
The Graph Database Interface: Scaling Online Transactional and
Analytical Graph Workloads to Hundreds of Thousands of Cores

Maciej Besta∗†
Robert Gerstenberger∗

ETH Zurich

Marc Fischer
ETH Zurich

Michał Podstawski
TCL Eagle Lab

Warsaw University of Technology

Nils Blach
ETH Zurich

Berke Egeli
ETH Zurich

Georgy Mitenkov
ETH Zurich

Wojciech Chlapek
ICM UW

Marek Michalewicz
Sano Centre for Computational

Medicine

Hubert Niewiadomski
Cledar

Jürgen Müller
BASF SE

Torsten Hoefler†
ETH Zurich

ABSTRACT
Graph databases (GDBs) are crucial in academic and industry ap-
plications. The key challenges in developing GDBs are achieving
high performance, scalability, programmability, and portability. To
tackle these challenges, we harness established practices from the
HPC landscape to build a system that outperforms all past GDBs
presented in the literature by orders of magnitude, for both OLTP
and OLAP workloads. For this, we first identify and crystallize
performance-critical building blocks in the GDB design, and ab-
stract them into a portable and programmable API specification,
called the Graph Database Interface (GDI), inspired by the best
practices of MPI. We then use GDI to design a GDB for distributed-
memory RDMA architectures. Our implementation harnesses one-
sided RDMA communication and collective operations, and it offers
architecture-independent theoretical performance guarantees. The
resulting design achieves extreme scales of more than a hundred
thousand cores. Our work will facilitate the development of next-
generation extreme-scale graph databases.

CCS Concepts
• Information systems → Graph-based database models; Par-
allel and distributed DBMSs;Database design andmodels; Distributed
database transactions; • Computer systems organization→ Dis-
tributed architectures.

∗Both authors contributed equally to this research.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607068

Keywords
Graphs, Graph Databases, Data Layout, Graph Queries, Graph
Transactions, Labeled Property Graph, RDMA

ACM Reference Format:
Maciej Besta, Robert Gerstenberger, Marc Fischer, Michał Podstawski, Nils
Blach, Berke Egeli, GeorgyMitenkov,Wojciech Chlapek,MarekMichalewicz,
Hubert Niewiadomski, Jürgen Müller, Torsten Hoefler. 2023. The Graph
Database Interface: Scaling Online Transactional and Analytical Graph
Workloads to Hundreds of Thousands of Cores. In The International Con-
ference for High Performance Computing, Networking, Storage and Analysis
(SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3581784.3607068

Code and GDI Specification: https://github.com/spcl/GDI-RMA
Extended Technical Report: https://arxiv.org/abs/2305.11162

1 INTRODUCTION
Graph databases (GDBs) enable storing, processing, and analyzing
large and evolving irregular graph datasets in areas as different
as medicine or sociology [17, 73]. GDBs face unique design and
compute challenges. First, GDB datasets are huge and complex.
While they can have over tens of trillions of edges [66], both ver-
tices and edges may also come with arbitrarily many labels and
properties. This further increases dataset sizes. On top of that,much
larger datasets are already on the horizon1. Second, while tradi-
tional GDB workloads focus on online transactional processing
(OLTP), there is a growing interest in supporting other classes such
as online analytical processing (OLAP) or the “online serving pro-
cessing” (OLSP), also called business intelligence [65].How to design
high-performance and scalable databases that enable processing of
large and complex graphs for OLTP, OLAP, and OLSP queries? Third,
portability is also important - there are many different hardware
architectures available, and it may be very tedious and expensive to
port a database codebase to each new class of hardware. Finally, a
GDB design that would satisfy all the above challenges may become
extremely complicated, and consequently hard to reason about, de-
bug, maintain, or extend. This raises the question: How to ensure

1As indicated by discussions with our industry partners

1

https://doi.org/10.1145/3581784.3607068
https://doi.org/10.1145/3581784.3607068
https://github.com/spcl/GDI-RMA
https://arxiv.org/abs/2305.11162
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607068&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

Reference RDMA? Prog.? Port.? Focus on... Achieved scales (OLTP) Achieved scales (OLAP, OLSP) MemS? Th.?
wR bR OLTP OLAP OLSP BULK #S #C Size |𝐸 | |𝑉 | #S #C Size |𝐸 | |𝑉 |

A1 [25] é é é é é é 245 2,940 3.2 TB 6.2B 3.7B é é é é é 128 GB é
GAIA [87] é é é é é é é é é é é é 16 384 1.96 TB 17.79B 2.69B 512 GB é
G-Tran [30] é é é é é 10 160 ∗1.28 TB 0.495B 0.082B é é é é é 128 GB
Neo4j [1] é é é é 1 128 6.9 TB 55B 5B 1 128 6.9 TB 55B 5B 2 TB é
TigerGraph [100] é é é é é 40 1600 17.7 TB 533.5B 72.62B 36 4,608 N/A 539.6B 72.6B 1 TB é
JanusGraph [67] é é é é é N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A é
Weaver [36] é é é é é é é 44 352 0.976 TB 1.2B 0.08B é é é é é 16 GB é
Wukong [93] é é é é é é 6 120 ∗0.384 TB 1.41B 0.387B é é é é é 64 GB é
ByteGraph [65] é é é é é 10 160 N/A N/A N/A 130 N/A 113 TB N/A N/A 1 TB

This work 7,142 121,680 77.3 TB 549.8B 34.36B 7,142 121,680 36.5 TB 274.9B 17.2B 64 GB

Table 1: Comparison of graph databases. “RDMA?”: Is a system primarily targeting RDMA architectures? “Prog.?”: Does a system’s storage and transactional backend design focus
on programmability and code simplicity? “Port.?”: Does a system foster portability? If yes, is it portability within different RDMA architectures (“wR”), or also beyond RDMA
(“bR”)? “Supported workloads”: What are supported workloads? (all workloads are explained in Section 4) “Achieved scales”: What are achieved scales? “#S”: Number of servers.
“#C”: Number of cores. “Size”: Total size (in memory) of the processed graph. “ |𝐸 |”: Number of edges. “ |𝑉 |”: Number of vertices. “MemS”: Amount of memory available in a single
server. “Th.?”: Does a system come with theoretical analysis and support for its performance and scalability properties? “”: full support, “”: partial support, “é”: no
support, “∗”: Estimate. The GDI-based system is the only one that focuses on all major aspects of the GDB design: programmability, portability, high performance, and very large scales.

portability and programmability of complex next-generation graph
databases, without compromising on their performance?

To resolve all the above challenges, we provide the first principled
approach for designing and implementing large-scale GDBs. This ap-
proach harnesses some of the most powerful practices and schemes
from the HPC domain, several of them for the first time in GDB
system design. Our approach is inspired by the Message-Passing
Interface (MPI) [75] and numerous successes it has in designing
and developing portable, programmable, high-performance, and
scalable applications. We propose to approach the GDB design in a
similar way: (1) identify performance-critical building blocks, (2)
build a portable API, (3) implement this API with high-performance
techniques such as collectives or one-sided RDMA, and (4) use
the API implementation to build the desired GDB system. In this
work, we execute these four steps, and as a result we deliver a
publicly-available GDB system that resolves all the four challenges.

First, we analyze the design and codebases of many GDBs [17]
(e.g., Neo4j [90], Apache TinkerPop [8], or JanusGraph [67]) to
identify fundamental performance-critical building blocks. We then
crystallize these blocks into a portable and programmable specifica-
tion called the Graph Database Interface (GDI) (contribution #1).
GDI focuses on the data storage layer, covering database trans-
actions, indexes, graph data, graph metadata, and others. GDI is
portable because – as MPI – it is fully decoupled from its imple-
mentation. Hence – just like with MPI-based applications – any
database based on GDI could be seamlessly compiled and executed
on any system, if there is a GDI implementation for that system.

Second, we offer a high-performance implementation of GDI
for distributed-memory (DM) systems supporting RDMA-enabled
interconnects, called GDI-RMA.We use GDI-RMA to build a highly-
scalable GDB engine (contribution #2). We focus on DM systems
as they enable keeping data fully in-memory to avoid expensive disk
accesses. Simultaneously, RDMA has been the enabler of scalability
and high performance in both the supercomputing landscape and –
more recently – in the cloud data center domain [42, 55, 94, 102].

In GDI-RMA, we make three underlying design decisions for
highest performance and scalability. First, we carefully design a
scalable distributed storage layer called blocked graph data layout
(BGDL) to enable a tradeoff between the needed communication and
storage. Second, we incorporate the highly scalable one-sided non-
blocking RDMA communication (puts, gets, and atomics). Third, we
use collective communication (collectives) [28, 51] to deliver scalable
transactions involving many processes (e.g., for large-scale OLAP
queries) with well-defined semantics.

We support nearly any function in our implementation with a
theoretical performance analysis that is independent of the under-
lying hardware (contribution #3). This facilitates the reasoning
about the performance and scalability of our GDI implementation.

We illustrate how to use GDI to program many graph database
workloads (contribution #4), covering OLTP, OLAP, and OLSP.We
consider recommendations by the LDBC and LinkBench academic
and industry benchmarks [5, 12]. We use established problems such
as BFS [18, 82] and state-of-the-art workloads such as Graph Neural
Networks [16, 24, 43, 46, 59, 91, 103, 105, 106]. Moreover, as there
are no publicly available graph datasets with labels and properties
of that magnitude, we also develop an in-memory distributed gen-
erator that can rapidly create such a graph of arbitrary size and
configuration of labels and properties (contribution #5).

The evaluation of GDI-RMA (contribution #6) significantly
surpasses in scale previous GDB analyses in the literature in the
counts of servers, counts of cores, and in the size of a single analytic
workload (see Table 1). We successfully scale to 121,680 cores (7,142
servers), using all the available memory, and the only reason whywe
did not try more is because we do not have access to a larger system.
Based on our analysis, we expect that our GDI implementation could
easily achieve the scale of hundreds of thousands of cores. We also
achieve high throughput and low latencies over databases such as
Neo4j or JanusGraph by more than an order of magnitude in both
metrics. Our implementation is publicly available (contribution #7)
to help achieve new frontiers for GDBs running on petascale and
exascale data centers and supercomputers.

