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Graphs are Powerful and Ubiquitous!

Social sciences

Engineering

Biology
Chemistry

Communication

Medicine Cybersecurity
Web graph analysis

...even philosophy
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Graphs + Deep Learning = Graphs Neural Networks (GNNs)

+

In the last 5 years, learning on 
graphs exploded
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Let’s See Some Recent Success Stories of GNNs
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Deep Learning (DL) in a Nutshell

Learning a 
modelSamples
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A Primer on Graph Neural Networks (GNNs)

These could still be photos, but now forming explicit relations, e.g., 
two photos are related if they were taken at the same place.Samples

input samples
gather from 

neighbors (sparse)
apply DNN

(often simple)
optional 

nonlinearity

next 
“layer”

output vector
(can be used 

for specific tasks)
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations

Formulations based on functions operating on 
single vertices & edges

GNN layer

Vertex ID
Neighbors

Functions that specify
the model details

Vertex 
feature 
vector
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations

Formulations based on functions operating on 
single vertices & edges
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations
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Formulations based on functions operating on 
single vertices & edges

. . . 

. . . 
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations
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Global GNN formulations

Formulations based on operations on matrices 
grouping all vertex & edge related vectors

Model details (a transformation of, 
among others, the adjacency matrix)

All vertex feature vectors 
grouped together

Model 
parameters

Formulations based on functions operating on 
single vertices & edges

. . . 

. . . 
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations
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Global GNN formulations

Formulations based on operations on matrices 
grouping all vertex & edge related vectors

Model details (a transformation of, 
among others, the adjacency matrix)

All vertex feature vectors 
grouped together

Model 
parameters

• Communication-avoiding 2.5D 
MMM

• Tiling
• Kernel fusion
• …

Global formulations can utilize 
optimal linear algebra algorithms!

Formulations based on functions operating on 
single vertices & edges

. . . 

. . . 

“Per-vertex” formulations can’t 
expose data reuse!
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Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations
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Global GNN formulations

Formulations based on operations on matrices 
grouping all vertex & edge related vectors

Model details (a transformation of, 
among others, the adjacency matrix)

All vertex feature vectors 
grouped together

Model 
parameters

• Communication-avoiding 2.5D 
MMM

• Tiling
• Kernel fusion
• …

Global formulations can utilize 
optimal linear algebra algorithms!

Formulations based on functions operating on 
single vertices & edges

. . . 

. . . 

“Per-vertex” formulations can’t 
expose data reuse!

Problem:
Finding global formulations may be challenging

Global formulations are known for simple 
models such as Convolutional GNNs
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Global Formulations of GNN Models
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The simplest model: Graph Convolution Network [1] What are the global 
formulations of more 

complex models, such as 
attentional GNNs? 

Also, why do we care?

Key technique? 

Graph Attention 
Networks

[1] T. Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks. ICLR. 2017.
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Attention in GNN Models
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Convolutional GNN Attentional GNN

The contribution of 
neighbors is learnable 

The contribution of 
neighbors is fixed 

e.g., sum

Static, binary matrix
adjacency matrix of the 

graph

Matrix with dynamic 
attention scores
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Attention in GNN Models
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Convolutional GNN Attentional GNN

The contribution of 
neighbors is learnable 

The contribution of 
neighbors is fixed 

e.g., sum

Static, binary matrix
adjacency matrix of the 

graph

Matrix with dynamic 
attention scores

We provide generic global formulations for any 
attentional GNNs, both for the forward and the 

backward propagation pass



@spcl_eth
@spcl

spcl.ethz.ch

Attention in GNN Models – Forward Pass
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Non-linearity

weights

A sparse n x n tensor 
with attention scores, 

model specific

Features from previous 
layer

Vanilla 
Attention

Graph Attention Network (GAT) Attention-based GNN 
(AGNN)

Formulating ψ is the „crux” of 
devising a concrete formulation 

for a specific model
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Attention in GNN Models – Forward Pass
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Non-linearity

weights

A sparse n x n tensor 
with attention scores, 

model specific

Features from previous 
layer

Vanilla 
Attention

Graph Attention Network (GAT) Attention-based GNN 
(AGNN)

Formulating ψ is the „crux” of 
devising a concrete formulation 

for a specific model
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Global Formulations of GNN Models

25A. Vaswani, et al. Attention is All you Need. NIPS. 2017



@spcl_eth
@spcl

spcl.ethz.ch

Global Formulations of GNN Models
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This is our ψ for the Vanilla Attention Model

A. Vaswani, et al. Attention is All you Need. NIPS. 2017
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Attention in GNN Models – Forward Pass
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Non-linearity

weights

A sparse n x n tensor 
with attention scores, 

model specific

Features from previous 
layer

Vanilla 
Attention

Graph Attention Network (GAT) Attention-based GNN 
(AGNN)

Formulating ψ is the „crux” of 
devising a concrete formulation 

for a specific model
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

Vector  concatenation

P. Veličković, et al. Graph Attention Networks. ICLR . 2018.
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

This is the softmax 
normalization, we’ll 

get to it later 

P. Veličković, et al. Graph Attention Networks. ICLR . 2018.
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

P. Veličković, et al. Graph Attention Networks. ICLR . 2018.
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

weight matrix

feature vector

vertex u

vertex v

=

=

‘

‘‘

multiply by shared weight matrix

Local formulation

weight vector
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

weight matrix

feature vector

vertex u

vertex v

=

=

‘

‘‘

multiply by shared weight matrix

Local formulation

vector split

weight vector

a a ā
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?

