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ABSTRACT
The ubiquity of accelerators in high-performance computing has
driven programming complexity beyond the skill-set of the average
domain scientist. To maintain performance portability in the fu-
ture, it is imperative to decouple architecture-specific programming
paradigms from the underlying scientific computations. We present
the Stateful DataFlow multiGraph (SDFG), a data-centric intermedi-
ate representation that enables separating program definition from
its optimization. By combining fine-grained data dependencies with
high-level control-flow, SDFGs are both expressive and amenable
to program transformations, such as tiling and double-buffering.
These transformations are applied to the SDFG in an interactive
process, using extensible pattern matching, graph rewriting, and a
graphical user interface. We demonstrate SDFGs on CPUs, GPUs,
and FPGAs over various motifs — from fundamental computational
kernels to graph analytics. We show that SDFGs deliver competitive
performance, allowing domain scientists to develop applications
naturally and port them to approach peak hardware performance
without modifying the original scientific code.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; Data flow languages; Just-in-time compilers; • Human-
centered computing → Interactive systems and tools.
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1 MOTIVATION
HPC programmers have long sacrificed ease of programming and
portability for achieving better performance. This mindset was
established at a time when computer nodes had a single proces-
sor/core and were programmed with C/Fortran and MPI. The last
decade, witnessing the end of Dennard scaling and Moore’s law,
brought a flurry of new technologies into the compute nodes. Those
range from simple multi-core andmanycore CPUs to heterogeneous
GPUs and specialized FPGAs. To support those architectures, the
complexity of OpenMP’s specification grew by more than an or-
der of magnitude from 63 pages in OpenMP 1.0 to 666 pages in
OpenMP 5.0. This one example illustrates how (performance) pro-
gramming complexity shifted from network scalability to node

SC ’19, November 17–22, 2019, Denver, CO, USA
2019. ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356173

SystemDomain Scientist Performance Engineer

High-Level Program

Data-Centric Intermediate 
Representation (SDFG, §3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛼𝛼𝛻𝛻2𝜕𝜕 = 0

Problem Formulation

FPGA Modules

CPU Binary

R
un

tim
e

Hardware 
Information

Graph Transformations 
(API, Interactive, §4)

SDFG Compiler
Transformed

Dataflow

Performance
Results

Thin Runtime 
Infrastructure

GPU Binary

Python / 
numpy

Section 2 Sections 3-4 Sections 5-6

𝑳𝑳 𝑹𝑹
*

*

*

*

*
*

TensorFlow

DSLs

MATLAB

SDFG Builder API

Figure 1: Proposed Development Scheme

utilization. Programmers would now not only worry about com-
munication (fortunately, the MPI specification grew by less than
4x from MPI-1.0 to 3.1) but also about the much more complex
on-node heterogeneous programming. The sheer number of new
approaches, such as OpenACC, OpenCL, or CUDA demonstrate the
difficult situation in on-node programming. This increasing com-
plexity makes it nearly impossible for domain scientists to write
portable and performant code today.

The growing complexity in performance programming led to a
specialization of roles into domain scientists and performance engi-
neers. Performance engineers typically optimize codes by moving
functionality to performance libraries such as BLAS or LAPACK. If
this is insufficient, they translate the user-code to optimized ver-
sions, often in different languages such as assembly code, CUDA,
or tuned OpenCL. Both libraries and manual tuning reduce code
maintainability, because the optimized versions are not only hard
to understand for the original author (the domain scientist) but also
cannot be changed without major effort.

Code annotations as used by OpenMP or OpenACC do not
change the original code that then remains understandable to the
domain programmer. However, the annotations must re-state (or
modify) some of the semantics of the annotated code (e.g., data place-
ment or reduction operators). This means that a (domain scientist)
programmer who modifies the code, must modify some annota-
tions or she may introduce hard-to-find bugs. With heterogeneous
target devices, it now becomes common that the complexity of
annotations is higher than the code they describe [56]. Thus, scien-
tific programmers can barely manage the complexity of the code
targeted at heterogeneous devices.

The main focus of the community thus moved from scalability
to performance portability as a major research target [69]. We call
a code-base performance-portable if the domain scientist’s view
(“what is computed”) does not change while the code is optimized to
different target architectures, achieving consistently high performance.
The execution should be approximately as performant (e.g., attaining

https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3295500.3356173


SC ’19, November 17–22, 2019, Denver, CO, USA Ben-Nun et al.

similar ratio of peak performance) as the best-known implementation
or theoretical best performance on the target architecture [67]. As
discussed before, hardly any existing programming model that
supports portability to different accelerators satisfies this definition.

Our Data-centric Parallel Programming (DAPP) concept ad-
dresses performance portability. It uses a data-centric viewpoint
of an application to separate the roles of domain scientist and per-
formance programmer, as shown in Fig. 1. DAPP relies on Stateful
DataFlow multiGraphs (SDFGs) to represent code semantics and
transformations, and supports modifying them to tune for particular
target architectures. It bases on the observation that data-movement
dominates time and energy in today’s computing systems [66] and
pioneers the necessary fundamental change of view in parallel
programming. As such, it builds on ideas of data-centric mappers
and schedule annotations such as Legion [9] and Halide [58] and
extends them with a multi-level visualization of data movement, code
transformation and compilation for heterogeneous targets, and strict
separation of concerns for programming roles. The domain program-
mer thus works in a convenient and well-known language such as
(restricted) Python or MATLAB. The compiler transforms the code
into an SDFG, on which the performance engineer solely works
on, specifying transformations that match certain data-flow struc-
tures on all levels (from registers to inter-node communication)
and modify them. Our transformation language can implement
arbitrary changes to the SDFG and supports creating libraries of
transformations to optimize workflows. Thus, SDFGs separate the
concerns of the domain scientist and the performance engineers
through a clearly defined interface, enabling highest productivity
of both roles.

We provide a full implementation of this concept in our Data-
Centric (DaCe) programming environment, which supports (lim-
ited) Python, MATLAB, and TensorFlow as frontends, as well as
support for selected DSLs. DaCe is easily extensible to other fron-
tends through an SDFG builder interface. Performance engineers
develop potentially domain-specific transformation libraries (e.g.,
for stencil-patterns) and can tune them through DaCe’s Interactive
Optimization Environment (DIODE). The current implementation
focuses on on-node parallelism as the most challenging problem
in scientific computing today. However, it is conceivable that the
principles can be extended beyond node-boundaries to support
large-scale parallelism using MPI as a backend.

The key contributions of our work are as follows:
• We introduce the principle of Data-centric Parallel Program-
ming, in which we use Stateful DataflowMultigraphs, a data-
centric Intermediate Representation that enables separating
code definition from its optimization.
• We provide an open-source implementation1 of the data-
centric environment and its performance-optimization IDE.
• We demonstrate performance portability on fundamental
kernels, graph algorithms, and a real-world quantum trans-
port simulator — results are competitive with and faster than
expert-tuned libraries from Intel and NVIDIA, approaching
peak hardware performance, and up to five orders of magni-
tude faster than naïve FPGA code written with High-Level
Synthesis, all from the same program source code.

1https://www.github.com/spcl/dace

@dace.program
def Laplace(A: dace.float64[2,N],

T: dace.uint32 ):
for t in range(T):

for i in dace.map [1:N-1]:
A[(t+1)%2, i] = \

A[t%2, i-1:i+2] * [1,-2,1]

a = numpy.random.rand(2, 2033)
Laplace(A=a, T=500)

(a) Python Representation

A
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(b) Resulting SDFG

Figure 2: Data-Centric Computation of a Laplace Operator

2 DATA-CENTRIC PROGRAMMING
Current approaches in high-performance computing optimizations
[66] revolve around improving data locality. Regardless of the un-
derlying architecture, the objective is to keep information as close
as possible to the processing elements and promote memory reuse.
Even a simple application, such as matrix multiplication, requires
multiple stages of transformations, including data layout modifica-
tions (packing) and register-aware caching [33]. Because optimiza-
tions do not modify computations and differ for each architecture,
maintaining performance portability of scientific applications re-
quires separating computational semantics from data movement.

SDFGs enable separating application development into two
stages, as shown in Fig. 2. The problem is formulated as a high-level
program (Fig. 2a), and is then transformed into a human-readable
SDFG as an Intermediate Representation (IR, Fig. 2b). The SDFG
can then be modified without changing the original code, and as
long as the dataflow aspects do not change, the original code can
be updated while keeping SDFG transformations intact. What dif-
ferentiates the SDFG from other IRs is the ability to hierarchically
and parametrically view data movement, where scopes in the graph
contain overall data requirements. This enables reusing transfor-
mations (e.g., tiling) at different levels of the memory hierarchy, as
well as performing cross-level optimizations.

The modifications to the SDFG are not completely automatic.
Rather, they are made by the performance engineer as a result
of informed decisions based on the program structure, hardware in-
formation, and intermediate performance results. To support this, a
transformation interface and common optimization libraries should
be at the performance engineer’s disposal, enabling modification
of the IR in a verifiable manner (i.e., without breaking semantics),
either programmatically or interactively. The domain scientist, in
turn, writes an entire application once for all architectures, and
can freely update the underlying calculations without undoing
optimizations on the SDFG.