We compare our work to other GDBs in Table 1. GDI is the only
RDMA-based system to support all three fundamental workloads
(OLTP, OLAP, OLSP), and the only one to focus on portability &
programmability, and with theoretical performance guarantees.

2 GRAPH DATA MODEL &WORKLOADS
We first present basic concepts and notation.

Graph Data Model We target graphs modeled with the estab-
lished Labeled Property GraphModel (LPG) [17], a primary data
model used in many GDBs, including the leading Neo4j GDB [17].
An LPG graph can formally bemodeled as a tuple (𝑉 , 𝐸, 𝐿, 𝑙, 𝐾,𝑊 , 𝑝).
𝑉 is a set of vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges; |𝑉 | = 𝑛 and
|𝐸 | = 𝑚. 𝐿 denotes the set of labels that differentiate subsets of
vertices and edges. 𝑙 is a labeling function, which maps vertices
and edges to subsets of labels; 𝑙 : 𝑉 ∪ 𝐸 ↦→ P(𝐿) with P(𝐿) being
the power set of 𝐿, meaning all possible subsets of 𝐿. Each vertex
and edge can also feature arbitrarily many properties (sometimes

2

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

referred to as attributes). A property is a (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair, where
the 𝑘𝑒𝑦 works as an identifier with 𝑣𝑎𝑙𝑢𝑒 is the corresponding
value. 𝐾 and𝑊 are sets of all possible keys and values, respectively.
𝑝 : (𝑉 ∪𝐸) ×𝐾 ↦→𝑊 maps each vertex and edge to their properties,
given the key. We also refer to the elements of 𝐾 as property types
(p-types). Note that we distinguish between property types and
properties, the latter being the specific key-value property tuples
attached to vertices/edges.

Graph Data vs. Graph Metadata We collectively denote labels 𝐿,
property types 𝐾 and property values𝑊 as the graph metadata
because these sets do not describe any specific graph elements,
but they define the potential labels, keys, and values. A collective
name graph data refers to the actual graph elements, described by
𝑉 , 𝐸, 𝑙, 𝑝 .

GraphDatabaseWorkloads The established LDBC and LinkBench
academic and industry benchmarks [5, 12] identify twomain classes
of graph database workloads targeting the LPG graph model: in-
teractive workloads [37] (mostly OLTP) and graph analytics [53]
(mostly OLAP). Interactive workloads are further divided into short
read-only queries (which often start with a single graph element
such as a vertex and lookup its neighbors or conduct small tra-
versals) and transactional updates (which conduct simple graph
updates, such as inserting an edge). Next, preliminary efforts also
distinguish an additional class of business intelligence workloads
(BI) [96, 97] which fetch large parts of a graph and often use data
summarization and aggregation. They are sometimes referred to as
Online Serving Processing (OLSP) [65]. Finally, we also distinguish
workloads associated with bulk data ingestion (BULK). They take
place, e.g., when inserting new batches of data into the system.

3 THE GRAPH DATABASE INTERFACE
GDI is a storage layer interface for GDBs, offering CRUD (create,
read, update, delete) functionality for the elements of the LPG
model: vertices, edges, labels, and properties. The interface provides
rich semantics and transaction handling. The focus of GDI lies on
enabling high-performance, scalable, and portable implementations
of the providedmethods. Moreover, GDI facilitates programmability
by offering a structured set of routines with well-defined semantics.

In this paper, we provide a comprehensive summary of the most
important aspects of GDI. We also distill the key design choices and
insights beyond the common system knowledge, that we indicate
with the “ ! ” symbol. The full GDI specification is available in
a separate manuscript [14]. It contains a detailed description of
routines, extensive advice for users and implementors, naming
conventions, description of basic datatypes, and others.

3.1 Relation Between GDI and Graph Databases
We illustrate the relation between GDI and a generic graph data-
base landscape in Figure 1. GDI is to be used primarily by the
database middle layer, as a storage and transactional engine. Here,
the client first queries the GDB using a graph query language
such as Cypher [45]. Second, the database mid-layer coordinates
the execution of the client query. This could include distributing
the workload among multiple machines, or aggregating as well as
filtering intermediate results that ran on different processes. The
mid-layer relies on the underlying storage and transaction en-
gine, where GDI resides. This part accesses the graph data and

translates from generic graph-related objects needed by queries to
hardware dependent storage. Therefore, the layer provides a rich
set of interfaces to create, read, update, and delete (CRUD) vertices,
edges, labels, and properties, and to execute transactions. Finally,
the storage backend provides access to the actual storage such as
distributed RAM, using formats such as CSV files or JSON.

We also envision that GDI could be used directly by a client, to
directly implement a given query. For this, we will illustrate how
to implement different GDB workloads with GDI in Section 4.

3.2 Structure and Functionalities of GDI
The GDI interface is structured into groups of routines, detailed in
Figure 2. General GDI and database management schemes (gray
color) perform setup needed for any other GDI functions to be
able to run. Graph metadata routines (cyan color) enable creating,
updating, deleting, and querying different aspects of labels and
property types. Graph data routines (blue color) provide CRUD
capabilities for vertices and edges, also including adding, removing,
updating, and querying labels and properties of specific vertices and
edges, and bulk data loading. Transaction routines (green color)
enable transactional processing of graph data. Indexes (orange
color) provide indexing structures for vertices and edges, speeding
up different queries. Indexes heavily use constraints to provide in-
dexing for vertices/edges satisfying specific conditions. Routines for
constraints are indicated with brick red color. Finally, all groups
of routines heavily use error codes (red color) and schemes for
basic datatypes (gray color). We now elaborate on key GDI parts.

There are two classes of GDI routines: collective (“[C]”) and lo-
cal (“[L]”). All processes actively participate in a collective routine
(i.e., they all explicitly call this routine), while only a single process
actively participates in a local routine (it can still passively involve
arbitrarily many other processes by accessing their memories). Col-
lective communication has heavily been used in high-performance
computing [28, 51]. Such communication routines, by actively in-
volving all participating processes, are more efficient than routines
based on point-to-point communication by facilitating various opti-
mizations and advanced communication algorithms [51, 52]. They
also foster portability and programmability [52] by coming with
well-defined semantics for the behavior of groups of processes.

3.3 High-Performance Transactions
A transaction consists of a sequence of operations on graph data,
and it must guarantee Atomicity, Consistency, Isolation, and Dura-
bility (ACID). GDI poses no restriction on how to ensure ACID. GDI

External Database Interface

Database Middle Layer

Storage + Transaction Engine (GDI)

Storage Backend

Storage: data, metadata, ...

Queries: planning, optimization, ...

Querying: graph queries, ...

Workload: distribution, optimization, ...

Client of
a database

Results: aggregation, filtering, ...

Processing: transactions, indexes, constraints, ...

SELECT ...
WHERE ...

#include ...
GDI_Init ...

MPI_Put ...
MPI_Get ...

Queries a
database

Developer of
the database

GDI User:
interacts
with GDI

Developer
of GDI

ugni_iput ...
ugni_iget ...

Architecture
developer

Network communication & data access
(architecture dependent)

Implements
GDI (e.g.,
using MPI)

Implements
architecture

routines

GDI

The main
use case:

GDI being
used by the
middle layer

A potential
use case: GDI
being directly

used to develop
specific graph
queries by the
user of a given
graph database

Figure 1: GDI with respect to other parts of the graph database landscape.

3

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

General management

[C] Initialize / finalize GDI
[C] Create / delete a GDI database

Graph data

Vertices

[L] Create / delete a vertex,
[L] Get edges / vertices adjacent to a vertex,
[L] Add / remove a label to / from a vertex,
[L] Get all labels of a vertex,
[L] Add / update / remove a property to / of / from a vertex,
[L] Get / remove all properties from a vertex,
[L] Get all p-types from a vertex,
[C] Bulk load vertices.

Indexes
[C] Create / delete an index,
[C] Add / remove a label to / from an index,
[C] Add / remove a p-type to / from an index,
[C] Add / remove labels and p-types to / from
 an index,
[L] Get all labels / p-types of an index,
[L] Get (local) vertices / edges of an index,
[L] Retrieve a vertex using its app-level ID,
[L] Get all indexes in a database,
[L] Get the type of an index.

Transactions
[L] Start / close a local transaction,
[C] Start / close a collective transaction,
[L] Get type of an ongoing transaction,
[L] Get all transactions in a database,
[L] Associate a vertex / an edge
 with an ongoing transaction.

Constraints

[L] Create / delete a (sub)constraint,
[L] Add a label / property condition
 to a subconstraint,
[L] Add a subconstraint to a constraint,
[L] Get all label / property conditions
 of a subconstraint,
[L] Get all constraints of a database,
[L] Get all subconstraints of a constraint,
[L] Verify staleness of a (sub)constraint.

Graph metadata

Property types (p-types)

Labels

[C] Create / update / delete a label,
[L] Get a label from a name,
[L] Get the name of a label,
[L] Get all labels in a database.

Errors
[L] Get error class or name

Use metadata
when changing

graph data
(e.g., when

adding a
new label
to a vertex
or an edge)

Access
and/or
modify

graph data

Use indexes to
accelerate transactions

Index
graph data

Use
metadata

to construct
indexes

Use constraints to
query specific indexes

Basic datatypes

Used by all
other groups
of routines

...

[C] Create / update / delete a p-type,
[L] Get a p-type from a name,
[L] Get the name of a p-type,
[L] Get all p-types in a database,
[L] Get entity / size type of a p-type,
[L] Get datatype of a p-type.

