
Cache Line Aware Optimizations for ccNUMA Systems

Sabela Ramos
Computer Architecture Group

University of A Coruña
Spain

sramos@udc.es

Torsten Hoefler
Scalable Parallel Computing Lab

ETH Zurich
Switzerland

htor@inf.ethz.ch

ABSTRACT
Current shared memory systems utilize complex memory hi-
erarchies to maintain scalability when increasing the num-
ber of processing units. Although hardware designers aim
to hide this complexity from the programmer, ignoring the
detailed architectural characteristics can harm performance
significantly. We propose to expose the block-based design
of caches in parallel computers to middleware designers to
allow semi-automatic performance tuning with the system-
atic translation from algorithms to an analytic performance
model. For this, we design a simple interface for cache line
aware (CLa) optimization, a translation methodology, and a
full performance model for cache line transfers in ccNUMA
systems. Algorithms developed using CLa design perform
up to 14x better than vendor and open-source libraries, and
2x better than existing ccNUMA optimizations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Design, Algorithms, Performance

Keywords
Cache coherence, multi-cores, performance modeling.

1. MOTIVATION
Today’s multi- and many-core architectures provide the

illusion of coherent shared memory to simplify the initial de-
sign of parallel programs from a serial specification. Cache
coherence protocols guarantee that there is exactly one value
in each memory location in the system, even when several
threads write simultaneously. To achieve the highest perfor-
mance, programmers need to design highly-scalable parallel
algorithms to utilize the exponentially growing number of
cores. While cache coherence simplifies the initial design,
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the complexity of the protocol’s performance characteristics
often leads to poorly-scalable solutions. This is mainly be-
cause the complex interactions in the cache coherence proto-
col are hidden from programmers, essentially forming an ab-
straction barrier for performance-centric programming. To
overcome this, we propose the use of a Cache Line aware
(CLa) design, a simple abstraction that considers cache co-
herence hardware during algorithm-design and implementa-
tion. The main features of CLa’s abstract machine model
are detailed cost functions for accesses in coherent hierar-
chical non-uniform memory access (ccNUMA) computers.

In summary, the specific contributions of our work are: (1)
we propose Cache Line aware (CLa) optimization, a method
for performance-centric programming of ccNUMA systems;
(2) we show how to systematically model the performance
of algorithms analytically; (3) we design a methodology to
translate shared memory communication algorithms directly
into an analytical performance model; and (4) we conduct
a practical study with a dual-socket architecture yielding
speedups between 1.8x and 14x over optimized libraries.

We start with a brief discussion of a performance model for
cache-coherence protocols in ccNUMA systems. In Section 3
we introduce the rules for translating an algorithm into the
performance model. Section 4 describes and exemplifies the
application of our principles for CLa design.

2. CLA PERFORMANCE MODELS
Modern multi- and many-core processors provide cache co-

herence as a means to hide the management of data-sharing
among cores. Yet, we show that performance engineers need
to reason explicitly about cache coherence transfers in or-
der to obtain highest performance. We propose a perfor-
mance model based on a set of building blocks that en-
ables programmers to analyze algorithms in terms of (cache)
line transfers. We identify two main primitives which we
parametrize through benchmarking considering thread loca-
tion and coherence state: single-line and multi-line trans-
fers. However, various interactions between threads may
introduce additional overheads. Some interactions, such as
contention (several threads accessing the same cache lines)
and congestion (several threads accessing different lines) can
be benchmarked and modeled accurately. Other interactions
depend on the real-time order in which operations are per-
formed and are not predictable (see Section 2.3).

Although our conclusions and methods are not limited to a
specific architecture, we now briefly describe the NUMA sys-
tem on which we developed and executed our benchmarks,
a dual-socket eight-core processor Intel Sandy Bridge Xeon



E5-2660, at 2.20GHz with Hyper Threading activated and
Quick Path Interconnect (QPI, 8 GT/s). Each socket has
three levels of cache. L1 (32 KB data and 32 KB instruc-
tions) and L2 (256 KB unified) caches are private to each
core. An L3 cache (or LLC) of 20 MB is shared by all cores
within a socket and divided in eight slices. The internal
components of the chip, including the LLC slices, are con-
nected via a ring bus. All cores can use every LLC’s cache
slices, thus having access to data stored in any of them. The
chip uses the MESIF cache coherence protocol [13], based on
the classic MESI (Modified-Exclusive-Shared-Invalid) proto-
col. It adds a Forward state to optimize the management
of shared states. Although it globally behaves like a snoop-
ing protocol, cache coherence within each socket is kept by
the LLC, that holds a set of bits indicating the state of
the line and which cores have a copy. Among sockets, the
QPI implements the cache coherence protocol. It is in this
scenario when the F state avoids multiple answers from dif-
ferent sockets to a snooping request.