Conceptually, we perform the separation of computation from
data movement logic by viewing programs as data flowing between
operations, much like Dataflow and Flow-Based Programming [40].
One key difference between dataflow and data-centric parallel pro-
gramming, however, is that in a pure dataflow model execution is
stateless, which means that constructs such as loops have to be un-
rolled. At the other extreme, traditional, control-centric programs
revolve around statements that are executed in order. Data-centric
parallel programming promotes the use of stateful dataflow, in
which execution order depends first on data dependencies, but also
on a global execution state. The former fosters the expression of
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concurrency, whereas the latter increases expressiveness and com-
pactness by enabling concepts such as loops and data-dependent
execution. The resulting concurrency works in several granularities,
from utilizing processing elements on the same chip, to ensuring
overlapped copy and execution of programs on accelerators in
clusters. A data-centric model combines the following concepts:

(1) Separating Containers from Computation: Data-
holding constructs with volatile or non-volatile information
are defined as separate entities from computations, which
consist of stateless functional units that perform arithmetic
or logical operations in any granularity.

(2) Dataflow: The concept of information moving from one
container or computation to another. This may be translated
to copying, communication, or other forms of movement.

(3) States: Constructs that provide a mechanism to introduce
execution order independent of data movement.

(4) Coarsening: The ability to view parallel patterns in a hier-
archical manner, e.g., by grouping repeating computations.

The resulting programming interface should thus enable these
concepts without drastically modifying development process, both
in terms of languages and integration with existing codebases.

2.1 Domain Scientist Interface
Languages Scientific applications typically employ different pro-
gramming models and Domain-Specific Languages (DSLs) to solve
problems. To cater to the versatile needs of the domain scientists,
SDFGs should be easily generated from various languages. We thus
implement SDFG frontends in high-level languages (Python, MAT-
LAB, TensorFlow), and provide a low-level (builder) API to easily
map other DSLs to SDFGs. In the rest of this section, we focus on
the Python [30] interface, which is the most extensible.
Interface The Python interface creates SDFGs from restricted
Python code, supporting numpy operators and functions, as well as
the option to explicitly specify dataflow. In Fig. 2a, we demonstrate
the data-centric interface on a one-dimensional Laplace operator.
DaCe programs exist as decorated, strongly-typed functions in
the application ecosystem, so that they can interact with existing
codes using array-based interfaces (bottom of figure). The Python
interface contains primitives such as map and reduce (which trans-
late directly into SDFG components), allows programmers to use
multi-dimensional arrays, and implements an extensible subset of
operators from numpy [25] on such arrays to ease the use of lin-
ear algebra operators. For instance, the code A @ B generates the
dataflow of a matrix multiplication.
Extensibility For operators and functions that are not imple-
mented, a user can easily provide dataflow implementations using
decorated functions (@dace.replaces(’numpy.conj’)) that de-
scribe the SDFG. Otherwise, unimplemented functions fall-back
into Python, casting the array pointers (which may be defined in-
ternally in the DaCe program) into numpy arrays and emitting a
“potential slowdown” warning. If the syntax is unsupported (e.g.,
dynamic dictionaries), an error is raised.
Explicit Dataflow If the programmer does not use predefined
operators (e.g., for custom element-wise computation), dataflow
“intrinsics” can be explicitly defined separately from code, in con-
structs which we call Tasklets. Specifically, tasklet functions cannot

var << A(1, WCR)[0:N]

Local variable name

Direction (<<, >>)

Location/RangeData

Number of accesses

Conflict Resolution

Figure 3: Anatomy of a Python Memlet
access data unless it was explicitly moved in or out using pre-
declared operators (<<, >>) on arrays, as shown in the code.

Data movement operations (memlets) can be versatile, and the
Python syntax of explicit memlets is defined using the syntax shown
in Fig. 3. First, a local variable (i.e., that can be used in computation)
is defined, whether it is an input or an output. After the direction
of the movement, the data container is specified, along with an
optional range (or index). In some applications (e.g., with indirect
or data-dependent access), it is a common occurrence that the subset
of the accessed data is known, but not exact indices; specifying
memory access constraints both enables this behavior and facilitates
access tracking for decomposition, e.g., which data to send to an
accelerator. Finally, the two optional values in parentheses govern
the nature of the access — the number of data elements moved,
used for performance modeling, and a lambda function that is
called when write-conflicts may occur.
@dace.program
def spmv(A_row: dace.uint32[H + 1], A_col: dace.uint32[nnz],

A_val: dace.float32[nnz], x: dace.float32[W],
b: dace.float32[H]):

for i in dace.map [0:H]:
for j in dace.map[A_row[i]:A_row[i+1]]:

with dace.tasklet:
a << A_val[j]
in_x << x[A_col[j]]
out >> b(1, dace.sum)[i]
out = a * in_x

Figure 4: Sparse Matrix-Vector Mult. with Memlets

Using explicit dataflow is beneficial when defining nontrivial
data accesses. Fig. 4 depicts a full implementation of Sparse Matrix-
Vector multiplication (SpMV). In the implementation, the access
x[A_col[j]] is translated into an indirect access subgraph (see
Appendix F) that can be identified and used in transformations.
External Code Supporting scientific code, in terms of performance
and productivity, requires the ability to call previously-defined
functions or invoke custom code (e.g., intrinsics or assembly). In
addition to falling back to Python, the frontend enables defining
tasklet code in the generated code language directly. In Fig. 5 we see
a DaCe program that calls a BLAS function directly. The semantics
of such tasklets require that memlets are defined separately (for
correctness); the code can in turn interact with the memory directly
(memlets that are larger than one element are pointers). With this
feature, users can use existing codes and benefit from concurrent
scheduling that the SDFG provides.
Parametric Dimensions To support parametric sizes (e.g., of ar-
rays and maps) in DaCe, we utilize symbolic math evaluation. In

@dace.program
def extmm(A: dace.complex128[M,K], B: dace.complex128[K,N],

C: dace.complex128[M,N]):
with dace.tasklet(language=dace.Language.CPP ,

code_global='#include <mkl.h>'):
a << A; b << B; in_c << C; out_c >> C
'''
dace:: complex128 alpha(1, 0), beta(0, 0);
cblas_zgemm(CblasRowMajor , 'N', 'N', M, N, K, &alpha , a, M,

b, K, &beta , out_c , M);
'''

Figure 5: External Code in DaCe



SC ’19, November 17–22, 2019, Denver, CO, USA Ben-Nun et al.

Table 1: SDFG Syntax
Primitive Description

Data-Centric Model

Data Transient Data
Data: N-dimensional array
container.

Stream
Stream: Streaming data con-
tainer.

Tasklet
Tasklet: Fine-grained compu-
tational block.

A(1) [0:M,k]
Memlet: Data movement de-
scriptor.

s0 s1iter < N State: State machine element.

Parametric Concurrency

[i=0:M, j=0:N]  [i=0:M, j=0:N]

Map: Parametric graph ab-
straction for parallelism.

[p=0:P], s>0  [p=0:P], s>0
Consume: Dynamic mapping
of computations on streams.

C [i,j] (CR: Sum)
Write-Conflict Resolution:
Defines behavior during con-
flicting writes.

Parallel Primitives and Nesting

sum, id: 0 Reduce: Reduction over one
or more axes.

Invoke Invoke: Call a nested SDFG.

particular, we extend the SymPy [64] library to support our expres-
sions and strong typing. The code can thus define symbolic sizes
and use complex memlet subset expressions, which will be analyzed
during SDFG compilation. The separation of access and computa-
tion, flexible interface, and symbolic sizes are the core enablers of
data-centric parallel programming, helping domain scientists create
programs that are amenable to efficient hardware mapping.

3 STATEFUL DATAFLOWMULTIGRAPHS
Wedefine an SDFG as a directed graph of directed acyclic multigraphs,
whose components are summarized in Table 1. Briefly, the SDFG is
composed of acyclic dataflow multigraphs, in which nodes repre-
sent containers or computation, and edges (memlets) represent data
movement. To support cyclic data dependencies and control-flow,
these multigraphs reside in State nodes at the top-level graph. Fol-
lowing complete execution of the dataflow in a state, state transition
edges on the top-level graph specify conditions and assignments,
forming a state machine. For complete operational semantics of
SDFGs, we refer to Appendix A.

3.1 Containers
As a data-centric model, SDFGs offer two forms of data containers:
Data and Stream nodes. Data nodes represent a location in mem-
ory that is mapped to a multi-dimensional array, whereas Stream
nodes are defined as multi-dimensional arrays of concurrent queues,
which can be accessed using push/pop semantics. Containers are
tied to a specific storage location (as a node property), which may
be on a GPU or even a file. In the generated code, memlets between

A B

c = a + b
a b

c

C

[i=0:N]

[i=0:N]

B[0:N]A[0:N]

A[i] B[i]

C[i]

C[0:N]

(a) Parametric

A B

C

A[0]
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a b

c
c = a + b

a b

c
c = a + b

a b

c

B[0]

A[1]

A[2] B[2]

B[1]

C[2]C[1]C[0]

(b) Expanded (N = 3)

Figure 6: Parametric Parallelism in SDFGs

containers either generate appropriate memory copy operations or
fail with illegal accesses (for instance, when trying to access paged
CPUmemory within a GPU kernel). In FPGAs, Stream nodes instan-
tiate FIFO interfaces that can be used to connect hardware modules.
Another property of containers is whether they are transient, i.e.,
only allocated for the duration of SDFG execution. This allows
transformations and performance engineers to distinguish between
buffers that interact with external systems, and ones that can be
manipulated (e.g., data layout) or eliminated entirely, even across
devices. This feature is advantageous, as standard compilers cannot
make this distinction, especially in the presence of accelerators.