Edges

[L] Create / delete an edge,
[L] Get vertices adjacent / direction to / of an edge,
[L] Set origin vertex / target vertex / direction of an edge,
[L] Add / remove a label to / from an edge,
[L] Get all labels of an edge,
[L] Add / update / remove a property to / of / from an edge,
[L] Get / remove all properties from an edge,
[L] Get all p-types from an edge,
[C] Bulk load edges.

Consistency models for shared data: E

E

S
S E

[L]: local call [C]: collective call

serializability eventual
consistency

Types of routines based on
how many processes execute it:

Use datatypes to type
property values

Figure 2: Illustration of the classes of GDI routines.

transactions support full CRUD functionality for vertices, edges,
and their associated labels and properties. Accessing and modifying
graph data is conducted only within a transaction body. Any single
process can be in arbitrarily many concurrent transactions.

Local (single process) transactions are transactions that a
single process has started. This type of a transaction is meant for
graph operations which touch only a small part of the graph. Col-
lective transactions are transactions which actively involve all
processes; they are used to execute large OLAP or OLSP queries.
! Major Design Choice & Insight: Use collective transactions,

that involve all processes, for global OLAP/OLSP workloads. This
facilitates not only low latencies (as collectives are highly tuned) but
also programmability (as collectives have well-defined semantics).

GDI also distinguishes read transactions from write transac-
tions. This further facilitates high-performance implementations,
by providing opportunities for optimized read-only transactions
that can assume that no participating process modifies the data.

3.4 Fast & Effective Access to Graph Data
GDI provides fast transactional access to vertices, and their la-
bels and properties, with a two-step scheme. In the first step, an
application-level vertex ID is translated to an internal GDI-specific
ID. This makes GDImore portable, as it is independent of any details
of how the higher-level system layers may implement IDs. In our
implementation, we use internal indexing structures for this trans-
lation. This internal ID uniquely identifies a vertex in the whole
GDI database.

GDI offers two types of internal IDs: volatile and permanent. The
former are valid only during the transaction within which they
are obtained. This facilitates optimizations such as the dynamic
relocation of graph data, but it also requires re-obtaining these IDs
in each transaction. The latter are shared across transactions, which
reduces the number of remote operations, but hinders dynamic load
balancing. The user can choose the most suitable variant.
! Major Design Choice & Insight: Volatile IDs facilitate opti-

mizations related to load balancing. For example, it facilitates redis-
tributing the graph across processes between collective transactions,
without fearing that internal IDs become stale.

3.5 Handles
Internal representations of objects involved in transactions, such
as vertices or property types, are not directly accessible to the GDI
user. To enable fast and programmable way of accessing and ma-
nipulating graph data within transactions, GDI prescribes using
handles (access objects), i.e., opaque objects that hide the internal
implementation details of accessed objects, and represent these
objects on the executing process. To create a handle for an exist-
ing vertex 𝑣 or edge 𝑒 , the user calls GDI_AssociateVertex(𝑣) or
GDI_AssociateEdge(𝑒); 𝑣 and 𝑒 are respective internal IDs.
! Major Design Choice & Insight: Using handles to access

opaque objects improves usability. First, it enables the GDI implemen-
tation to decide on the details of how graph data is accessed. Using
a handle enables remote direct (zero-copy) memory access, but it
could also be used to transparently copy or move the data, for ex-
ample for dynamic relocation or to cache the data locally. Moreover,
it relieves the user of ensuring that there are no pending operations
involving out-of-scope, opaque objects; the GDI implementation
instead takes care of that. It also allows users to simply mark ob-
jects for deallocation, relying on the GDI implementation to retain
the object until all pending operations have completed. Requiring
handles to support native-language assignment and comparison
operations keep the GDI interface clean and simple.

3.6 Consistency
For performance reasons, GDI enables different consistency mod-
els. The interface requires serializability for graph data (vertices,
edges, and their associated labels and properties). Generally, this
data can only be altered by transactions that ensure ACID. Second,
GDI guarantees eventual consistency for metadata (labels, prop-
erty types) and for indexes. Since these objects also affect the graph
data, this might lead to cases where graph data becomes inconsis-
tent until the system has converged. Transactions must be able to
detect such state and abort accordingly. Note that implementations
are free to provide consistency models for metadata and for indexes
that are more restrictive (stronger) than eventual consistency.
! Major Design Choice & Insight: Enabling separate consis-

tency models for data and metadata fosters flexibility and simplicity.

4

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

Many systems only specify their compliance with the Consis-
tency requirement of ACID, but do not clearly define what type of
consistency they employ [90]. In GDI, we clearly specify it.
! Major Design Choice & Insight: Clearly specifying the used

consistency model fosters programmability.

4 GRAPHWORKLOADS WITH GDI
We now illustrate how to use GDI to easily and portably implement
representative queries from all major classes of GDB workloads. In
principle, one could implement all of these workloads with single-
process transactions. In GDI, we observe that, for some of these
workloads, if they harness all processes in a database, this gives
more performance. Thus, it is often more beneficial to use collective
transactions in such cases. We summarize what types of transac-
tions are best to be used for what workloads in Table 2.

Workload class Type Best-suited GDI routines

Interactive (short) read-only OLTP Single-process transactions
Interactive (complex) read-only OLTP Single-process transactions
Interactive (updates) read/write OLTP Single-process transactions
Graph analytics read-only OLAP Collective transactions
Business intelligence read-only OLSP Single-process or collective trans.
Massive data ingestion read/write BULK Bulk data loading collectives

Table 2: Key graph database workloads (see Section 2 for details) and the
associated recommended mechanisms of GDI best used for implementation.

Listings 1, 2, and 3 contain – respectively – a simple OLTP in-
teractive query (fetching properties from a small vertex set), an
OLAP query (a convolutional Graph Neural Network (GNN)), and
an OLSP transaction. For clarity, we omit straightforward addi-
tions (e.g., error handling or checking if transactions fail). In all the
queries, for each accessed vertex or edge, one first translates the
application-level ID to the GDI ID, and then uses the obtained ID
to create handles to be able to access the corresponding graph data.
The used symbols are as follows: trans_obj (a handle to the state
of the ongoing transaction), vH (a handle to a vertex 𝑣), eH (a handle
to an edge 𝑒), vID (an internal GDI ID for a vertex 𝑣), vID_app (an
external application-level ID for a vertex 𝑣).

1 GDI_StartTransaction (& trans_obj);
2 GDI_TranslateVertexID (&vID , GDI_LABEL_PERSON , &vID_app ,

trans_obj); //Find internal vertex ID (vID) based on the
application -level ID (vID_app)

3 GDI_AssociateVertex(vID , trans_obj , &vH); // Create a temporary
access object for vertex vID

4 GDI_GetEdgesOfVertex (&eIDs , GDI_EDGE_UNDIRECTED , vH); // Retrieve
all undirected edges

5 for each eID in eIDs do {
6 GDI_AssociateEdge(eID , trans_obj , &eH); // Create a temporary

access object for edge eID
7 GDI_GetAllLabelsOfEdge (&labels , eH);
8 if(/* one of the labels equals GDI_LABEL_FRIENDOF */) {
9 GDI_GetVerticesOfEdge (& v_originID , &v_targetID , eH); //

Retrieve target vertex
10 neighborsID.add(v_targetID) /* add target vertex to

neighborIDs data structure. Details of neighborsID are
omitted for clarity */ } }

11 for each vID in neighborIDs do {
12 GDI_AssociateVertex(vID , trans_obj , &vH);
13 GDI_GetPropertiesOfVertex (&fName , GDI_PROP_TYPE_FNAME , vH);
14 GDI_GetPropertiesOfVertex (&lName , GDI_PROP_TYPE_LNAME , vH);
15 /* add fName , lName to the data structure to be returned */ }
16 GDI_CloseTransaction (& trans_obj);

Listing 1: C-style pseudocode of an example interactive OLTP query with GDI. Here,
we retrieve the first and last name of all persons that a given person, modeled with a
vertex vID_app, is friends with. For this, we first obtain all edges of vID_app (line 4),
iterate over them to find edges corresponding to friendships (lines 5-10), preserve the
corresponding neighbors (line 10), and retrieve the names and surnames of each such
neighbor (lines 11-15).

1 for(l = 0; l < layers /* a user parameter */; ++l) {
2 /* some form of collective synchronization */
3 GDI_StartTransaction (& trans_obj);
4 GDI_GetLocalVerticesOfIndex (&vIDs , v_index , trans_obj); //

Retrieve local vertices
5 for each vID in vIDs do {
6 GDI_AssociateVertex(vID , trans_obj , &vH);
7 GDI_GetPropertiesOfVertex (& feature_vec ,

GDI_PROP_TYPE_FEATURE_VEC , vH); //Get the vertex feature
vector stored as a property

8 GDI_GetNeighborVerticesOfVertex (&nIDs , GDI_EDGE_OUTGOING , vH);
// Retrieve neighborhood vertices

9 for each nID in nIDs do {
10 GDI_AssociateVertex(nID , trans_obj , &nH);
11 GDI_GetPropertiesOfVertex (& feature_vec_n ,

GDI_PROP_TYPE_FEATURE_VEC , nH);
12 feature_vec += feature_vec_n; /* Apply the aggregation GNN

phase; in this example , we use a summation */ }
13 feature_vec = MLP(feature_vec); //Apply the update GNN phase;

in this example , we use a simple MLP transformation
defined externally by the user

14 feature_vec = sigma(feature_vec); //Apply the non -linearity
defined by the user

15 GDI_UpdatePropertyOfVertex (& feature_vec ,
GDI_PROP_TYPE_FEATURE_VEC , vH); }

16 GDI_CloseTransaction (& trans_obj); }

Listing 2: C-style pseudocode of an example OLAP query with GDI (graph convolution
network training/inference). The details of graph convolution are beyond the scope of
this work and they can be discussed in detail in rich existing literature [16, 103]. In
brief, this query consists of a specified number of iterations (“layers”). In each layer,
every vertex first updates itself based on the features of its neighbors (“aggregation”,
lines 9-12) and then the outcomes are processed by a multilayer perceptron (MLP, line
13) and a non-linearity (line 14). Finally, the property modeling the feature vector of
each vertex is updated accordingly (line 15). Due to space contraints, we present a
simplified query with the most important communication-intense operations; a full
version with all other parts such as weight updates is in the extended technical report.