weight matrix

feature vector

vertex u

vertex v

=

=

‘

‘‘

multiply by shared weight matrix

Local formulation

vector split

weight vector

a a ā

two dot products

a
‘

‘‘

ā

sum partial sums
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?
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Graph Attention Network (GAT)
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Local ψ formulation is very involving – how to obtain the global formulation?
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Graph Attention Network (GAT)
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Graph Attention Network (GAT)
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Graph Attention Network (GAT)

40



@spcl_eth
@spcl

spcl.ethz.ch

Graph Attention Network (GAT)
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Graph Attention Network (GAT)
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Graph Attention Network (GAT)

43

Element-wise 
operations are not 
shown (negligible
from performance 

perspective)
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Graph Attention Network (GAT)
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Graph Attention Network (GAT)
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Let’s see how softmax
(sm) looks like in the
global formulation
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Global Formulations of GNN Kernels – Softmax
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part 1 of rs()

part 2 of rs()
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Global Formulations of GNN Kernels – Softmax
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Global Formulations of GNN Kernels – Backward Pass

Generic formulation

Matrix view
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Global Formulations of GNN Kernels – Backward Pass

Vanilla Attention (VA)

Graph Attention Network (GAT)

Attention-based GNN (AGNN) [1]

[1] K. Thekumparampil et al. Attention-based Graph Neural Network for Semi-supervised Learning. arXiv:2018.
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The Entire Optimization Toolchain

50

Minimizing 
communication

Maximizing 
data reuse= Data reuse within 

a kernel: tiling= Data reuse across 
kernels: kernel fusion+

SOAP: G. Kwasniewski et al. Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower Bounds for Statically Analyzable Programs. SPAA. 2021.
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CSCS Cray Piz Daint supercomputer
• Cray XC50 nodes
• Intel Xeon E5-2690 v3, 12 cores
• Single NVIDIA Tesla P100 per node
• 64 GB RAM per node

Evaluation

51
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Considered Graph Datasets

Synthetic graphs

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]
[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

Microsoft Academic Knowledge Graph

Kronecker [1]
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Strong Scaling
Kronecker [1]

p = 1%

k=
16

k=
12

8

p = 0.01%

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

Sparsity: p = m / (n * n)

#features
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Strong Scaling
Kronecker [1]

𝑛 = 262k,𝑚 = 687M 𝑛 = 2.1M,𝑚 = 440M

p = 1%

𝑛 = 131k,𝑚 = 172M

k=
16

k=
12

8

𝑛 = 1M,𝑚 = 110M

p = 0.01%

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

#vertices #edges
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Strong Scaling
Kronecker [1]

𝑛 = 262k,𝑚 = 687M 𝑛 = 2.1M,𝑚 = 440M

p = 1%

𝑛 = 131k,𝑚 = 172M

k=
16

k=
12

8

𝑛 = 1M,𝑚 = 110M

p = 0.01%

ru
nt

im
e 

[s
]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.#compute nodes

AGNN and 
GAT 5x faster

VA 3x
faster
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Strong Scaling
Kronecker [1]

𝑛 = 262k,𝑚 = 687M 𝑛 = 2.1M,𝑚 = 440M

p = 1%

𝑛 = 131k,𝑚 = 172M

k=
16

k=
12

8

𝑛 = 1M,𝑚 = 110M

p = 0.01%

ru
nt

im
e 

[s
]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.#compute nodes

DGL/DistDGL focuses on mini-batch training

Our work does full-batch training.

AGNN and 
GAT 5x faster

VA 3x
faster

Our work processes at least an 
order of magnitude more vertices 

than DistDGL
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Weak Scaling
Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

p = 0,1% p = 0,01%
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Weak Scaling
Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

p = 0,1% p = 0,01%

#compute nodes|#vertices

ru
nt

im
e 

[s
]
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Weak Scaling
Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

p = 0,1% p = 0,01%

#compute nodes|#vertices

ru
nt

im
e 

[s
]

#vertices#compute 
nodes
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Strong Scaling
Microsoft Academic

Knowledge Graph

ru
nt

im
e 

[s
]

#compute nodes

#features = 16 #features = 64 and 128

111 million vertices and 
3.2 billion edges

Standard real world 
graph dataset
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Strong Scaling
Microsoft Academic

Knowledge Graph

ru
nt

im
e 

[s
]

#compute nodes

#features = 16 #features = 64 and 128

Data points for k = 128 
are marked with a gray 

background.

111 million vertices and 
3.2 billion edges

Standard real world 
graph dataset
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Strong Scaling
Microsoft Academic

Knowledge Graph

ru
nt

im
e 

[s
]

#compute nodes

#features = 16 #features = 64 and 128

For k = 128, all models 
except GAT require 

1,024 compute nodes.

Data points for k = 128 
are marked with a gray 

background.

111 million vertices and 
3.2 billion edges

Standard real world 
graph dataset

For k = 64, all models 
except GAT require 256 

compute nodes.
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Conclusions More of SPCL’s research:

… or spcl.ethz.ch

175+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 2K+ Stars
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