3.2 Computation
Tasklet nodes contain stateless, arbitrary computational functions
of any granularity. The SDFG is designed, however, for fine-grained
tasklets, so as to enable performance engineers to analyze and op-
timize the most out of the code, leaving computational semantics
intact. Throughout the process of data-centric transformations and
compilation, the tasklet code remains immutable. This code, pro-
vided that it cannot access external memory without memlets, can
be written in any source language that can compile to the target
platform, and is implemented in Python by default.

In order to support Python as a high-level language for tasklets,
we implement a Python-to-C++ converter. The converter traverses
the Python Abstract Syntax Tree (AST), performs type and shape
inference, tracks local variables for definitions, and uses features
from C++14 (such as lambda expressions and std::tuples) to cre-
ate the corresponding code. Features that are not supported include
dictionaries, dynamically-sized lists, exceptions, and other Python
high-level constructs. Given that tasklets are meant to be fine-
grained, and that our DaCe interface is strongly typed (§ 2.1), this
feature-set is sufficient for HPC kernels and real-world applications.

3.3 Concurrency
Expressing parallelism is inherent in SDFGs by design, supported
by theMap and Consume scopes. Extending the traditional task-
based model, SDFGs expose concurrency by grouping parallel sub-
graphs (computations, local data, movement) into one symbolic
instance, enclosed within two “scope” nodes. Formally, we define an
enclosed subgraph as nodes dominated by a scope entry node and
post-dominated by an exit node. The subgraphs are thus connected
to external data only through scope nodes, which enables analysis
of their overall data requirements (useful, e.g., for automatically
transforming a map to GPU code).

Map scopes represent parallel computation on all levels, and can
be nested hierarchically. This feature consolidates many parallel
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Read

DRAM
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PE1
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(b) Hardware Modules

Figure 7: Parametric Generation of Systolic Arrays

programming concepts, including multi-threading, GPU kernels,
multi-GPU synchronization, and multiple processing elements on
FPGAs. The semantics of a Map are illustrated in Fig. 6 — a sym-
bolic integer set attribute of the scope entry/exit nodes called range
(Fig. 6a) defines how the subgraph should be expanded on eval-
uation (Fig. 6b). Like containers, Maps are tied to schedules that
determine how they translate to code. When mapped to multi-
core CPUs, Map scopes generate OpenMP parallel for loops;
for GPUs, device schedules generate CUDA kernels (with the map
range as thread-block indices), whereas thread-block schedules de-
termine the dimensions of blocks, emitting synchronization calls
(__syncthreads) as necessary; for FPGAs, Maps synthesize differ-
ent hardware modules as processing elements. Streams can also
be used in conjunction with Maps to compactly represent systolic
arrays, constructs commonly used in circuit design to represent
efficient pipelines, as can be seen in Fig. 7. Note that no data is
flowing in or out of the Map scope (using empty memlets for the
enclosed subgraph) — this would replicate the scope’s contents as
separate connected components.

[p=0:P], len(S) = 0

fibonacci

[p=0:P], len(S) = 0

S(1)

S(2)

S

S

S(dyn)

S(dyn)

S

N
S(1)

out

out (CR: Sum)

out (CR: Sum)

Figure 8: Asynchronous Fibonacci SDFG
Consume scopes enable producer/consumer relationships via

dynamic processing of streams. Consume nodes are defined by
the number of processing elements, an input stream to consume
from, and a quiescence condition that, when evaluated to true, stops
processing. An example is shown in Fig. 8, which computes the
Fibonacci recurrence relation of an input N without memoization.
In the SDFG, the value is first pushed into the stream S and asyn-
chronously processed by P workers, with the memlet annotated as
dyn for dynamic number of accesses. The tasklet adds the result to
out and pushes two more values to S for processing. The consume
scope then operates until the number of elements in the stream is
zero, which terminates the program.

Consume scopes are implemented using batch stream dequeue
and atomic operations to asynchronously pop and process elements.
The potential to encompass complex parallel patterns like work
stealing schedulers using high-performance implementations of
this node dramatically reduces code complexity.

In order to handle concurrent memory writes from scopes, we
define Write-Conflict Resolution memlets. As shown in Fig. 9a,

A

[i=0:N]

query

[i=0:N]
S

A[i]

S

out
out[0:N]

size (CR: Sum)

size

S
size (CR: Sum)

A[0:N]

(a) Query

A

[i=0:M, j=0:N, k=0:K]

mult
B[k,j]

[i=0:M, j=0:N, k=0:K]

A[0:M,0:K]

tmp[0:M,0:N,0:K]

B
B[0:K,0:N]

A[i,k]

tmp[i,j,k]

C

tmp
tmp[0:M,0:N,0:K]

C[0:M,0:N]

[axis: 2, Sum]

(b) Matrix Multiplication

Figure 9: Write-Conflicts and Reductions

such memlets are visually highlighted for the performance engi-
neer using dashed lines. Implementation-wise, such memlets can be
implemented as atomic operations, critical sections, or accumulator
modules, depending on the target architecture and the function.
Reduce nodes complement conflict resolution by implementing
target-optimized reduction procedures on data nodes. An example
can be seen with a map-reduce implementation of matrix multipli-
cation (Fig. 9b), where a tensor with multiplied pairs of the input
matrices is reduced to the resulting matrix. As we shall show in the
next section, this inefficient representation can be easily optimized
using data-centric transformations.

Different connected components within an SDFG multigraph
also run concurrently (by definition). Thus, they are mapped to
parallel sections in OpenMP, different CUDA streams on GPUs,
or different command queues on FPGAs. These concepts are noto-
riously cumbersome to program manually for all platforms, where
synchronization mistakes, order of library calls, or less-known
features (e.g., nowait, non-blocking CUDA streams) may drasti-
cally impact performance or produce wrong results. Therefore, the
SDFG’s automatic management of concurrency, and configurable
fine-tuning of synchronization aspects by the performance engineer
(e.g., maximum number of concurrent streams, nested parallelism)
make the IR attractive for HPC programming on all platforms.

3.4 State
Sequential operation in SDFGs either implicitly occurs following
data dependencies, or explicitly specified using multiple states.
State transition edges define a condition, which can depend on
data in containers, and a list of assignments to inter-state symbols
(e.g., loop iteration). The concept of a state machine enables both
complex control flow patterns, such as imperfectly nested loops,
and data-dependent execution, as shown in Fig. 10a.

To enable control-flow within data-flow (e.g., a loop in a map),
or a parametric number of state machines, SDFGs can be nested
via the Invoke node. The semantics of Invoke are equivalent to
a tasklet, thereby disallowing access to external memory without
memlets. The Mandelbrot example (Fig. 10b) demonstrates nested
SDFGs. In the program, each pixel requires a different number of
iterations to converge. In this case, an invoke node calls another
SDFG within the map to manage the convergence loop. Recursive
calls to the same SDFG are disallowed, as the nested state machine
may be inlined or transformed by the performance engineer.
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Figure 10: Data-Dependent Execution

4 PERFORMANCE ENGINEERWORKFLOW
The Stateful Dataflow Multigraph is designed to expose application
data movement motifs, regardless of the underlying computations.
As such, the optimization process of an SDFG consists of finding
and leveraging such motifs, in order to mutate program dataflow.
Below, we describe the two principal tools we provide the perfor-
mance engineer to guide optimization, followed by the process of
compiling an SDFG into an executable library.

4.1 Graph Transformations
Informally, we define a graph transformation on an SDFG as a “find
and replace” operation, either within one state or between several,
which can be performed if all of the conditions match. For general
optimization strategies (e.g., tiling), we provide a standard library
of such transformations, which is meant to be used as a baseline
for performance engineers. Transformations can be designed with
symbolic expressions, or specialized for given sizes in order to
fine-tune applications. A list of 16 transformations implemented in
DaCe can be found in Appendix B.

Transformations consist of a pattern subgraph and a replacement
subgraph. A transformation also includes amatching function, used
to identify instances of the pattern in an SDFG, and programmati-
cally verify that requirements are met. To find matching subgraphs
in SDFGs, we use the VF2 algorithm [19] to find isomorphic sub-
graphs. Transformations can be applied interactively, or using a
Python API for matching and applying transformations. An exam-
ple of a full source code of a transformation is found in Appendix D.
Using the transformation infrastructure, we enable seamless knowl-
edge transfer of optimizations across applications.

Two examples of SDFG transformations can be found in Figures
11a and 11b. In Fig. 11a, the transformation detects a pattern L
where Reduce is invoked immediately following a Map, reusing
the computed values. In this case, the transient array $A can be
removed (if unused later) and computations can be fused with a
conflict resolution, resulting in the replacement R. In the second
example (Fig. 11b), a local array, which can be assigned to scratch-
pad memory, is added between two map nodes. As a result, the
relative indices are changed in all subsequent memlets.