1 local_count = 0;
2 GDI_StartCollectiveTransaction (& trans_obj);
3 // Index_obj indexes all vertices with label GDI_LABEL_PERSON
4 GDI_GetLocalVerticesOfIndex (&vIDs , index_obj , trans_obj);
5 for each person in vIDs do {
6 GDI_AssociateVertex(person , trans_obj , &vH);
7 GDI_GetPropertiesOfVertex (&age , GDI_PROP_TYPE_AGE , vH);
8 if(age <= 30) { continue; } //The condition is not met
9 /* Define a constraint "cnstr" with a label condition "==

GDI_LABEL_OWN" (to check for the act of owning) */
10 GDI_GetNeighborVerticesOfVertex (&things , cnstr ,

GDI_EDGE_OUTGOING , vH); //Get neighbors satisfying cnstr
11 for each object in things do {
12 GDI_AssociateVertex(object , trans_obj , &vH);
13 GDI_GetAllLabelsOfVertex (&labels , vH);
14 if(/* no label equals GDI_LABEL_CAR */) { continue; }
15 GDI_GetPropertiesOfVertex (&color , GDI_PROP_TYPE_COLOR , vH);
16 if(color == red) { local_count ++; } } }
17 GDI_CloseCollectiveTransaction (& trans_obj);
18 reduce(local_count);

Listing 3: C-style pseudocode of an example business intelligence workload with
GDI: “MATCH (per:Person) WHERE per.age>30 AND per-:OWN->vehicle(:Car) AND
vehicle.color equals red RETURN count(per)”. Here, we first fetch all vertices modeling
people (using an index, line 4), check whether each such person satisfies the specified
criteria (lines 5-16), including age (lines 7-8), car ownership (lines 9-14), and the car
color (lines 15-16).

5 SCALABLE GDI RDMA IMPLEMENTATION
Our high-performance implementation of GDI, called GDI-RMA
(GDA), is based on MPI and it uses RDMA-enabled one-sided com-
munication as the high performance and high scalability driver.
While there are different ways to harness RDMA, for highest per-
formance, we focus on one-sided fully-offloaded communica-
tion. Here, processes communicate by directly accessing dedicated
portions of one another’s memories called a window. Communica-
tion bypasses the OS and the CPU, eliminating different overheads.
Such accesses are conducted with puts and gets that – respectively
– write to and read from remote memories. Puts/gets offer very low
latencies, often outperforming message passing [42]. One can also
use remote atomics [15, 49, 75, 92]; here, we additionally harness

5

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

[replicated]

Graph dataD

Graph metadata (labels and property types, aka p-types)

From p-type
names to
handles

... HashMap

From p-type
IDs to

handles

HashMap

P-type 2

P-type K

P-type name
Integer ID
Datatype

Entity type
Size type

Count
DB reference

P-type structure

P-type 1

From label
names to
handles

... HashMap

From label
IDs to

handles

HashMap

Label 2

Label L

Label name
Integer ID

DB reference

Label
structure

Label 1

T Transactional state

GDI

vID

...Data
window

Example block
size: 1KB

System
window

...
Usage window

u32 u32 u32 u32

Purpose: point of entry for
accessing any free blocks

Purpose: maintain offsets
to the free blocks in BGDL

Metadata Lightweight edges Labels & properties Unused data

#blocks #edges
Size of labels/properties

Size of unused data

Label/P-type
integer ID Size Data

M

Logical
Layout

Blocked Graph Data Layout

A vertex holder

A label or
property

entry

I

[sharded]

[sharded][sharded]

Buckets

...

Overflow heap
with lists

key (vID_app)

value (vID)

Empty
bucket

Filled
entry

Ptr to the
next entry

G Databases
management

Distributed
index

Process 1 Process 2 ...
Transactions local

to Process 1

Obtain internal
vertex ID

vID_app

vID

Purpose: Manage
concurrent accesses

to a given vertex

Dv

Dp

DM

Server
ID

[replicated]

Purpose: indicate a
specific label or p-type

Purpose:
store the

graph data

A logically contiguous vertex holder
is physically kept as a set of blocks

in the BGDL level of GDA

vIDvH

GDA

Use the handle for
any local accesses

GDI_Translate-
-VertexID(vID_app)

13
GDI_GetProperties-
-OfVertex(..., vH)

...

Create
temporary

handle2
GDI_Associate-

-Vertex(vID)

vH

App-level ID
of a vertex v

ID that identifies v globally
in a given graph database

GDI separates vID
from vID_app to foster

portability and flexibility

A handle that points
to the local v address

Pointer within
a given server

DPtr: the GDA implementation of
vID, it points to a memory block

Using 64 bits
facilitates fast

operations with
HW-accelerated
remote atomics

Write bit

Read counter

u32 u32 u32 u32u32...
list

head RW locks

DPtr
From vID
to vertex
handles

HashMap

vH vH vH

vector of vertex holders

Mark
vertices
as dirty

Associate
vertices

Fetch
blocks

Update
blocks
during
commit

works on

...

Constraints

...

Predefined
label

Pre-
defined
p-types

...

C

[replicated]

DEGREE
0

uint64
SINGLE
FIXED

1
NULL

NONE
0

NULL

ID
3

Byte
SINGLE

NO_LIMIT
-

NULL

Con 1 Con 2 Con X

S-con 1

S-con 2

S-con Y

From
label to

conditions

From
p-type to

conditions

HashMap

HashMap
Stored
inside

database
object

Inits
data-

structures

Stored
inside

database
object

Stored inside
database object

Stored
inside

database
object

Block addresses (DPtrs)

Figure 3: Details of the GDI-RMA (GDA) implementation, and its interaction with GDI. In the upper part of the figure, we illustrate a simple sequence of steps
(taken within a transaction) to access a selected property of a given vertex 𝑣.

hardware support for atomics offered by RDMA networks for
very fast fine-grained synchronization. For data consistency, we use
flushes to explicitly synchronize memories. We use non-blocking
variants of all functions, because they can additionally increase per-
formance by overlapping communication and computation [42]. All
these routines are supported by virtually any RDMA architecture,
facilitating a wide portability of GDA.

We now overviewGDA, see Figure 3.Wewill detail the concepts
mentioned here in the following subsections. Our implementation2
is fully in-memory for highest performance. GDA consists of several
modules which largely correspond to the GDI classes of routines,
cf. Figure 2 (we use the same color code for both illustrations). The
most important modules are management structures for GDI and
parallel databases (G), metadata structures (M), indexes and asso-
ciated constraints (I , C), state of collective and local transactions
(T) and graph data (D). Structures that are small or independent
of #vertices and #edges (G , M , C) are replicated on each process
to foster simplicity and high performance. All other structures are
sharded3. This, combined with our fully distributed transactions,
enables fast and scalable processing of very large graph datasets,
being limited only by the cluster size.

2We use the foMPI implementation of MPI One-Sided routines [42].
3Partitioning of data onto separate servers.

5.1 Graph Data
The central part of GDA is associated with graph data (D in Fig-
ure 3). To make this part more manageable and programmable, it is
divided into two conceptual levels. First, the Logical Layout (LL)
level maintains structures that reflect graph data (vertices, edges,
labels, properties). Importantly, these structures have flexible sizes
determined by the sizes of the corresponding parts of graph data. For
example, two vertices having different sets of labels and proper-
ties would be maintained by two structures of potentially different
sizes. The LL level simplifies working with GDI from the graph
developer perspective, because it enables a data-driven memory
layout. However, it is challenging to operate on such variable sized
and dynamic structures in an RDMA environment using one-sided
communication. For this, we also provide the underlying Blocked
Graph Data Layout (BGDL) level. BGDL maintains a large DM
memory pool divided into same-sized memory blocks (tunable by
the user). The purpose of BGDL is to translate the highly diverse
structures from the LL level into these blocks. The memory blocks
associated with one vertex/edge do not have to be stored continu-
ously, and might not even be located on the same process or server.
Such blocking enables a simple, effective, and flexible DM memory
management: any data access or manipulation routines operate on
same-sized blocks, and the difference between processing different
parts of the graph is only in the counts of the associated blocks.
! Major Design Choice & Insight: Introducing and sepa-

rating the LL routines from the BGDL fosters programmability. The
6

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

LL routines form a clean and graph-centric API; any performance
optimizations can be done under the hood at the BGDL level.
! Major Design Choice & Insight: Using fixed-size blocks in

BGDL does not only simplify the design, but it also fosters higher per-
formance. This is because one only needs a single remote operation
to fetch the data of a vertex that fits in one block.

Any access to the graph data begins with the user providing an
application ID (vID_app), which is then translated to the internal
ID vID that uniquely identifies a given object in the whole database,
and can be shared by multiple processes. This is conducted using
the internal index (I). In GDA, the internal ID is implemented
as a 64-bit distributed hierarchical pointer (DPtr). Its first 16 bits
indicate the compute server, and the remaining 48 bits points to
a local memory offset of the primary block of 𝑣 . We use 64 bits to
facilitate using HW accelerated remote atomics, which frequently
operate on 64-bit words [42]. Then, vID is used to construct a handle
vH , which is a pointer to 𝑣 in the local memory of a calling process.
! Major Design Choice & Insight: Using 64-bit distributed

pointers facilitates harnessing hardware accelerated remote atomic
operations, which are commonly provided by different vendors.