2.1 Single-line Transfers
The basic block in our model is the transfer of a cache

line between two cores. Line transfers are caused by two
operations: read and RFO (Read For Ownership). Both
involve fetching lines, but the latter indicates the intention
to write. We estimate the cost of both as a read (R) although
there could be some differences, e.g., an RFO of a shared
line means that all copies must be invalidated. But we first
analyze transfers between two threads where this difference
is not significant.

We implemented a pingpong data exchange to analyze
the impact of thread location and coherence state. Results
show that there are significant differences when varying the
location of threads and lines. But there are only minor vari-
ations for different cached states, hence, we cluster the costs
for line transfers in five classes: (1) L if the line is in local
cache, (2) R if it is in another core from the same socket,
(3) Q if it is in another socket, (4) I if it is in memory in a
local NUMA region, and (5) QI if it is in a remote NUMA
region. Such a model would need to be generated for each
microarchitecture. We parametrize the cost of a line trans-
fer for each class with BenchIT [13], obtaining the following
latencies: (1) RL ' 2.3ns, (2) RR ' 35ns , (3)RQ ' 94ns,
(4) RI ' 70ns, and (5) RQI ' 107ns.

Sandy Bridge supports loading half lines [1, §2.2.5.1]
which is cheaper than always loading full lines. However,
other architectures always transfer entire lines, thus, we will
work with full lines for generality and clarity.

We use two benchmarks to evaluate contention (threads
accessing the same CL) and congestion (threads accessing
different lines). In these benchmarks, threads read an exter-
nal send buffer and copy it into a local receive buffer. We
did not observe contention in any scenario and results show
no congestion for intra-socket transfers. We further analyze
QPI congestion together with multi-line cache transfers.

2.2 Multi-line Transfers
We evaluate multi-line transfers with two benchmark stra-

tegies: pingpong and one-directional transfers (similar to
those used for contention and congestion). Pingpong times
exhibit significant variability when using invalid lines, es-
pecially for QPI transfers. This variability stems from the
use of DRAM and different NUMA regions and we devel-

oped approximate models to simplify algorithm optimiza-
tion and comparison. Without loss of generality, we work
with cached multi-line transfers for which we empirically
parametrize the model in Equation (1). N is the number of
lines, n is the number of simultaneously accessing threads,
and q, o, c are architecture-specific parameters (cf. Table 1).
The term cnN represents congestion in the QPI link (it is
zero in intra-socket scenarios).

Tm(n,N) = q + oN + cnN (1)

Table 1: Parameters for multi-line transfer of cached lines

q [ns] o [ ns
line

] c [ ns
line·thread ] R2

Intra socket 63.4 11.1 0 0.8

Inter socket 180.65 7.5 3.0 0.91

2.3 Invalidation and Cache Line Stealing
The described building blocks can be used to model al-

gorithms in terms of line transfers but we need to consider
two additional sources of overhead due to interactions be-
tween threads or cores. First, an RFO of a shared line
involves invalidation at its n owners (on our test system,
it costs nRR instead of RR). Second, cache line stealing
appears when several threads write one line where another
thread is polling (n-writers), or when several threads poll a
line that another thread writes (n-readers). Both scenarios
get more complex with more than one reader or writer, re-
spectively. To capture all these variations, we use min-max
models [15] that provide performance bounds by estimating
the best and worst stealing scenario. We represent a CLa
algorithm in terms of line transfers and thread interactions,
using the parametrized building blocks to derive models for
the minimum (Tmin) and maximum (Tmax) scenarios.

3. A CANDIDATE CLA INTERFACE
In order to expose cache coherence interactions and apply

our performance model, we propose a simple methodology
that starts by expressing algorithms in a cache line centric
manner using primitives that can be implemented in vari-
ous ways in most languages. We implement them with di-
rect load/store ISA instructions. When they are used for
synchronization, we use atomic instructions for writing, but
not for reading and polling, because atomics often force the
eviction of lines from other caches. The cost of each opera-
tion is expressed in terms of location and state of the given
lines. For more than one line, we use Equation (1). We
define the following operations:

1. cl_copy(cl_t* src,cl_t* dest,int N) copies N
lines from src to dest.