4.2 DIODE
SDFGs are intended to be malleable and interactive, which we
realize with an Integrated Development Environment (IDE). The
Data-centric Integrated Optimization Development Environment,

𝑳𝑳 𝑹𝑹

$A

$A[:]

$A[:]

*

$REDUCE

$B[$br]

$A[$ar]

$B[$br]
(CR: $REDUCE)

$B[$ar]

$B

my_tasklet

arr

my_tasklet

$B

arr

*

X

(a) Map-Reduce Fusion

𝑳𝑳 𝑹𝑹

tmp_$A$A[$r_out]

[…]

*

*

*

$A[$r_in]

*

*
tmp_$A[$r_in - $r_out]

$A[$r_out]

tmp_$A[:]

*

[…]

(b) Local Storage

Figure 11: SDFG Transformations

Figure 12: DIODE Graphical User Interface

or DIODE (Fig. 12), is a specialized IDE for performance engi-
neers that enables editing SDFGs and applying transformations
in a guided manner, in addition to the programmatic interface. In
particular, performance engineers can:
• interactively modify attributes of SDFG nodes and memlets;
• transform and tune transformation parameters;
• inspect an integrated program view that maps between lines
in the domain code, SDFG components, and generated code;
• run and compare historical performance of transformations;
• save transformation chains to files, a form of “optimization
version control” that can be used when tuning to different
architectures (diverging from a mid-point in the chain); and
• hierarchically interact with large-scale programs, collapsing
irrelevant parts and focusing on bottleneck subgraphs.

We demonstrate the process of interactively optimizing the ma-
trix multiplication SDFG (Fig. 9b) in a video2. Using the IDE and
the SDFG representation yields nearly the same performance as
Intel’s optimized Math Kernel Library (MKL) [38] in minutes (§6.2).

4.3 Compilation Pipeline
Compiling an SDFG consists of three steps: ❶ data dependency
inference, ❷ code generation, and ❸ compiler invocation.
2https://www.vimeo.com/301317247

https://www.vimeo.com/301317247
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(a) CPU (1.43× geometric mean speedup over best general-purpose compiler)
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(c) FPGA

Figure 13: Polyhedral Application Runtime (lower is better, best viewed in color)

In step ❶, data dependencies on all levels are resolved. First,
a validation pass is run on the graph to ensure that scopes are
correctly structured, memlets are connected properly, and map
schedules and data storage locations are feasible (failing when, e.g.,
FPGA code is specified in a GPU map). Then, memlet ranges are
propagated from tasklets and containers outwards (through scopes)
to obtain the overall data dependencies of each scope, using the
image of the scope function (e.g., Map range) on the union of the
internal memlet subsets. This information is later used to generate
exact memory copy calls to/from accelerators.

The code generation process of an SDFG (step ❷) is hierarchical,
starting from top-level states and traversing into scopes. It begins
by emitting external interface code and the top-level state machine.
Within each state, nodes are traversed in topological order, and a
platform-specific dispatcher is assigned to generate the respective
code, depending on the node’s storage or schedule type. The process
continues recursively via map/consume scopes and nested SDFGs,
generating heterogeneous codes using several dispatchers. Between
states, transitions are generated by emitting for-loops and branches
when detected, or using conditional goto statements as a fallback.

In step❸, we invoke compiler(s) for the generated code according
to the used dispatchers. The compiled library can then be used
directly by way of inclusion in existing applications, or through
Python/DaCe.

5 ASSESSING PERFORMANCEWITHOUT
TRANSFORMATIONS

To understand how the inherently-concurrent representation of
the SDFG creates reasonably performing naïve code, we reimple-
ment and run the Polybench [57] benchmark over SDFGs, without
any optimizing transformations, using the experimental setup of
Section 6. We show that the representation itself exposes enough
parallelism to compete with state-of-the-art polyhedral compilers,
outperform them on GPUs, and provide the first complete set of
placed-and-routed Polybench kernels on an FPGA.

To demonstrate the wide coverage provided by SDFGs, we ap-
ply the FPGATransform automatic transformation to offload each
Polybench application to the FPGA during runtime, use our simu-
lation flow to verify correctness, and finally perform the full place-
ment and routing process. The same applies for GPUTransform.
We execute all kernels on the accelerators, including potentially
unprofitable ones (e.g., including tasklets without parallelism).

The results are shown in Fig. 13, comparing SDFGs both with
general-purpose compilers (green bars in the figure), and with
pattern-matching and polyhedral compilers (blue bars). We use
the default Polybench flags, the Large dataset size, and select the
best performance of competing compilers from the flags specified
in the Appendix C. On the CPU, we see that for most kernels,
the performance of unoptimized SDFGs is closer to that of the
polyhedral compilers than to the general-purpose compilers. The
cases where SDFGs are on the order of standard compilers are
solvers (e.g., cholesky, lu) and simple linear algebra (e.g., gemm). In
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both cases, data-centric transformations are necessary to optimize
the computations, which we exclude from this test in favor of
demonstrating SDFG expressibility.

On the GPU, in most cases SDFGs generate code that outper-
forms PPCG, a tool specifically designed to transform polyhedral
applications to GPUs. In particular, the bicg GPU SDFG is 11.8×
faster than PPCG. We attribute these speedups to avoiding unnec-
essary array copies due to explicit data dependencies, as well as the
inherent parallel construction of the data-centric representation.

6 PERFORMANCE EVALUATION
We evaluate the performance of SDFGs on a set of fundamental
kernels, followed by three case studies: analysis of matrix multipli-
cation, a graph algorithm, and a real-world physics application.
Experimental Setup We run all of our experiments on a server that
contains an Intel 12-core Xeon E5-2650 v4 CPU (clocked at 2.20GHz,
HyperThreading disabled, 64 GB DDR4 RAM) and a Tesla P100 GPU
(16 GB HBM2 RAM) connected over PCI Express. For FPGA results,
we use a Xilinx VCU1525 board, hosting an XCVU9P FPGA and four
DDR4 banks at 2400 MT/s. We run the experiments 30 times and
report the median running time (including memory copy), where
the error-bars indicate 95% confidence interval of all runs, and
points are outliers (Tukey fences, 1.5 IQR). For Polybench running
times, we use the provided measurement tool, which reports the
average time of five runs. All reported results were executed in
hardware, including the FPGA.
Compilation Generated code from SDFGs is compiled using gcc
8 for CPU results, CUDA 9.2 for GPU, and Xilinx SDAccel 2018.2
for FPGAs. Compilation flags: -std=c++14 -O3 -march=native
-ffast-math for CPU, -std=c++14 -arch sm_60 -O3 for GPU,
and -std=c++11 -O3 for FPGA. Fundamental kernels use single-
precision floating point types, Polybench uses the default experi-
ment data-types (mostly double-precision), and graphs use integers.

6.1 Fundamental Computational Kernels
We begin by evaluating 5 core scientific computing kernels, imple-
mented over SDFGs:
• Matrix Multiplication (MM) of two 2,048×2,048 matrices.
• Jacobi Stencil: A 5-point stencil repeatedly computed on a
2,048 square 2D domain forT=1,024 iterations, with constant
(zero) boundary conditions.
• Histogram: Outputs the number of times each value (evenly
binned) occurs in a 8,192 square 2D image.
• Query: Filters a column of 67,108,864 elements according to
a given condition (filters roughly 50%).
• Sparse Matrix-Vector Multiplication (SpMV) of a CSR
matrix (8,192 square; 33,554,432 non-zero values).

Our results, shown in Fig. 14, are compared with naïve imple-
mentations of the code, compiled with GCC, Clang, NVCC, and
ICC; Intel MKL [38] and HPX [41] corresponding library calls for
CPU; NVIDIA CUBLAS [54], CUSPARSE [55], and CUB [20], as
well as Hybrid Hexagonal Tiling over PPCG [68] for GPU; Halide
[58] (auto- and manually-tuned) for CPU and GPU; and Xilinx
Vivado HLS/SDAccel [71, 72] and Spatial [43] for FPGA.

On all applications, our SDFG results only employ data-centric
transformations, keeping tasklets intact (§4.1). We highlight key
results for all platforms below.
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(c) FPGA

Figure 14: Fundamental Kernel Runtime (lower is better)

In MM, a highly tuned kernel, SDFGs achieve ∼98.6% of the
performance of MKL, ∼70% of CUBLAS, and ∼90% of CUTLASS,
which is the upper bound of CUDA-based implementations of MM.
On FPGA, SDFGs yield a result 4,992× faster than naïve HLS over
SDAccel. We also run the FPGA kernel for 1024 × 1024 matrices
and compare to the runtime of 878 ms reported for Spatial [43] on
the same chip. We measure 45 ms, yielding a speedup of 19.5×.

We observe similar results in SpMV, which is more complicated
to optimize due to its irregular memory access characteristics. SD-
FGs are on par with MKL (99.9% performance) on CPU, and are
successfully vectorized on GPUs.

For Histogram, SDFGs enable vectorizing the program, achieving
8× the performance of gcc, where other compilers fail due to the
kernel’s data-dependent accesses. We implement a two-stage kernel
for the FPGA, where the first stage reads 16 element vectors and
scatters them to 16 parallel processing elements generated withmap
unrolling (similar to Fig. 7), each computing a separate histogram.
In the second stage, the histograms are merged on the FPGA before
copying back the final result. This yields a 10× speedup in hardware.

In Query, SDFGs are able to use streaming data access to par-
allelize the operation automatically, achieving significantly better
results than HPX and STL. On FPGA we read wide vectors, then
use a deep pipeline to pack the sparse filtered vectors into dense
vectors. This scheme yields a 10× speedup, similar to Histogram.