5.2 Logical Layout Level
We shard the graph data (vertices, edges, and their associated labels
and properties) across all processes. We implemented 1D (vertex-
based) and 2D (edge-based) graph partitioning, and use round-robin
distribution (we tried other distribution schemes, they only negli-
gibly impact our performance). GDI’s specification is on purpose
orthogonal to the partitioning/distribution, so it is usable with any
such scheme.

Vertices & Edges The data structure of each vertex 𝑣 or an edge 𝑒
(called a vertex or edge holder, see Dv) is divided into, respectively,
metadata (selected important information used for the data man-
agement, see DM), block addresses (addresses of blocks that store
the data), lightweight edges (𝑣 ’s edges that do not contain many
labels or properties and are thus stored together with 𝑣 for more
performance), the label and property data (see Dp), and any unused
memory.

Lightweight Edges Many GDB queries involve iterating over
edges of a given vertex. Simultaneously, in many graph datasets,
only vertices have rich additional data (labels, properties), while
edges often do not carry such data (e.g., in many citation networks).
To maximize performance for these cases, we introduce lightweight
edges in GDA. Each such edge has at most one label. Importantly,
these edges are stored in the vertex holder object of their source
vertex. This enables very fast access.

5.3 Transactions & ACI
Each transaction is represented by a state with any necessary in-
formation (e.g., which dirty blocks must be written back into the
distributed graph storage when the transaction commits). By com-
bining hashmaps and linked lists for keeping track of any blocks
used within a transaction, we achieve highly efficient transactions
where any operation on a block is done in 𝑂 (1) time.

GDA uses a two-phase scalable reader-writer (RW) locking to
ensure the ACI properties. Only one lock per any vertex 𝑣 is used to
reduce the number of remote atomics. Figure 3 shows the lock data
structure, located in the system window at a corresponding offset

to the primary block of 𝑣 ’s holder object. The write bit determines
if a process holds a write lock to 𝑣 , while the read counter indicates
the number of processes that currently hold a read lock on 𝑣 .
! Major Design Choice & Insight: Fully offloaded RDMA

design facilitates high performance. While being complex, it is kept
under the hood and does not adversely impact GDI’s programmability.

5.4 Graph Metadata
We replicate graph metadata on each process for performance rea-
sons. This is because both 𝐿 and 𝑃 are in practice much smaller
than 𝑛. A label is represented by a structure that holds a label name,
an integer ID, and a reference to the associated graph database. A
property structure is similar, with the difference that it contains
additional information (the entity type, the GDI datatype, the size
type, and the size limitation). We summarize these structures in
Figure 3 (M). When storing specific labels and properties on ver-
tices/edges, we only use their associated integer IDs. To enable
fast accesses to graph metadata, we maintain double linked-lists
of labels and properties, as well as hash maps. The former enables
to add and remove labels or properties in 𝑂 (1) work (given the
handle), the latter is used for checking their existence in 𝑂 (1).
! Major Design Choice & Insight: Replicating metadata sim-

plifies the design without significantly increasing the needed storage.

5.5 Summary of Parallel Performance Analysis
Each routine in GDA is supported with theoretical analysis of its
performance, in order to ensure GDA’s performance portability. For
this, we use the work-depth (WD) analysis. Intuitively, the work
of a given GDA routine is the total number of operations in the
execution of this routine, and the depth is the longest sequential
chain of dependencies in this execution [19, 21].

Due to space constraints, we provide the work and depth of GDA
routines in a full extended version of the GDA manuscript. Impor-
tantly, the majority of GDA routines (both for data and metadata
management) come with constant 𝑂 (1) work and depth. Only a few
routines that modify 𝑥 metadata items (property types or labels)
come with 𝑂 (𝑥) work and depth. This also implies low overheads
in practice, as 𝑥 is usually a small number (i.e., fewer than 10-20).

6 EVALUATION
We now illustrate how GDI and its implementation GDA ensure
high performance (latency, throughput) and large scale.

6.1 Experimental Setup, Workloads, Metrics
We first sketch the evaluation methodology. For measurements, we
omit the first 1% of performance data as warmup. We derive enough
data for the mean and 95% non-parametric confidence intervals.
We use arithmetic means as summaries [50].

As computing architectures, we use the Piz Daint Cray super-
computer installed in the Swiss National Supercomputing Center
(CSCS). Piz Daint hosts 1,813 XC40 and 5,704 XC50 servers. Each
XC40 server has two Intel Xeon E5-2695 v4 @2.10GHz CPUs (2x18
cores, and 64 GB RAM). Each XC50 server comes with a single
12-core Intel Xeon E5-2690 HT-enabled CPU, and 64 GB RAM).
The interconnect between servers is Cray’s Aries based on the
Dragonfly topology [38, 58]. We use full parallelism, i.e., we run
algorithms on the maximum number of cores available.

7

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

We consider threemetrics: latency (i.e., how fast a query fin-
ishes), throughput (i.e., howmany queries can we execute per time
unit), and scale. For scale, we (1) increase the number of servers
together with the size of the dataset (the so called “weak scaling”)
and (2) increasing the number of servers for a fixed dataset (the so
called “strong scaling”).

6.2 Selecting Baselines and Related Challenges
While there exist many graph databases, the vast majority of them
is not freely available. We attempted to get access to different sys-
tems, such as Oracle’s PGX, but our attempts were unsuccessful.
Among the available systems, we shortlisted databases that provide
full support for both OLTP and OLAP queries. After an extensive
investigation and configuration effort, we were able to successfully
configure and use Neo4j (5.10) [90] and JanusGraph (0.6.2) [67].
We configure both baselines for in-memory execution. Addition-
ally, to maximize the performance of comparison baselines, we
use their high-performance consistency guarantees (e.g., eventual
consistency for JanusGraph), even if GDI provides serializability
for graph updates. These two systems are two of the highest-ranking
core graph databases (i.e., systems with the database model “Graph”)
in the DB-Engines Ranking.

6.3 Distributed In-Memory LPG Graph
Generator for Massive-Scale Experiments

Obtaining appropriate graph datasets is challenging due to the fact
that we target graphs of very large scales and having rich amounts
of labels and properties. Existing generators experienced regular
OOM problems when using large scales, while available real-world
graphs have no labels/properties and are not large enough. Hence,
to facilitate large-scale graph database experiments, we develop
an in-memory distributed generator of LPG graphs that enables fast
construction of arbitrarily large LPG datasets limited only by the
available compute resources, fully in-memory, so that they are imme-
diately available for further processing. We base our generator on
the existing code provided by the Graph500 benchmark [76] that
uses the realistic Kronecker random graph model with a heavy-tail
skewed degree distribution [64]. We extend this model by adding
support for a user-specified selection (i.e., counts and sizes) of labels
and properties, and how they are assigned to vertices and edges.
By default, we use 20 different labels and 13 property types in the
following analyses (we also experiment with varying these values).

6.4 Analysis of OLTP Workloads
We first analyze the OLTP workloads. Here, we stress GDA with
a high-velocity stream of graph queries and transactions. We use
four specific scenarios based on the LinkBench benchmark [12] and
on other past GDB evaluations [30, 36], see Table 3 for details.

We first evaluate the overall throughput, see Figure 4. GDA
achieves high scalability: adding more servers consistently im-
proves the throughput in both strong and weak scaling. Throughput
increase is particularly visible in the RI and RM workloads with
more read queries, because LB and WI workloads come with more
updates that involve more synchronization and communication.
We also observe that, overall, XC50 servers give more performance
than XC40, especially for RM workloads dominated by reads. We
conjecture this is due to the XC50 servers offering more network
bandwidth per core. Moreover, we note that very low percentages

Operation
“Read Mostly”
(RM) [36]

“Read Intensive”
(RI) [36]

“Write Intensive”
(WI) [30]

LinkBench
(LB) [12]

Read queries: 99.8% 75% 20% 69%
Get vertex properties 28.8% 21.7% 9.1% 12.9%
Count edges of a vertex 11.7% 8.8% 0% 4.9%
Get edges of a vertex 59.3% 44.5% 10.9% 51.2%

Update queries: 0.2% 25% 80% 31%
Add a new vertex 0% 0% 20% 2.6%
Delete a vertex 0% 0% 6.7% 1%
Update a vertex property 0% 0% 13.3% 7.4%
Add a new edge 0.2% 25% 40% 20%

Table 3: OLTP workloads described in this paper. We varied the fractions of
specific types of operations for broad investigation beyond the ones provided
here, all results followed similar patterns to those described here.

of failed transactions (less than 0.2% for RI/RW and less than 2% for
LB/WI) across all benchmarks indicate GDA’s capability to success-
fully resolve a sustained stream of incoming user requests, even at
very high scales. Overall, the results indicate that GDA is able to
both accelerate requests into a given fixed dataset (as seen by the
throughput increase in strong scaling) as well as it enables scaling
to larger datasets (as indicated by the throughput increase in weak
scaling).

We also show histograms of latencies of different operations
within a given OLTP workload. Figure 5 shows the data for LB (we
plot separate latencies for transactions running on 1–8 servers).
GDA is consistently the fastest, with the vast majority of its op-
erations being below 1𝜇s (for 1 server) and close to 10–100𝜇s (for
more servers), even for demanding vertex deletions. JanusGraph
requires at least 500𝜇s for all the operations (in most of cases), with
no operation being faster than 200𝜇s, even for the single server
scenario. Vertex deletions start at around 2000𝜇s. Our advantages
are even more distinctive considering the fact that GDA ensures se-
rializability, while JanusGraph uses its default configuration with a
more relaxed eventual consistency. Neo4j is slower than both GDA
and JanusGraph; it however shows similar trends in the differences
between particular operation types (e.g., read operations are on
average faster than updates). While most Neo4j operations finish
below 20ms, it does entail relatively many outliers.

Summary of GDA’s Advantages GDA is faster than compari-
son targets due to its fundamental reliance on one-sided RDMA.