2. cl_wait(cl_t* line,clv_t val,op_t comp=eq)

polls until comp(*(line),val) is true.
3. cl_write(cl_t* line,clv_t val) writes val in line.
4. cl_add(cl_t* line,clv_t val) adds val to line.

Once we have the CLa pseudo-code, we construct a graph
in which nodes are the CLa operations performed by each
thread, linked by four types of edges:

E1 A sequence of operations within a thread, represented
by dotted directed edges.

E2 Logical dependencies between threads (i.e., reading or
polling a line that has been written by others), repre-
sented by directed edges.



E3 Sequential restrictions between threads without order,
represented by non-directed edges. We use them when
several threads write the same flag (in any order), and
a thread polls this flag waiting for all writes.

E4 Line stealing in non-related operations (e.g., a wait

on a line that is written in two different stages of an
algorithm), represented by dotted lines.

Next, we assign costs to the nodes using the following rules:

1. Flags are initially in memory. First fetch costs RI .
2. An access to data in local cache costs RL.
3. The access to the same line by the same thread in

consecutive operations is counted once.
4. If the operation has an incoming edge from another

thread, it costs RR or RQ depending on the location
of threads.

5. Read operations with incoming edges from the same
node can be simultaneous without contention. E.g.,
threads copying a line written by another.

In order to derive the Tmin (cost of the critical path), we de-
fine a path as a sequence of nodes linked by E1, E2, and E3
edges, starting in a node with no incoming E1 and E2 edges,
and finishing in a node with no outgoing edges. Regard-
ing E3 edges, they link all sequential writes that have out-
going E2s towards the same wait. When searching for the
critical path, we analyze reorderings of these writes, ensuring
that the path visits once each of them before going towards
the wait. When some E3s represent inter-socket communi-
cations, we select the reordering with less QPI transfers.

To identify QPI congestion, we look for directed arrows
between sockets that have: (1) different start and end points
(accesses to different addresses by different threads), and (2)
previous paths of similar cost (simultaneous transfers). Fi-
nally, Tmax is calculated by analyzing line stealing (the main
cause is the wait operation) and we can refine it by consid-
ering which operations might not overlap. We optimize for
Tmin because Tmax is usually too pessimistic. If an algo-
rithm receives a communication structure as parameter, we
analyze multiple structures to obtain the best one.

This set of rules is enough to derive graphs and perfor-
mance models for multiple communication algorithms and
it is easily extensible to cover other interactions.

4. SINGLE-LINE BROADCAST
Broadcast consists of transferring data from one thread

(root) to n others. We designed a tree-based algorithm tak-
ing into account that all children of a given node copy the
data without contention. However, the more children a par-
ent has, the more costly the synchronization is: The parent
notifies that data is ready (one-to-many, To2m) and children
notify that they have copied so the parent can free the struc-
ture (many-to-one, Tm2o). We use notification with payload
for the one-to-many synchronization. Regarding the many-
to-one, we use one line in which children write and the parent
polls. Although other analyzed variants have the same Tmin,
this version has lower Tmax. Our algorithm (cf. Figure 1)
uses a generic tree in which each node i has ki children that
copy the same data. We generate all structurally equiva-
lent rooted trees [10], calculating the broadcast latency to
select the best structure. This tree could change slightly in
a scenario with contention in which we may have rounds of
children accessing the same data at different stages.

Function OneLineBroadcast(int me, cl t * mydata, tree t tree)
if tree.parent != -1 then

[S1] cl_wait(tree.pflag[tree.parent],1); //one-to-many
[S2] cl_copy(tree.data[tree.parent],mydata,1);

if tree.nsons > 0 then
[S3] cl_copy(mydata,tree.data[me],1);
[S4] cl_write(tree.pflag[me],1); //one-to-many
[S5] cl_wait(tree.sflag[me],tree.nsons); //many-to-one

if tree.parent != -1 then
[S6] cl_add(tree.sflag[tree.parent],1); //many-to-one

end

end

Figure 1: One line broadcast in CLa pseudo-code. The first
if block corresponds to children polling their parent’s flag
and copying the data. In the second one, a parent sets the
data and the flag, and waits for its children to copy. Finally,
children notify to their parent that they have copied.