For Jacobi on CPU, we use a domain-specific transformation
(DiamondTiling). We see that it outperforms standard implementa-
tions by up to two orders of magnitude, performing 90× faster than
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Figure 15: Performance of Transformed GEMM SDFG
Polly and marginally outperforming Pluto, which uses a similar
tiling technique. In Halide, when all timesteps are hard-coded in the
pipeline (which takes ∼68 minutes to compile due to the stateless
dataflow representation), its auto-tuner yields the best result, which
is 20% faster than SDFGs. For FPGAs, Jacobi is mapped to a systolic
array of processing elements, allowing it to scale up with FPGA
logic to 139 GOp/s. Overall, the results indicate that data-centric
transformations can yield competitive performance across both
architectures and memory access patterns.

6.2 Case Study I: Matrix Multiplication
The transformation chain and performance results from Fig. 9b to
the MM CPU SDFG in the previous section are shown in Fig. 15.

After fusing the map and reduction into a write-conflict reso-
lution memlet (MapReduceFusion transformation), we largely fol-
low the approach of Goto and van de Geijn [33]. Manually re-
ordering the map dimensions in the SDFG reduces data movement
and yields a marginal improvement. We then tile for the L3 cache
(MapTiling) and tile again for mapping to vector registers. To use
caches efficiently, we pack the tiles of B and store tiles ofC using the
LocalStorage transformation (twice), followed by Vectorization
to generate code that uses vector extensions. Lastly, we apply a
transformation to convert the internal write-conflict resolution
memlet into a state machine, peeling the loop (ReducePeeling).

The figure shows that not all transformations yield immediate
speedups, yet they are necessary to expose the next steps. Moreover,
after only 7 steps the performance increases by ∼536x (75% of MKL),
and further increases to 98.6% of MKL after tuning transformation
parameters for a specific size (Fig. 14).

6.3 Case Study II: Graph Algorithms
We implement an irregular computation problem on multi-core
CPUs: Breadth-First Search (BFS). We use the data-driven push-
based algorithm [12], and test five graphs with different character-
istics as shown in Appendix E.

Due to the irregular nature of the algorithm, BFS is not a trivial
problem to optimize. However, SDFGs inherently support construct-
ing the algorithm using streams and data-dependent map ranges.
The primary state of the optimized SDFG is shown in Fig. 16, which
contains only 14 nodes (excluding input/output data) and is the
result of three transformations from the base Python program. In
particular, the initial generated OpenMP code does not map well to
cores due to the dynamic scheduling imposed by the frontier. We
mitigate this effect by applying ❶ MapTilingwithT tiles. Since the
accesses to the next frontier are performed concurrently through
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Figure 16: Main State of Optimized BFS SDFG

gstream, major overhead was incurred due to atomic operations.
Using ❷ LocalStream, the results are accumulated to Lfrontier
and bulk updates are performed to the global frontier. Similarly, we
use ❸ LocalStorage for frontier size accumulation.
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Figure 17: BFS Performance
We compare our results with two state-of-the-art CPU graph

processing frameworks: Galois [53] and Gluon [23]. We use the
default settings (bfs_push for Gluon, SyncTile for Galois) and
use 12 threads (1 thread per core). In Fig. 17, we see that SDFGs
perform on-par with the frameworks on all graphs, where Galois is
marginally faster on social networks (∼1.53× on twitter) and the
Kronecker graph. However, in road maps (usa, osm-eur) SDFGs
are up to 2× faster than Galois. This result could stem from our
fine-grained scheduling imposed by the map scopes.

6.4 Case Study III: Quantum Transport
Quantum Transport (QT) Simulation is used for estimating heat
dissipation in nanoscale transistors. OMEN [50] is an efficient (two-
time Gordon Bell finalist) QT simulator based on a nonlinear solver,
written in C++ and CUDA using MKL, CUBLAS, and CUSPARSE.

We use SDFGs and transformations to optimize the computa-
tion of OMEN, the full details of which are described by Ziogas
et al. [74]. A significant portion of the OMEN runtime is spent in
computing Scattering Self-Energies (SSE), which is given by the
formula in Fig. 18 (top-left). Here we focus on the computation
of Σ≷ . Upon generating the SDFG from the formula, we see that
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Figure 18: Optimizing Scattering Self-Energies with SDFG Transformations [74]

there are multiple parallel dimensions that compute small matrix
multiplications (denoted as @) and Hadamard products (*), reducing
the result with a summation.

In step ❶, we split the parallel computation into several maps,
creating transient 5D and 6D arrays. Steps ❷ and ❸ transform the
data layout by reorganizing the map dimensions and transient ar-
rays such that the multiplications can be implemented with one
“batched-strided” optimized CUBLAS GEMM operation. Lastly, step
❹ replaces the CUBLAS call with a specialized nested SDFG that per-
forms small-scale batched-strided matrix multiplication (SBSMM),
transformed w.r.t. matrix dimensions and cache sizes in hardware.

Table 2: SSE Performance

Variant Tflop Time [s] % Peak Speedup

OMEN [50] 63.6 965.45 1.3% 1×
Python (numpy) 63.6 30,560.13 0.2% 0.03×
DaCe 31.8 29.93 20.4% 32.26×

Table 3: Strided Matrix Multiplication Performance

CUBLAS DaCe (SBSMM)

GPU Gflop Time % Peak (Useful) Gflop Time % Peak

P100 27.42 6.73 ms 86.6% (6.1%) 1.92 4.03 ms 10.1%
V100 27.42 4.62 ms 84.8% (5.9%) 1.92 0.97 ms 28.3%

Table 2 lists the overall SSE runtime simulating a 4,864 atom
nanostructure over OMEN, numpy (using MKL for dense/sparse
LA), and DaCe. Using data-centric transformations, the under-
utilization resulting from the multitude of small matrix multipli-
cations is mitigated, translating into a 32.26× speedup for SD-
FGs over manually-tuned implementations, and 1,021× over
Python.

Breaking down the speedup, the specialized SDFG implemen-
tation of SBSMM (Table 3) outperforms CUBLAS by up to 4.76×.
This demonstrates that performance engineers can use the data-
centric view to easily tune dataflow for specific problems that are not
considered by existing library function implementations.

7 RELATEDWORK
Multiple previous works locally address issues posed in this paper.
We discuss those papers below, and summarize them in Fig. 19.
Performance Portability Performance-portable programming
models consist of high-performance libraries and programming
languages. Kokkos [26] and RAJA [48] are task-based HPC libraries
that provide parallel primitives (e.g., forall, reduce) and offer ex-
ecution policies/spaces for CPUs and GPUs. The Legion [9] pro-
gramming model adds hierarchical parallelism and asynchronous
tasking by inferring data dependencies from access sets, called
logical regions, which are composed of index spaces and accessed
fields. Logical regions are similar to subsets in memlets, but dif-
fer by implicitly representing data movement. The Legion model
was also extended to support numpy as a frontend for distributed
GPU computations in Legate [8]. Language and directive-based
standards such as OpenCL [35], OpenACC, and OpenMP [22] also
provide portability, where some introduce FPGA support through
extensions [21, 47]. SYCL [37] is an embedded DSL standard ex-
tending OpenCL to enable single-source (C++) heterogeneous com-
puting, basing task scheduling on data dependencies. However,
true performance portability cannot be achieved with these stan-
dards, as optimized code/directives vastly differ on each platform
(especially in the case of FPGAs). Other frameworks mentioned be-
low [7, 18, 31, 45, 58, 61, 63] also support imperative and massively
parallel architectures (CPUs, GPUs), where Halide and Tiramisu
have been extended [62] to target FPGA kernels. As opposed to
SDFGs, none of the above models were designed to natively support
both load/store architectures and reconfigurable hardware.
Separation of Concerns Multiple frameworks explicitly sepa-
rate the computational algorithm from subsequent optimization
schemes. In CHiLL [18], a user may write high-level transformation
scripts for existing code, describing sequences of loop transforma-
tions. These scripts are then combined with C/C++, FORTRAN or
CUDA [59] programs to produce optimized code using the poly-
hedral model. Image processing pipelines written in the Halide
[58] embedded DSL are defined as operations, whose schedule is
separately generated in the code by invoking commands such as
tile, vectorize, and parallel. Tiramisu [7] operates in a simi-
lar manner, enabling loop and data manipulation. In SPIRAL [31],
high-level specifications of computational kernels are written in
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Figure 19: Related Work

a DSL, followed by using breakdown and rewrite rules to lower
them to optimized algorithmic implementations. SDFGs, along with
DIODE and the data-centric transformation workflow, streamlines
such approaches and promotes a solution that enables knowledge
transfer of optimization techniques across applications.
Dataflow Representations Several IRs combine dataflow with
control flow in graph form. The LLVM IR [46] is a control-flow
graph composed of basic blocks of statements. Each block is given
in Single Static Assignment (SSA) form and can be transformed
into a dataflow DAG. Program Dependence Graphs (PDGs) [29]
represent statements and predicate expressions with nodes, and the
edges represent both data dependencies and control flow conditions
for execution. The PDG is a control-centric representation in which
statements are assumed to execute dynamically, a model that fits
instruction-fetching architectures well. SDFGs, on the other hand,
define explicit state machines of dataflow execution, which trans-
late natively to reconfigurable hardware. Additionally, in PDGs
data-dependent access (e.g., resulting from an indirection) creates
the same edge as an access of the full array. This inhibits certain
transformations that rely on such accesses, and does not enable in-
ferring the total data movement volume, as opposed to the memlet
definition. SDFGs can be trivially converted to the SSA and PDG
representations. In the other direction, however, the parametric con-
currency that the SDFG scopes offer would be lost (barring specific
application classes, e.g., polyhedral). As the representations operate
on a low level, with statements as the unit element, they do not en-
capsulate the multi-level view as in SDFGs. HPVM [45] extends the
LLVM IR by introducing hierarchical dataflow graphs for mapping
to accelerators, yet still lacks a high-level view and explicit state
machines that SDFGs offer. Other representations include Bamboo
[73], an object-oriented dataflow model that tracks state locally
through data structure mutation over the course of the program;
Dryad [39] and Naiad [52], parametric graphs intended for coarse-
grained distributed data-parallel applications, where Naiad extends
Dryad with definition of loops in a nested context; simplified data
dependency graphs for optimization of GPU applications [70]; deter-
ministic producer/consumer graphs [15]; and other combinations
of task DAGs with data movement [32]. As the SDFG provides
general-purpose state machines with dataflow, all the above models
can be fully represented within it, where SDFGs have the added
benefit of encapsulating fine-grained data dependencies.