6.5 Analysis of OLAP and OLSP Workloads
We illustrate the OLAP and OLSP results in Figure 6. We consider
BFS, PageRank (PR), Community Detection using Label Propaga-
tion (CDLP), Weakly Connected Components (WCC), Local Cluster
Coefficient (LCC), Business Intelligence 2 query from LDBC SNB
(BI2) [97], and Graph Neural Networks (GNN; training of the graph
convolution model [59]). The results follow advantageous perfor-
mance patterns – for most problems (BFS, k-hop, GNN) adding
more compute resources combined with increasing the dataset size
only results in mild runtime increases (in weak scaling) or runtime
drops (in strong scaling). WCC, CDLP, and PR are characterized by
overall sharper slopes of increasing running times for weak scaling;
we conjecture this is because these problems cumulatively involve
more communication due to their memory access patterns and
runtime complexities (e.g., LCC has the complexity of 𝑂 (𝑛 +𝑚3/2)
compared to 𝑂 (𝑚 + 𝑛) for BFS).

GDA also outperforms other graph databases in OLAP/OLSP by
large margins. Here, to also compare to more competitive targets,
we consider the Graph500 implementation of BFS [76]. It is a highly

8

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

#servers 8 16 32 64 128 256 512 1024 2048 7142
#vertices 67.1M 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B
#edges 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B 68.7B 137B 275B 550B

0

10

20

30

40

50

M
ill

io
n
 Q

u
e
ri

e
s/

S
e
co

n
d read mostly/XC40

read mostly/XC50
read intensive/XC40

read intensive/XC50
read mostly/mixed XC40/XC50

(a) Read Intensive, Read Mostly; weak scaling.

8 16 24 32 40 48 56 64
Servers

0

1

2

3

4

5

6

M
ill

io
n
 Q

u
e
ri

e
s/

S
e
co

n
d read mostly/XC40

read mostly/XC50
read intensive/XC40
read intensive/XC50

(b) Read Intensive, Read Mostly; strong scaling.

#servers 8 16 32 64 128 256 512 1024 2048
#vertices 67.1M 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B
#edges 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B 68.7B 137B 275B

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ill

io
n
 Q

u
e
ri

e
s/

S
e
co

n
d

0
.1

0
%

0
.1

1
%

0
.1

1
%

0
.1

2
%

0
.1

2
%

0
.1

1
%

0
.1

1
%

0
.0

8
%

0
.0

8
% 0
.0

9
%

0
.0

9
%

0
.0

9
%

0
.0

9
%

0
.0

9
%

0
.0

9
%

0
.0

8
%

0
.0

6
%

0
.0

5
%

0
.0

5
%

0
.0

5
%

0
.0

5
%

0
.8

6
%

0
.8

9
%

0
.9

3
%

0
.9

2
%

0
.9

2
%

0
.8

7
%

0
.8

5
%

0
.8

4
%

0
.6

6
%

0
.6

9
%

0
.7

0
%

0
.7

1
%

0
.7

2
%

0
.7

2
%

0
.6

9
%

0
.6

8
%

LinkBench (GDA/XC40)
LinkBench (GDA/XC50)
LinkBench (JanusGraph/XC40)
write intensive (GDA/XC40)
write intensive (GDA/XC50)

(c) LinkBench, Write Intensive; weak scaling.

8 16 24 32 40 48 56 64
Servers

0.0

0.5

1.0

1.5

2.0

2.5

M
ill

io
n
 Q

u
e
ri

e
s/

S
e
co

n
d

0
.0

9
%

0
.1

3
%

0
.1

4
%

0
.1

6
%

0
.1

7
%

0
.1

8
%

0
.1

9
%

0
.2

1
%

0
.0

8
%

0
.0

9
%

0
.1

1
%

0
.1

2
%

0
.1

3
%

0
.1

4
%

0
.1

5
%

0
.1

5
%

0
.1

1
%

0
.2

1
%

0
.3

1
%

0
.4

2
%

0
.5

2
%

0
.6

2
%

0
.7

3
%

0
.8

3
%

0
.8

7
%

1
.0

5
%

1
.1

9
%

1
.2

9
%

1
.3

8
%

1
.4

8
%

1
.5

5
%

1
.6

2
%

0
.6

7
%

0
.8

1
%

0
.9

2
%

1
.0

1
%

1
.1

0
%

1
.1

7
%

1
.2

3
%

1
.2

9
%

LinkBench (GDA/XC40)
LinkBench (GDA/XC50)
LinkBench (JanusGraph/XC40)
write intensive (GDA/XC40)
write intensive (GDA/XC50)

(d) LinkBench, Write Intensive; strong scaling.
Figure 4: Analysis of OLTP workloads. XC40, XC50: two types of servers considered (cf. Section 6.1). Weak scaling: scaling dataset sizes together with #servers, strong scaling:
scaling #servers for a fixed dataset (a Kronecker graph of scale 26, i.e., 67.1M vertices and 1.1B edges; the results follow the same performance patterns for other datasets). Missing
bars of our baselines indicate limited compute budget; missing baselines of comparison targets indicate inability to scale to a given configuration. Percentages: the fractions of
failed transactions (no percentage indicates no, or negligibly few, failed transactions).

102

105
retrieve vertex

S8 S4 S2 S1

102

105
insert vertex

102

105
delete vertex

102

105

Qu
er

y
Co

un
t

update vertex

102

105
count edges

102

105
retrieve edges

0 1000 2000 3000 4000 5000
Time (μs)

102

105
add edges

(a) GDA.

102

105
retrieve vertex
S8 S4 S2 S1

102

105
insert vertex

102

105
delete vertex

102

105

Qu
er

y
Co

un
t

update vertex

102

105
count edges

102

105
retrieve edges

0 1000 2000 3000 4000 5000
Time (μs)

102

105
add edges

(b) JanusGraph.

102

105 retrieve vertex

S8 S4 S2 S1

102

105 insert vertex

102

105 delete vertex

102

105

Q
u
e
ry

 C
o
u
n
t

update vertex

102

105 count edges

102

105 retrieve edges

0 5000 10000 15000 20000

Time (s)

102

105 add edges

(c) Neo4j.

Figure 5: Details (histograms) on the latency of individual operations of the OLTP LinkBench workload for 1, 2, 4 and 8 servers. We aggregate query latencies outside the range and
plot their combined number at the upper bound. Note the different cutoff of the X axis for Neo4j (20 ms) and GDA as well as JanusGraph (5 ms). Because Neo4j only
supports a coarser granularity of milliseconds (versus 𝜇s for GDA and JanusGraph) for query time measurements, we use a different cutoff and style for plotting. S𝑥 indicates the
data from a specific number of servers.

9

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

#servers 1 2 4 8 16 32 64 128 256 512 1024 7142
#vertices 8.4M 16.8M 33.6M 67.1M 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B
#edges 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B 68.7B 137B 275B

50

75

100

125

150

175

200

R
u
n
ti

m
e
 [

s]

WCC (i=5) (XC50)
CDLP (i=5) (XC50)
PageRank (i=10, df=0.85) (XC50)
WCC (i=5) (mixed XC40/XC50)
PageRank (i=10, df=0.85) (mixed XC40/XC50)

(a) PR, CDLP, WCC; weak scaling.

8 16 24 32 40 48 56 64
Servers

102

103

R
u
n
ti

m
e
 [

s]

WCC (i=5) GDA/XC50
CDLP (i=5) GDA/XC50
PageRank (i=10, df=0.85) GDA/XC50

LCC GDA/XC50
BI2 GDA/XC50
BI2 Neo4j/XC40

(b) PR, CDLP, WCC, LCC, BI2; strong scaling.

#servers 1 2 4 8 16 32 64 128 256 512 1024
#vertices 4.2M 8.4M 16.8M 33.6M 67.1M 134M 268M 537M 1.1B 2.1B 4.3B
#edges 67.1M 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B 68.7B

0

5

10

15

20

25

30

R
u
n
ti

m
e
 [

m
in

]

GDA k=4 (XC50)
GDA k=16 (XC50)

GDA k=64 (XC50)
GDA k=256 (XC50)

GDA k=500 (XC50)

(c) GNN; weak scaling.

8 16 24 32 40 48 56 64
Servers

0

200

400

600

800

R
u
n
ti

m
e
 [

s]

GDA k=4 (XC50)
GDA k=16 (XC50)

GDA k=64 (XC50)
GDA k=256 (XC50)

GDA k=500 (XC50)

(d) GNN; strong scaling.

#servers 1 2 4 8 16 32 64 128 256 512 1024 2048 7142
#vertices 8.4M 16.8M 33.6M 67.1M 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B 17.2B
#edges 134M 268M 537M 1.1B 2.1B 4.3B 8.6B 17.2B 34.4B 68.7B 137B 275B 275B

10 3

10 2

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

2-Hop GDA (XC50)
3-Hop GDA (XC50)
4-Hop GDA (XC50)
2-Hop Neo4j (XC40)

3-Hop Neo4j (XC40)
4-Hop Neo4j (XC40)
BFS GDA (XC50)

BFS Graph500 (XC50)
BFS Neo4j (XC40)
BFS GDA (mixed XC40/XC50)

(e) BFS, k-hop; weak scaling.

8 16 24 32 40 48 56 64
Servers

10 2

10 1

100

R
u
n
ti

m
e
 [

s]

2-Hop GDA (XC50)
3-Hop GDA (XC50)
3-Hop GDA (XC50)

BFS GDA (XC50)
BFS Graph500 (XC50)

(f) BFS, k-hop; strong scaling.

