any internal packing that may be necessary with other
operations. For very small data, explicit packing with MPI Pack could make
sense, but should make no difference.

Again, by self-consistency recursive application of pack should not lead to an
improvement [11]. Pack for basetypes should be comparable to memcpy; other-
wise, the user would be tempted to do this optimization by hand. This implies
that packing by hand in the sequence implied by the datatype constructors will
not make sense. Hand-packing can lead only to an improvement if non-trivial
tricks or domain knowledge is exploited. This can be expressed as

MPI Pack(n, T,B) � Userpack(n, T,B) (6)

Note that user-provided code for pack and unpack operations range from very
simple loops to complex, memory-hierarchy-aware codes using deep application
knowledge. A natural user expectation is that the MPI operations perform at
least as well as “simple” user code implemented by straightforward loops over
and recursive decomposition of the datatype T .

Benchmark 5 Packing time versus user packing time with a simple pack loop
for the datatypes of the previous benchmarks.

6 Datatype Preprocessing and Commit

It appears difficult to pose self-consistent or absolute performance requirements
for the type constructors and the MPI Type commit function. For the construc-
tors at least all parameter lists must be read (and unfortunately copied, because
the user may change the buffers after the creation call), so the time is Ω(n) where
n is the total size of parameters in the call, and possibly Ω(m) where m is the
penalty of the constituent datatypes (here it probably suffices to go through the
normalized subtypes). The MPI Type commit function may for trivial library im-
plementations do nothing and take constant time otherwise an expectation may
be that no more than linear time (in either penalty or total size of parameters)
be taken.

Benchmark 6 Type construction and commit times are measured for the data-
types of previous benchmarks.
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Library Phase User Contig Resized Vector BIdx Idx Struct

MPICH2 Pack 74 65 65 65 94 180 262

MPICH2 Send 486 459 463 544 480 460 457

Open MPI Pack 74 66 66 66 375 370 279

Open MPI Send 428 428 428 428 428 428 428

BG/P Pack 386 148 148 409 149 149 149

BG/P Send 238 238 238 238 238 238 238

POE Pack 224 195 196 196 195 197 198

POE Send 368 362 363 362 351 361 373
Table 1. Results for Stride-1 in µs, n = 32768. Bold entries indicate violation of a
performance guideline.

7 Initial Experimental Results

We have implemented a first datatype expectation benchmark program incorpo-
rating some of Benchmarks 1-6. The benchmark creates datatypes for describing
strided layouts of single basetype elements by means of the five basic construc-
tors. A basic experiment compares the performance with a ping-pong benchmark.
Likewise, packing by MPI Pack can be performed. The benchmark also measures
the construction time and the commit time.

We here present some of the benchmark results for communicating n MPI -
DOUBLE values with stride 1 (contiguous) and stride 16 (vector) for different
MPI implementations communicating in shared memory . We used Open MPI
1.4.3 and MPICH2 1.3.2p1 on a 1GHz Quad Core Opteron 270 HE system at
Indiana University, IBM’s BG/P MPI on Intrepid at Argonne National Labo-
ratory, and POE MPI 5.1 on a 16 core POWER5+ system at the University of
Illinois at Urbana-Champaign (we also have results for POE on POWER7 under
Linux; they are qualitatively similar to the POWER5+ results and are omitted).

We compare a simple pack loop (User) with types constructed with MPI -
Type contiguous (Contig, only stride 1), MPI Type create resized (Resized, the
extent of the type is used to generate the correct stride), MPI Type vector (Vec-

tor), MPI Type indexed block (BIdx), MPI Type indexed (Idx), and MPI Type -
struct (Struct). The combination Send/User means that the data is sent directly
from the user buffer (this is only possible in the contiguous stride-1 case).

Table 1 shows the results for different specifications of stride-1 data access.
This can be considered the simplest case (a Benchmark 0), and provides both a
basis for comparing non-unit strides in Table 2 and for identifying which dataty-
pes the MPI implementation simplifies to a more efficient internal representation.
Our experiments show that, for stride-1 data, MPI Pack is generally faster than a
pack loop. We also observed that sending datatypes directly was generally faster
than combining packing and sending manually. Our results show that almost
all libraries fail to detect the contiguous data pattern reliably. Bold entries in
Table 1 show where the self-consistency requirements are violated because the
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Library Phase User Resized Vector BIdx Idx Struct

MPICH2 Pack 592 1035 1034 843 704 797

MPICH2 Send - 2917 3045 3015 3013 3036

Open MPI Pack 600 1494 1490 2773 2769 2717

Open MPI Send - 3086 3060 5281 5279 5269

BG/P Pack 2049 2116 2115 2218 2292 2368

BG/P Send - 6402 6402 6414 6414 6412

POE Pack 563 631 623 2056 2064 2072

POE Send - 1658 1694 6203 6263 6296

Table 2. Results for Stride-16 in µs, n = 32768. Bold entries indicate violation of a
performance guideline.

requirement of Equation (3) is not met. Note that these timing results have some
uncertainty and small differences are not significant.

Table 2 shows the results for different specifications of stride-16 data access.
Our experiments show that, for stride-16 data, MPI Pack is often slower than
a pack loop. One notable exception is MPICH2 where the pack performance is
slightly better. We also observed that sending datatypes directly was generally
faster than combining packing and sending manually. Our results show that
almost all libraries fail to detect the vector pattern reliably. Bold entries in
Table 2 show where the self-consistency requirements are violated because the
requirement of Equation (3) is not met.

8 Conclusion

By identifying self-consistently motivated performance guidelines and perfor-
mance expectations for the MPI derived datatype mechanism first steps were
taken toward a benchmark for testing aspects of datatype performance. The
datatype normalization problem was formalized in terms of penalties, and we
conjecture that this problem is NP-hard. This limits the amount of type nor-
malization that an MPI library can be expected to do, and therefore the user
still needs to be careful how data layouts are described. Our experiments on a se-
lection of platforms and MPI libraries showed unpleasant performance surprises,
indicating for instance that very little type normalization is performed, even for
cases where this would be trivially possible. The experiments also clearly showed
large performance differences depending on the way a given layout is described,
thus more normalization could well make sense in MPI implementations.
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