Data-Centric Transformations Several representations [18, 44,
51, 58, 60, 63] provide a fixed set of high-level program transforma-
tions, similar to those presented on SDFGs. In particular, Halide’s
schedules are by definition data-centric, and the same applies to
polyhedral loop transformations in CHiLL. HPVM also applies a
number of optimization passes on a higher level than LLVM, such as
tiling, node fusion, and mapping of data to GPU constant memory.
Lift [63] programs are written in a high-level functional language
with predefined primitives (e.g., map, reduce, split), while a set of
rewrite rules is used to optimize the expressions and map them
to OpenCL constructs. Loop transformations and the other afore-
mentioned coarse-grained optimizations are all contained within
our class of data-centric graph-based transformations, which can
express arbitrary data movement patterns.
Decoupling Data Access and Computation The Chapel [17] lan-
guage supports controlling and reasoning about locality by defining
object locations and custom iteration spaces. Charm++ [42] is a
parallel programming framework, organized around message pass-
ing between collections of objects that perform tasks in shared- or
distributed-memory environments. In the Sequoia [28] program-
ming model, all communication is made explicit by having tasks ex-
change data through argument passing and calling subtasks. MAPS
[11] separates data accesses from computation by coupling data
with their memory access patterns. This category also includes all
frameworks that implement the polyhedral model, including CHiLL,
PENCIL [6], Pluto [13], Polly [34] and Tiramisu. Furthermore, the
concept of decoupling data access can be found in models for graph
analytics [23, 53], stream processing [10, 65], machine learning [3],
as well as other high-throughput [36] and high-performance [4]
libraries. Such models enable automatic optimization by reasoning
about accessed regions. However, it is assumed that the middleware
will carry most of the burden of optimization, and thus frameworks
are tuned for existing memory hierarchies and architectures. This
does not suffice for fine-tuning kernels to approach peak perfor-
mance, nor is it portable to new architectures. In these cases, a
performance engineer typically resorts to a full re-implementation
of the algorithm, as opposed to the workflow proposed here, where
SDFG transformations can be customized or extended.
Summary In essence, SDFGs provide the expressiveness of a
general-purpose programming language, while enabling perfor-
mance portability without interfering with the original code. Dif-
fering from previous models, the SDFG is not limited to specific
application classes or hardware, and the extensible data-centric
transformations generalize existing code optimization approaches.

8 CONCLUSION
In this paper, we present a novel data-centric model for produc-
ing high-performance computing applications from scientific code.
Leveraging dataflow tracking and graph rewriting, we enable the
role of a performance engineer — a developer who is well-versed
in program optimization, but does not need to comprehend the
underlying domain-specific mathematics. We show that by per-
forming transformations on an SDFG alone, i.e., without modifying
the input code, it is possible to achieve performance comparable to
the state-of-the-art on three fundamentally different platforms.

The IR proposed in this paper can be extended in several di-
rections. Given a collection of transformations, research may be
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conducted into their systematic application, enabling automatic
optimization with reduced human intervention. More information
about tasklets, such as arithmetic intensity, can be recovered and
added to such automated cost models to augment dataflow cap-
tured by memlets. Another direction is the application of SDFGs to
distributed systems, where data movement minimization is akin to
communication-avoiding formulation.
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A SDFG OPERATIONAL SEMANTICS
We begin by defining the different elements of our IR, which is a
graph of graphs. We follow by defining how a function expressed
in our IR must be called and then give semantic rules of how an
SDFG is evaluated. We precede each operational semantic rule by a
less formal description of the intent of the rule.

A.1 Elements of an SDFG
An SDFG is a directed multigraph defined by the tuple (S, T , s0),
whose vertex set S represent states, its edgesT represent transitions
between them, and has one start-state s0. It is a multigraph since
there can be multiple transitions between a pair of states.

An SDFG state s ∈ S is a named, directed acyclic multigraph
defined by the tuple (V ,E,name). Each node vi ∈ V is of one of
the following types, as shown in Table 1 of the paper: data, tasklet,
mapentry, mapexit, stream, reduce, consume-entry, consume-exit,
invoke. Each node type defines connectors — attachment points
for edges defining the nature of the connection, and the edges E
indicate dependencies which constrain the execution order. Each
edge carries amemlet, an annotation that specifies dataflow, as well
as the connectors on its source and destination nodes. Below, we
describe the node types in SDFG states and the exact definition of
memlets.

As opposed to inherently sequential representations (cf. [14,
Rule 3.15]), in SDFGs the execution order is mainly constrained by
explicit dependencies.

To parameterize some aspects of the graph, there exists a global
namespace for symbols. Symbols can be used in all symbolic ex-
pressions mentioned below, and at runtime they evaluate to scalar
values. (§ A.2).

A data node represents a typed location inmemory. Thememory
itself can be allocated outside of the SDFG and passed as a pointer
upon invocation, or allocated at runtime if transient. A data node
is a tuple (name, basetype, dimensions, transient). The name is an
identifier, the basetype a basic type (e.g., int, float, double), and
dimensions a list of symbolic integer expressions. Memory pointed
to by differently named data nodes must not alias. A data node has
an implicit connector for each adjacent edge.

A tasklet node represents computation. It is defined by the tuple
(inputs, outputs, code), where inputs and outputs are sets of elements
of the form (name, basetype, dimensions) that define connectors with
the same name, representing the only external memory the code
can read or write. Code is a string, which can be written in Python
or languages supported by the target architecture, such as C++.

A stream node represents an array of typed locations inmemory,
accessed using queue semantics, i.e., using push and pop operations.
A stream has the input connectors data and push, as well as the
output connectors data and pop. The data connectors allow initial-
ization/copying of the data stored in the queues from/to an array,
push and pop enqueue and dequeue elements, respectively.

Thememlet annotation represents dataflow, defined by the tu-
ple (src_conn, dst_conn, subset, reindex, accesses, wcr). The subset
function selects which subset of elements visible at the source con-
nector will flow to the destination connector. The reindex function
specifies at which indices the data will be visible at the destination
node. We express subset and reindex as functions on integer sets,

and implement them as lists of exclusive ranges, where each range
refers to one data dimension and defined by start:end:stride:tilesize.
tilesize is used to propagate multiple elements at a time, e.g., vector
types. Fig. 20 extends Fig. 5b from the paper by showing the same
memlets in subset/reindex notation rather than array index labels.
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Figure 20: Expanded Map with subset→reindex Notation

The wcr optional attribute (write-conflict resolution) is a func-
tion S × S → S for a data type S . The function receives the old
value currently present at the destination and the new value, and
produces the value that will be written. This attribute is normally
defined when data flows concurrently from multiple sources, e.g.,
in a parallel dot product.

Map entry/exit nodes are defined by a tuple (range, inputs,
outputs), creating a scope. The subgraphwithin the scope of a map is
defined by the nodes that are dominated by the map-entry and post-
dominated by the map-exit. This subgraph is expanded at runtime
and executed concurrently according to the symbolic range of the
mapentry, which takes the form identifier=begin:end:step. Input and
output connectors of map nodes are either defined as IN_*/OUT_* (*
is any string) to map memlets outside the scope to memlets within
it; or other identifiers, which can be used to create data-dependent
map ranges. The range identifier becomes a scope-wide symbol,
and can used to define memlet attributes (subset, reindex).

The invoke node allows to call an SDFG within an SDFG state.
Its semantics are equivalent to a tasklet that has input connectors
for each data-node and undefined symbol used in the invoked SDFG,
and an output node for each data node.

The reduce alias node is used to implement target-optimized
reduction procedures. It is defined by axes and a wcr function, con-
sisting of an input and an output connector (of the same type).
It is semantically equivalent to a map whose range spans the in-
coming and outgoing memlet data, containing an identity tasklet
(output=input) and an output memlet annotated by the given wcr
for the reduced axes.

Consume entry/exit nodes complement maps, enabling pro-
ducer/consumer relationships via dynamic parallel processing of
streams. The two nodes form a scope, similarly to a map, but also
accept a stream_in connector (connected to a stream), and a qui-
escence condition after which processing stops. Thus, a consume
entry node is a tuple (range, cond, inputs, outputs). Semantically, a
consume scope is equivalent to a map using the same ranдe , with
an internal invoked SDFG containing the scope. This state connects
back to itself without any assignments and the condition cond .