Figure 6: Analysis of OLAP and OLSP workloads. PR: PageRank, CDLP: Community Detection using Label Propagation,WCC: Weakly Connected Components, LCC: Local
Cluster Coefficient, BI2: Business Intelligence 2 query from LDBC SNB, GNN: Graph Neural Networks (training of the graph convolution model), weak scaling: scaling dataset
sizes together with #servers, strong scaling: scaling #servers for a fixed dataset (a Kronecker graph of scale 26, i.e., 67.1M vertices and 1.1B edges; the results follow the same
performance patterns for other datasets). Missing data points of our baselines indicate limited compute budget; missing baselines of comparison targets indicate inability to scale
to a given configuration; isolated GDA data points not connected with lines to the rest of the data series indicate extreme-scale runs.

tuned BFS code that has been used for many years to assess high-
performance clusters in their abilities to process graph traversals.
Graph500 uses graphs with no labels or properties, and it does not
use graph transactions. Importantly, GDA is at most 2–4× slower
than Graph500, and sometimes it is comparable or even faster (e.g.,
see 2,048 servers for weak scaling). Hence, GDA is able to deliver
high performance graph analytics of even largest scales considered.

Summary of GDA’s Advantages Using MPI collectives gives
GDA significant benefits for OLAP/OLSP queries. As collectives
offer clear semantics, they further boost performance by eliminating
boilerplate code.

6.6 Varying Labels, Properties, & Edge Factors
In addition to scaling graph sizes (#vertices and #edges), we also
analyze GDA’s performance for graphs with different amounts of
labels and properties. Intuitively, graphs with very few of these
have little rich data attached to vertices and edges. Thus, workloads
are mostly dominated by irregular distributed memory single-block
reads and writes. With more labels and properties, data accesses are
still irregular (due to the nature of graph workloads), but reads and

writes may access many blocks. GDA’s advantages are preserved
in all these cases, thanks to harnessing the underlying RDMA.

We use the default value of the edge factor 𝑒 = 16, which results
in Kronecker graphs close to many real-world datasets in terms of
their degree distribution and sparsity. We also tried other values of
𝑒 , they also come with similar GDA’s advantages.

6.7 Analysis of Real-World Graphs
We also consider large real-world graphs, (which includesWeb Data
Commons and other largest publicly available real-world datasets)
selected from the KONECT [62] and WebGraph [22] repositories.
The performance patterns and GDA’s advantages are similar to
those obtained for Kronecker graphs. This is because both the
considered real-world and Kronecker graphs have similar sparsities
as well as heavy-tail degree distributions that have been identified
as key factors that determine performance patterns. For example,
we were able to process an OLAP BFS query on the Web Data
Commons dataset with ≈3.56 billion vertices and ≈128 billion edges
in ≈15s using 1,024 XC50 servers.

10

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

6.8 Extreme Scales & Comparison to Others
Our evaluation comes with the largest experiments described in
the literature in terms of #servers, #cores, and #edges. These largest
runs are pictured in Figure 4a for OLTP (RM), and in Figures 6a
and 6e for OLAP (WCC, PR, BFS). We were only able to run a few
such experiments due to the fact that it required using the full scale
of the Piz Daint supercomputer. The results illustrate that even
at such workloads, GDA still offers high scalability. For example,
moving from a graph with 275B edges to 550B edges increases the
OLTP throughput by ≈3× while #servers increase by 3.49×.

One recent study with large-scale executions is from the com-
mercial ByteGraph system [65]. However, it does not specify the
details of the used graph, and it partially uses disks. Second, while
a recent study of the TigerGraph commercial system comes with
a graph of a similar size to us (539.6B edges) [100], their servers
have significantly more memory (each has ≈1TB vs. 64 GB in our
setting). As the network is the main bottleneck in large-scale com-
munication, we expect that GDA would also scale well with such
fat-memory servers, and thus it could be able to scalably process
even larger graphs than the ones we tried.

Finally, note that our runs required using both XC40 and XC50
servers simultaneously to use full Piz Daint’s scale. As XC40 and
XC50 comewith different CPUs and core counts, this may cause load
imbalance. Thus, we conjecture that when using GDA in production
data centers with uniform servers, its performance and scalability
could be even better than described in this work.

7 RELATEDWORK
GDBs have been researched in both academia and industry [6, 7,
33, 41, 47, 60, 61], in terms of query languages [3, 4, 23], database
management [23, 54, 73, 84, 85], execution in novel environments
such as the serverless setting [69, 101], and others [34]. Many graph
databases exist [2, 9–11, 20, 26, 27, 29, 32, 35, 36, 39, 40, 56, 57, 67, 70–
72, 77–81, 86, 88, 89, 95, 98–100, 104, 107, 108]. In this context, GDI
offers standardized building blocks for GDBs to foster portability
and programmability across different architectures.

Many workload specifications and benchmarks for GDBs
exist, covering OLTP interactive queries (SNB [37], LinkBench [12],
and BG [13]), OLAP workloads (Graphalytics [53]), or business
intelligence queries (BI [96, 97]). One can express these workloads
using portable and programmable GDI building blocks. Note that
global analytics workloads are the focus of Pregel-like systems [31,
44, 68]. These systems are mostly incomparable to GDBs because
they do not support graph updates or LPG datasets.

Resource Description Framework (RDF) [63] is a standard to
encode knowledge in ontological models and in RDF stores using
triples [48, 74, 83]. We focus on graph databases built on top of LPG,
and thus RDF designs are outside the scope of this work.

8 CONCLUSION
Graph databases (GDBs) are of central importance in academia and
industry, and they drive innovation in many domains ranging from
computational chemistry to engineering. However, with extreme-
scale graphs on the horizon, they face several challenges, including
high performance, scalability, programmability, and portability.

In this work, we provide the first systematic approach to address
these challenges. First, we design the Graph Database Interface

(GDI): an MPI-inspired specification of performance-critical build-
ing blocks for the transactional and storage layer of a GDB. By
incorporating the established MPI principles into the GDB domain,
we enable designing GDBs that are portable, have well-defined be-
havior, and seamlessly incorporate workloads as diverse as OLTP,
OLAP, and OLSP. Moreover, while in the current GDI release we
focus on Labeled Property Graphs, GDI can be straightforwardly
extended to cover other data models such as RDF or Knowledge
Graphs. This would further illustrate the applicability of HPC-based
design principles even well beyond traditional graph databases.

To illustrate the potential of GDI in practice, we use it to build
GDI-RMA, a graph database for distributed-memory RDMA ar-
chitectures. To the best of our knowledge, GDI-RMA is the first
GDB that harnesses many powerful HPC mechanisms, including
collective communication, offloaded RDMA, non-blocking commu-
nication, and network-accelerated atomics. We crystallize the most
important design decisions into generic comprehensive insights
that can be reused for developing other high-performance GDBs.

In evaluation, we achieve unprecedented performance and scala-
bility for a plethora of workloads, including diverse small transac-
tional queries as well as large graph analytics such as Community
Detection or Graph Neural Networks. GDI-RMA outperforms not
only other graph databases by orders of magnitude, but its im-
plementation of BFS approaches and even matches in some cases
Graph500, a high-performance graph traversal implementation
tuned over many years. This is an important result, because the
Graph500 kernel only implements the single BFS algorithm for
static simple graphs without any rich data, while GDI-RMA is a
GDB engine with transactional support for arbitrary graph modifi-
cations, the LPG rich data model, and many types of queries.

Finally, we deliver the largest experiments reported in the GDB
literature in terms of #servers and #cores, improving upon previous
results by orders of magnitude. Our code is publicly available and
can be used to propel developing next-generation GDBs.

ACKNOWLEDGEMENTS
We thank Hussein Harake, Colin McMurtrie, Mark Klein, Angelo
Mangili, Marco Induni, Andreas Jocksch, Maria Grazia Giuffreda
and the whole CSCS team granting access to the Ault and Daint
machines, and for their excellent technical support. We thank
Timo Schneider for immense help with infrastructure at SPCL,
and PRODYNA AG (Darko Križić, Jens Nixdorf, Christoph Körner)
for generous support. We thank Emanuel Peter, Claude Barthels,
Jakub Jałowiec, Roman Haag, and Jan Kleine, for help with the
project. This project received funding from the European Research
Council (Project PSAP, No. 101002047), and the European High-
Performance Computing Joint Undertaking (JU) under grant agree-
ment No. 955513 (MAELSTROM). This project was supported by the
ETH Future Computing Laboratory (EFCL), financed by a donation
from Huawei Technologies. This project received funding from the
European Union’s HE research and innovation programme under
the grant agreement No. 101070141 (Project GLACIATION). This
work was also supported in part by the European Union’s Horizon
2020 research and innovation programme under the grant: Sano
No. 857533 and the International Research Agendas programme of
the Foundation for Polish Science, co-financed by the EU under the
European Regional Development Fund.

11

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

References
[1] Janez Ales. 2020. BASF Enterprise Knowledge Graph Evolution - 55 Billion

Entities and Counting. In Proceedings of NODES (NODES ’20).
[2] Amazon. 2018. Amazon Neptune. Available at https://aws.amazon.com/

neptune/.
[3] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan
Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for Fu-
ture Graph Query Languages. In Proceedings of the International Conference on
Management of Data (SIGMOD ’18). ACM, 1421–1432.

[4] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (Sept. 2017), 40 pages.

[5] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neu-
mann, Orri Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev,
and Ioan Toma. 2014. The Linked Data Benchmark Council: A Graph and RDF
Industry Benchmarking Effort. SIGMOD Rec. 43, 1 (May 2014), 27–31.

[6] Renzo Angles and Claudio Gutierrez. 2008. Survey of Graph Database Models.
ACM Comput. Surv. 40, 1, Article 1 (Feb. 2008), 39 pages.

[7] Renzo Angles and Claudio Gutierrez. 2018. An Introduction to Graph Data
Management. In Graph Data Management, Fundamental Issues and Recent
Developments, George H. L. Fletcher, Jan Hidders, and Josep Lluís Larriba-Pey
(Eds.). Springer, 1–32.

[8] Apache Software Foundation. 2009. Apache TinkerPop. Available at http:
//tinkerpop.apache.org.

[9] Apache Software Foundation. 2018. Apache Mormotta. Available at http:
//marmotta.apache.org/.

[10] Apache Software Foundation. 2021. Apache Jena TBD. Available at https:
//jena.apache.org/documentation/tdb/index.html.