For a given tree structure, we construct the CLa graph
and search the critical path. Figure 2 shows an example of
a four-node binary tree (the critical path has thicker edges
and nodes with dotted circles). The E1s link operations
within each thread and we use E2s in the synchronizations
and data copies. Finally, there is an E3 because t1 and t2
write the same flag, where t0 polls.
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Figure 2: CLa graph for a one line broadcast using a four-
node binary tree. Costs with ‘*’ represent situations in
which the same thread operates consecutively with the same
line and the cost of accessing is counted only once.

Since we use tree structures, we observe regularities in the
critical path: It includes the transfer of data from the root to
its children plus the synchronizations (Tlev(k0) = To2m(k0)+
Tdata+Tm2o(k0)), plus the cost of the most expensive subtree
(Tbc(streei), the left one in Figure 2). We generalize it in
Equation (2)1. The minimization balances the number of
simultaneous readers, and the notification cost. In a multi-
socket broadcast some edges become QPI links. We generate
permutations of the tree nodes to locate the QPI links in
different edges2 and we apply Equation (2) considering: (1)
Inter-socket transfers cost RQ. (2) To isolate QPI transfers
and minimize line stealing, we use one synchronization line
per socket. And (3) we do not consider QPI congestion
caused by different subtrees because our experiments showed
that the benefits are minimal.

minimize
ki

Tbc(tree) =Tlev(k0) + max
i=1,...,k0

(Tbc(streei))

subject to Tbc(leaf ) = 0
∑n

i=0 ki = n, ki ≥ 0
(2)

Figure 3 shows the performance of our algorithm com-
pared to two MPI libraries and the HMPI NUMA-aware

1If we use a global flag where the root sets the shared struc-
ture as occupied by this operation, we add RI
2We do not need all permutations: there is no difference
among threads from the same socket.



broadcast [12] (using a thread-based implementation to com-
pare algorithms directly). We use RDTSC intervals [14] to
synchronize threads before each iteration and we force syn-
chronization data-structures and user-data in the desired
cache states. The system used is described in Section 2,
with CentOS 6.4. Compilers are Intel v.13.1.1 and GNU
v.4.4.7, and MPI libraries Intel MPI v.4.1.4 and Open MPI
1.7.2. The shaded area represents the min-max model. The
results of our algorithm include boxplots to represent the
statistical variation of the measurements. We schedule up
to eight threads in one socket and the rest of them in the sec-
ond one. Broadcasts with an imbalanced number of threads
per socket (e.g., ten threads) use different trees depending
on the root is location. Our algorithm clearly outperforms
both MPI libraries obtaining a speedup of up to 14x. HMPI
uses a flat tree with synchronization based on barriers. We
improve this approach by up to 1.8x.
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Figure 3: Single-line broadcast

5. RELATED WORK
Analytical performance models have been largely used to

optimize parallel computation [3, 7], especially in distributed
environments. Some of them were extended with memory
concerns [5, 6] and multi-core features [11, 16]. Model-
driven algorithm optimization has been tackled in multiple
works [9, 12] but with almost no cache coherence concerns.
And most cache coherence works focus on memory hierarchy
and cache conflicts [2, 4]. David et al. [8] make an exhaustive
analysis of lock synchronization for different multi-core ar-
chitectures, evaluating the effect of cache states and memory
operations. Our performance model significantly improves
our previous work [15] on homogeneous many-core proces-
sors. We extend the model for hierarchical NUMA machines,
generalizing its applicability and the algorithm design.

6. CONCLUSIONS
While cache coherence simplifies the use of multiple cores,

it exhibits complex performance properties and thus compli-
cates high-performance code design. We address this issue
with cache line aware (CLa) optimizations, a semi-automatic
design and optimization method that eases the translation
of an algorithm to a performance model in a systematic
manner. We exemplify its use improving broadcast perfor-
mance up to 14x in comparison to highly-optimized vendor-
provided communication libraries, and up to 1.8x when com-
pared to the NUMA-aware HMPI collectives. Moreover, we
expect higher improvements in future many-core systems.
We expect that model-driven algorithm engineering will ben-
efit high-performance low-level software engineering, and it
will be necessary to address software and hardware complex-
ity in the long run.
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