A state transition is defined as a tuple (source, destination, con-
dition, assignments). Condition can depend on symbols and data
from data nodes in the source state, whereas assignments take the
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form symbol = expression. Once a state finishes execution, all outgo-
ing state transitions of that state are evaluated in an arbitrary order,
and the destination of the first transition whose condition is true is
the next state which will be executed. If no transition evaluates to
true, the program terminates. Before starting the execution of the
next state, all assignments are performed, and the left-hand side of
assignments become symbols.

A.2 Operational Semantics
A.2.1 Initialization. Notation We denote collections (sets/lists) as
capital letters and their members with the corresponding lowercase
letter and a subscript, i.e., in an SDFGG = (S,T , s0) the set of states
S as si , with 0 ≤ i < |S |. Without loss of generality we assume s0 to
be the start state. We denote the value stored at memory location a
asM[a], and assume all basic types are size-one elements to simplify
address calculations.

The state of execution is denoted by ρ. Within the state we carry
several sets: loc , which maps names of data nodes and transients
to memory addresses; sym, which maps symbol names (identifiers)
to their current value; and vis , which maps connectors to the data
visible at that connector in the current state of execution.

We define a helper function size(), which returns the product of
all dimensions of the data node or element given as argument (using
ρ to resolve symbolic values). Furthermore, id() returns the name
property of a data or transient node, and offs() the offset of a data
element relative to the start of the memory region it is stored in.
The function copy() creates a copy of the object given as argument,
i.e., when we modify the copy, the original object remains the same.
Invocation When an SDFG G is called with the data arguments
A ≡ [ai = pi ] (ai is an identifier, pi is an address/pointer) and
symbol arguments Z ≡ [zi = vi ] (zi is an identifier, vi an integer)
we initialize the configuration ρ:

(1) For all symbols zi in Z : sym[zi ] ← vi .
(2) For all data and stream nodesdi ∈ G without incoming edges

s.t. id(di ) = ai : loc(di ) ← pi ,vis(di .data) ← M[pi , ...,pi +
size(di )].

(3) Set current to a copy of the start state of G, s0.
(4) Set state to id(s0).
(5) Set qsize[fi ] to zero for all stream nodes fi ∈ G.

This can be expressed as the following rule:
G = (S, T ),

start_state(G ) → s0,
D : data nodes in s0,
F : stream nodes in s0

(call(G, A, Z ), ρ ) → ρ [ state 7→ id(s0),
current 7→ copy(s0),∀ai = pi ∈ A : loc[ai 7→ pi ],∀zi = vi ∈ Z : sym[zi ] 7→ vi ,∀di ∈ D : vis[di .data] 7→ M [pi , . ., pi + size (di )],∀fi ∈ G .S : qsize[id(fi )] 7→ 0]

A.2.2 Propagating Data in a State. Execution of a state entails
propagating data along edges, governed by the rules defined below.

Data is propagated within a state in an arbitrary order, con-
strained only by dependencies expressed by edges. We begin by
considering all nodes in the current state, which we add to current.
We gradually remove nodes as they are processed, until current is
empty and we can proceed to the next state or termination.

To keep the description concise, we omit details of address trans-
lation and indexing. We also use the subset and reindex properties
as functions that resolve symbols and return data elements directly.

Element Processing In each step, we take one element q (either a
memlet or a node) of current, for which all input connectors have
visible data, then:
If q is a memlet (src, dst, subset, reindex, wcr), update vis[dst] to
wcr(reindex(subset(vis[src]))):

q = memlet(src, dst, subset, reindex, wcr),
(vis[src], ρ ) , ∅,

(wcr(reindex(subset(vis[src]))), ρ ) → [d0, . ., dn ]
(q, ρ ) → ρ [vis[dst] 7→ [d0, . ., dn ]]

If q is a data node, update its referenced memory for an input
connector ci ,
M[loc(id(q)), .., loc(id(q)) + size(vis[q.data])] = vis[q.data]:

q = data(id, dims, bt, transient),
(∀x, q .ci ∈ current : vis[q .ci ], ρ ) , ∅,

(∀x, q .ci ∈ current : vis[q .ci ], ρ ) → [di0 , di1 , . ., diki ],
∀dij : loc (id (q)) + offs(dij ) = l

i
j

(q, ρ ) → ρ [∀i, ki : M [l ij , . ., l
i
j + size(d

i
j )] = d

i
j ]

If q is a tasklet, generate a prologue that allocates local variables
for all input connectors ci of q, initialized to vis[ci ] (P1), as well
as output connectors (P2). Generate an epilogue Ep which updates
ρ[vis[ci ] 7→ vi ] for each output connector ci of q with the contents
of the appropriate variable (declared in P2). Execute the concatena-
tion of (P1; P2; code;Ep; ).

q = tasklet(Cin, Cout, code),
(∀x, q .ci ∈ current : v is [q .ci ], ρ ) , ∅,

(P1 = [∀ci ∈ Cin : type (ci )id (ci ) = v is [ci ]]; , ρ ),
P2 = [∀ci ∈ Cout : type (ci )id (ci ); ],

(Ep = [∀ci ∈ Cout : &v is (ci ) = id (ci ); ], ρ ),
(q, ρ ) → ρ [exec (P1; P2; code ;Ep ; )]

If q is amapentry node with range y = R (y is the identifier) and
scope o ⊂ V : Remove o from current. Remove q and the correspond-
ing map exit node from o. For each element in ri ∈ R, replicate o,
resolve any occurrence of y to ri , connect incoming connectors of
q and p in state .

q = mapentry(Cin, Cout, R),
∀cini : v is [cini ] , ∅,
o = scope(q), o′ = scope(q) \ {q, mexit(q)},
NewSyms = [cini : �(cini , y)]

(q, ρ ) → ρ [ current 7→ o′ ∪ [∀ri : ressym(copy(o′), ri )],∀ni ∈ NewSym : sym[ni ] 7→ v is [cini ] ]

If q is a consume-entry node, defined by (range, cond, cin, cout),
replace q with a mapentry and do the same for the correspond-
ing consume exit node. Then we create a new SDFG new , which
contains the contents of the original consume scope scope(q). new
consists of one state s0, and a single state transition to the same
state with the condition cond , defined by (s0, s0, cond, []). Finally,
we replace scope(q) in current with an invoke node for new and
reconnect the appropriate edges between the entry and exit nodes.

q = consume − entry(range, cond, cin, cout)
newsdfg = SDFG(scope(q) \ {q, cexit(q)}, (s0, s0, cond, []))
iv = invoke(newsdfg)
men = mapentry(range, cin, cout)
mex = mapexit(cexit(q).cin, cexit(q).cout)

(q, ρ ) → ρ [current 7→ (current \ q, cexit (q)) ∪ {iv, men, mex}]

If q is a reduce node defined by the tuple (cin, cout, range), we
create a mapentry nodemen with the same range, a mapexit node
mex , and a tasklet o = i. We add these nodes to the node set of
current, nd(current). We connect them by adding edges to the edge
set of current.

q = reduce(cin, cout, range, wcr),
v is [cin] , ∅,

men = mapentry({I N _1}, {OUT _1}, ranдe ),
mex = mapexit({I N _1}, {OUT _1}),

t = tasklet({i }, {o}, “o = i ; ”)
(q, ρ ) → ρ [ nd (current ) 7→ nd (current ) ∪ {men,mex, t }

ed (current ) 7→ ed (current ) ∪ {(men .OUT _1, t .i ), (t .o,mex .I N _1)}
v is [men .I N _1] 7→ v is [q .cin],
v is [q .I N ] 7→ ∅]
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If q is a stream, we add the data visible at the push connector to
the appropriate memory location (indicated by qsize[id(q)]), and
increment it. A stream node with an edge connected to its pop con-
nector can only be evaluated if qsize[id(q)] ≥ 1. When propagating
through streams, there are three cases for one step:
❶ Data is both pushed into and popped from the stream:

q = stream(push, pop, size),
v is [push] , emptyset,
∃(q .pop, dst ) ∈ current,
ρ [qsize (id (q)) ≥ 1]

(q, ρ ) → ρ [ v is [q .pop] 7→ M [offs(q), . ., offs(q) + size (q)],
M [offs(q) + size (q) × qsize [q], . .,
offs(q) + size (q) × (qsize [q] + 1)] 7→ v is [push], ]

❷ Data is only pushed to the stream node:
q = stream(push, pop, size),
v is [push] , emptyset,
�(q .pop, dst ) ∈ current

(q, ρ ) → ρ [ M [offs(q) + size (q)qsize [q], . .,
offs(q) + size (q)(qsize [q] + 1)] 7→ v is [push],

qsize [q] 7→ qsize [q] + 1]

❸ Data is popped from the stream but not pushed into it:
q = stream(push, pop, size),
�(src, q .push) ∈ Sstate ,∃(q .pop, dst ) ∈ current

(q, ρ ) → ρ [ v is [q .pop] 7→ M [offs(q), . ., offs(q) + size (q)],
qsize [q] 7→ qsize [q] − 1]

Following the element processing step, we removeq from current,
repeating the above step until current is empty.

A.2.3 Evaluating State Transitions. Once current is empty, we eval-
uate all outgoing state transitions of the current state:
(state,next , cond,assiдs) ∈ T . For each transition, we resolve all
symbols in cond and the right-hand sides of assiдs using ρ, then
evaluate arithmetic and boolean expressions using standard seman-
tic rules, which we omit here. If no condition evaluates to true,
signal the completion of G to the caller and stop the evaluation of
G:

current = ∅,
�(ρ [state ], next, cond, assiдs ) ∈ T : (cond, ρ ) → T rue

ρ [state 7→ ∅]

Otherwise, we choose an arbitrary transition for which cond →
true and update ρ: Set state to next , set curr to a copy of S[next].
For each left-hand side of an assignment zi , update sym[zi ] with
the value of the corresponding right-hand sidevi . Data propagation
then follows Section A.2.2:

current= ∅,
∃(ρ [state ], next, cond, assiдs ) ∈ T : (cond, ρ ) → T rue,

(assiдs, ρ ) → [zi = vi ]
ρ [ state 7→ next,

current 7→ copy(next ),
sym[zi ] 7→ vi ]

Table 4: Supported Transformations

Name Description

Map transformations

MapCollapse Collapses two nested maps into one. The newmap
has the union of the dimensions of the original
maps.

MapExpansion Expands a multi-dimensional map to two nested
ones. The dimensions are split to two disjoint sub-
sets, one for each new map.

MapFusion Fuses two consecutive maps that have the same
dimensions and range.

MapInterchange Interchanges the position of two nested maps.
MapReduceFusion Fuses a map and a reduction node with the same

dimensions, using conflict resolution.
MapTiling Applies orthogonal tiling to a map.

Data transformations

DoubleBuffering Pipelines writing to and processing from a tran-
sient using two buffers.

LocalStorage Introduces a transient for caching data.
LocalStream Accumulates data to a local transient stream.
Vectorization Alters the data accesses to use vectors.

Control-flow transformations

MapToForLoop Converts a map to a for-loop.
StateFusion Fuses two states into one.
InlineSDFG Inlines a single-state nested SDFG into a state.

Hardware mapping transformations

FPGATransform Converts a CPU SDFG to be fully invoked on an
FPGA, copying memory to the device.

GPUTransform Converts a CPU SDFG to run on a GPU, copying
memory to it and executing kernels.

MPITransform Converts a CPU Map to run using MPI, assigning
work to ranks.

B DATA-CENTRIC GRAPH
TRANSFORMATIONS

Table 4 lists the transformations used in the Performance Evaluation
section of the paper.

L R

G H

r

m

r ′

m′

Figure 21: Single-Pushout Approach

The implementation of graph transformations is based on al-
gebraic graph rewriting [27]. Each transformation is implemented
by a rule p : L

r
−→ R, which consists of the two sub-graphs L and

R, while r is a relation that maps the vertices and edges of L to
elements of the same kind in R. Moreover, a specific matching of L
in the SDFGG is represented by a relationm : L→ G . Applying the
optimization on G produces the transformed graph H , which can
be constructed as part of the pushout < H ,m′, r ′ > of p,G andm. A
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visualization of the above method, also known as the single-pushout
approach [49], is shown in Fig. 21.

C POLYBENCH FLAGS
We compile Polybench code for all compilers using the following
base flags: -O3 -march=native -mtune=native. Each compiler
was also tested with different variants of flags, where we report
the best-performing result in the paper. The flags are (variants
separated by semicolons):
• gcc 8.2.0: -O2; Base flags
• clang 6.0: Base flags
• icc 18.0.3: Base flags; -mkl=parallel -parallel
• Polly (over clang 6.0): -mllvm -polly;
-mllvm -polly -mllvm -polly-parallel -lgomp
• Pluto 0.11.4: -ftree-vectorize -fopenmp and
among best of --tile; --tile --parallel;
--tile --parallel --partlbtile;
--tile --parallel --lbtile --multipar
• PPCG 0.8: Base flags

All variants were also tested with compile-time size specializa-
tion.

D TRANSFORMATION EXAMPLE:
REDUNDANT ARRAY REMOVAL

A simple transformation implemented in DaCe is RedundantArray,
whose code can be found below. The transformation removes a
transient array that is used directly before another array, creating
a copy, and not used anywhere else (making the copy redundant).
This situation often happens after transformations and due to the
strict nature of some language frontends (e.g., TensorFlow). The
subgraph expression to match (lines 6–14) is a path graph of size
two, connecting the two access nodes. The nodes have no restric-
tion on their content (see lines 6–7). The function can_be_applied
is called on a matching subgraph for further programmatic checks
(lines 16–58), and the function apply (lines 60–78) applies the trans-
formation using the SDFG builder API. The checks ensure that the
array is indeed transient and not used in other instances of data
access nodes. To avoid recomputing subsets (which may not be
feasible to compute symbolically), if the transformation operates in
strict mode, it only matches two arrays of the same shape (lines 51–
56). The transformation then operates in a straightforward manner,
renaming the memlets to point to the second (not removed) array
(lines 66–70) and redirecting dataflow edges to that data access
node (lines 73–74). Lastly, the in_array node is removed from the
SDFG state (line 78).

In line 81, the transformation is registered with a global registry.
This process enables users to import custom transformations and in-
tegrate them into DaCe easily. However, because RedundantArray
is a strict transformation (i.e., can only improve performance), it is
also hardcoded in a set of such transformations within the SDFG
class. Strict transformations are applied automatically after pro-
cessing a DaCe program, and other such transformations include
StateFusion and InlineSDFG.

1 class RedundantArray(pm.Transformation ):
2 """ Implements the redundant array removal transformation ,
3 applied when a transient array is copied to and from (to
4 another array), but never used anywhere else. """
5
6 _in_array = nodes.AccessNode('_')
7 _out_array = nodes.AccessNode('_')
8
9 @staticmethod
10 def expressions ():
11 return [
12 nxutil.node_path_graph(RedundantArray._in_array ,
13 RedundantArray._out_array),
14 ]
15
16 @staticmethod
17 def can_be_applied(graph , candidate , expr_index , sdfg ,
18 strict=False ):
19 in_array = \
20 graph.nodes ()[ candidate[RedundantArray._in_array ]]
21 out_array = \
22 graph.nodes ()[ candidate[RedundantArray._out_array ]]
23
24 # Ensure out degree is one (only one target , out_array)
25 if graph.out_degree(in_array) != 1:
26 return False
27
28 # Make sure that the candidate is a transient variable
29 if not in_array.desc(sdfg). transient:
30 return False
31
32 # Make sure both arrays are using the same storage location
33 if (in_array.desc(sdfg). storage !=
34 out_array.desc(sdfg). storage ):
35 return False
36
37 # Find occurrences in this and other states
38 occurrences = []
39 for state in sdfg.nodes ():
40 occurrences.extend ([
41 n for n in state.nodes()
42 if isinstance(n, nodes.AccessNode)
43 and n.desc(sdfg) == in_array.desc(sdfg)
44 ])
45
46 if len(occurrences) > 1:
47 return False
48
49 # If strict , only apply if arrays are of same shape
50 # (no need to modify memlet subset)
51 if (strict and (len(in_array.desc(sdfg).shape) !=
52 len(out_array.desc(sdfg).shape))
53 or any(i != o for i, o in zip(
54 in_array.desc(sdfg).shape ,
55 out_array.desc(sdfg).shape ))):
56 return False
57
58 return True
59
60 def apply(self , sdfg):
61 graph = sdfg.nodes ()[ self.state_id]
62 in_array = gnode(RedundantArray._in_array)
63 out_array = gnode(RedundantArray._out_array)
64
65 for e in graph.in_edges(in_array ):
66 # Modify all incoming edges to point to out_array
67 path = graph.memlet_path(e)
68 for pe in path:
69 if pe.data.data == in_array.data:
70 pe.data.data = out_array.data
71
72 # Redirect edge to out_array
73 graph.remove_edge(e)
74 graph.add_edge(e.src , e.src_conn , out_array ,
75 e.dst_conn , e.data)
76
77 # Finally , remove in_array node
78 graph.remove_node(in_array)
79
80 # Register transformation in global registry
81 pm.Transformation.register_pattern(RedundantArray)
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E GRAPH DATASETS
Table 5 lists the graph datasets used in the BFS case study of the
paper.

Table 5: Graph Properties
Name Nodes Edges Avg. Max Size

Degree Degree (GB)
Road Maps

USA [1] 24M 58M 2.41 9 0.62
OSM-eur-k [2] 174M 348M 2.00 15 3.90

Social Networks
soc-LiveJournal1 [24] 5M 69M 14.23 20,293 0.56
twitter [16] 51M 1,963M 38.37 779,958 16.00

Synthetic Graphs
kron21.sym [5] 2M 182M 86.82 213,904 1.40

F INDIRECT MEMORY ACCESS
Indirect memory access, i.e., A[b[i]], is an important characteristic
of sparse data structure and pointer jumping algorithms. Indirection
cannot be directly represented by a single memlet. As shown in
Fig. 22 (an excerpt of Sparse Matrix-Vector Multiplication), such
statements are converted to a subgraph, where the internal access
is given exactly (A_col[j] in the figure), and the indirect memory
is given by a memlet with one access (x(1)[:]). The memory is
then accessed dynamically and copied using a tasklet.

@dace.map
def spmv(j: _[prow[0]:prow[1]]):
a << A_val[j]
x_in << x[A_col[j]]
out >> b(1, lambda x,y: x+y, 0)[i]

out = a * x_in

[j=prow[0]:prow[1]]

multiply
b[i] (Sum)

b[:] (Sum)

prow[0:2]val[:] col[:] x[:]

indirection

x_in
val[j]

col[j] x(1)[:]

[j=prow[0]:prow[1]]

Figure 22: Indirect Memory Access Dataflow
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