[11] ArangoDB Inc. 2018. ArangoDB. Available at https://www.arangodb.com/docs/
stable/data-models.html.

[12] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph. In Proceedings of the International Conference on Management of
Data (SIGMOD ’13). ACM, 1185–1196.

[13] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A Benchmark
to Evaluate Interactive Social Networking Actions. In Proceedings of the 6th
Biennial Conference on Innovative Data Systems Research (CIDR ’13).

[14] Maciej Besta, Robert Gerstenberger, Nils Blach, Marc Fischer, and Torsten Hoe-
fler. 2023. GDI: A Graph Database Interface Standard. Technical Report. Available
at https://github.com/spcl/GDI-RMA.

[15] Maciej Besta and Torsten Hoefler. 2015. Accelerating Irregular Computations
with Hardware Transactional Memory and Active Messages. In Proceedings of
the 24th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’15). ACM, 161–172.

[16] Maciej Besta and Torsten Hoefler. 2022. Parallel and Distributed Graph Neural
Networks: An In-Depth Concurrency Analysis. arXiv:2205.09702

[17] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2023. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. ACM Comput. Surv. (Jun 2023).

[18] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To Push or To Pull: On Reducing Communication and Syn-
chronization in Graph Computations. In Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’17).
ACM, 93–104.

[19] Gianfranco Bilardi and Andrea Pietracaprina. 2011. Models of Computation,
Theoretical. In Encyclopedia of Parallel Computing, David Padua (Ed.). Springer,
1150–1158.

[20] Blazegraph. 2018. BlazeGraph DB. Available at https://www.blazegraph.com/.
[21] Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel Algorithms. In Algorithms

and Theory of Computation Handbook: Special Topics and Techniques. Chapman
& Hall/CRC.

[22] Paolo Boldi and Sebastiano Vigna. 2004. The Webgraph Framework I: Compres-
sion Techniques. In Proceedings of the 13th International Conference on World
Wide Web (WWW ’04). ACM, 595–602.

[23] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying Graphs. Springer.

[24] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data.
IEEE Signal Processing Magazine 34, 4 (2017), 18–42.

[25] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan, and Shuheng
Zheng. 2020. A1: A Distributed In-Memory Graph Database. In Proceedings
of the International Conference on Management of Data (SIGMOD ’20). ACM,
329–344.

[26] Cambridge Semantics. 2018. AnzoGraph. Available at https://www.
cambridgesemantics.com/anzograph/.

[27] Cayley. 2018. CayleyGraph. Available at https://cayley.io/ and https://github.
com/cayleygraph/cayley.

[28] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. 2007.
Collective Communication: Theory, Practice, and Experience: Research Articles.
Concurr. Comput.: Pract. Exper. 19, 13 (Sept. 2007), 1749–1783.

[29] Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng,
Jian Zhang, Yifan Hou, and Xiao Yan. 2019. Grasper: A High Performance Dis-
tributed System for OLAP on Property Graphs. In Proceedings of the Symposium
on Cloud Computing (SoCC ’19). ACM, 87–100.

[30] Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng
Fang, James Cheng, and Jian Zhang. 2022. G-Tran: A High Performance Dis-
tributed Graph Database with a Decentralized Architecture. Proc. VLDB Endow.
15, 11 (July 2022), 2545–2558.

[31] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. 2019. PowerLyra: Differentiated Graph Computation and Partitioning
on Skewed Graphs. ACM Trans. Parallel Comput. 5, 3, Article 13 (Jan. 2019),
39 pages.

[32] DataStax Inc. 2018. DSE Graph (DataStax). Available at https://www.datastax.
com/.

[33] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores.
ACM Comput. Surv. 51, 2, Article 40 (April 2018), 43 pages.

[34] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support
for Modern Graph Analytics in TigerGraph. In Proceedings of the International
Conference on Management of Data (SIGMOD ’20). ACM, 377–392.

[35] Dgraph Labs, Inc. 2018. DGraph. Available at https://dgraph.io/ and https:
//dgraph.io/docs/.

[36] Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver:
A High-Performance, Transactional Graph Database Based on Refinable Times-
tamps. Proc. VLDB Endow. 9, 11 (July 2016), 852–863.

[37] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network
Benchmark: Interactive Workload. In Proceedings of the International Conference
on Management of Data (SIGMOD ’15). ACM, 619–630.

[38] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese,
Bob Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard.
2012. Cray Cascade: A Scalable HPC System Based on a Dragonfly Network.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE, Article 103, 9 pages.

[39] FactNexus. 2018. GraphBase. Available at https://graphbase.ai/.
[40] Franz Inc. 2018. AllegroGraph. Available at https://allegrograph.com/products/

allegrograph/.
[41] Santhosh Kumar Gajendran. 2012. A Survey on NoSQL Databases.
[42] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013. Enabling Highly-

Scalable Remote Memory Access Programming with MPI-3 One Sided. In Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC ’13). ACM, Article 53, 12 pages.

[43] Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, Maciej Besta,
and Torsten Hoefler. 2021. Learning Combinatorial Node Labeling Algorithms.
arXiv:2106.03594

[44] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computation on Natu-
ral Graphs. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12). 17–30.

[45] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt.
2019. Updating Graph Databases with Cypher. Proc. VLDB Endow. 12, 12 (Aug.
2019), 2242–2254.

[46] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learn-
ing on Graphs: Methods and Applications. Bulletin of the Technical Committee
on Data Engineering 40, 3 (Sept. 2017), 52–74.

[47] Jing Han, E Haihong, Guan Le, and Jian Du. 2011. Survey on NoSQL database.
In Proceedings of the 6th International Conference on Pervasive Computing and
Applications (ICPCA ’11). IEEE, 363–366.

[48] Steve Harris, Nick Lamb, and Nigel Shadbolt. 2009. 4store: The Design and
Implementation of a Clustered RDF Store. In Proceedings of the 5th International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS ’09).

[49] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.
Morgan Kaufmann.

[50] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel
Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-
mance Results. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’15). ACM, Article 73,
12 pages.

[51] Torsten Hoefler and Dmitry Moor. 2014. Energy, Memory, and Runtime Trade-
offs for Implementing Collective Communication Operations. Supercomputing
Frontiers and Innovations 1, 2 (Sept. 2014), 58–75.

12

https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
http://tinkerpop.apache.org
http://tinkerpop.apache.org
http://marmotta.apache.org/
http://marmotta.apache.org/
https://jena.apache.org/documentation/tdb/index.html
https://jena.apache.org/documentation/tdb/index.html
https://www.arangodb.com/docs/stable/data-models.html
https://www.arangodb.com/docs/stable/data-models.html
https://github.com/spcl/GDI-RMA
https://arxiv.org/abs/2205.09702
https://www.blazegraph.com/
https://www.cambridgesemantics.com/anzograph/
https://www.cambridgesemantics.com/anzograph/
https://cayley.io/
https://github.com/cayleygraph/cayley
https://github.com/cayleygraph/cayley
https://www.datastax.com/
https://www.datastax.com/
https://dgraph.io/
https://dgraph.io/docs/
https://dgraph.io/docs/
https://graphbase.ai/
https://allegrograph.com/products/allegrograph/
https://allegrograph.com/products/allegrograph/
https://arxiv.org/abs/2106.03594

The Graph Database Interface SC ’23, November 12–17, 2023, Denver, CO, USA

[52] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2008. Accurately
measuring collective operations at massive scale. In Proceedings of the Inter-
national Symposium on Parallel and Distributed Processing (IPDPS ’08). IEEE,
1–8.

[53] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and Peter
Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis
on Parallel and Distributed Platforms. Proc. VLDB Endow. 9, 13 (Sept. 2016),
1317–1328.

[54] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm.
2017. Management and Analysis of Big Graph Data: Current Systems and Open
Challenges. In Handbook of Big Data Technologies, Albert Y. Zomaya and Sherif
Sakr (Eds.). Springer, 457–505.

[55] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. In Proceedings of the USENIX Annual
Technical Conference (ATC ’16). 437–450.

[56] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos.
2012. Gbase: An Efficient Analysis Platform for Large Graphs. The VLDB Journal
21, 5 (Oct. 2012), 637–650.

[57] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In Proceedings
of the International Conference on Management of Data (SIGMOD ’17). ACM,
1695–1698.

[58] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-
Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE, 77–88.

[59] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907

[60] Vijay Kumar and Anjan Babu. 2015. Domain Suitable Graph Database Selection:
A Preliminary Report. In Proceedings on the 3rd International Conference on
Advances in Engineering Sciences & Applied Mathematics (ICAESAM ’15). 26–29.

[61] Rohit kumar Kaliyar. 2015. Graph databases: A survey. In Proceedings of the
International Conference on Computing, Communication & Automation (ICCCA
’15). IEEE, 785–790.

[62] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Pro-
ceedings of the 22nd International Conference on World Wide Web (WWW ’13
Companion). ACM, 1343–1350.

[63] Ora Lassila and Ralph R. Swick. 1998. Resource Description Framework (RDF)
Model and Syntax Specification.

[64] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling Net-
works. Journal of Machine Learning Research 11, 33 (Feb. 2010), 985–1042.

[65] Changji Li, Hongzhi Chen, Shuai Zhang, Yingqian Hu, Chao Chen, Zhenjie
Zhang, Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, Xudong Wang,
Huiming Zhu, Xuwei Fu, Tingwei Wu, Hongfei Tan, Hengtian Ding, Mengjin
Liu, Kangcheng Wang, Ting Ye, Lei Li, Xin Li, Yu Wang, Chenguang Zheng, Hao
Yang, and James Cheng. 2022. ByteGraph: A High-Performance Distributed
Graph Database in ByteDance. Proc. VLDB Endow. 15, 12 (Aug. 2022), 3306–3318.

[66] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang
Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, Weimin Zheng, and
Jingfang Xu. 2018. ShenTu: Processing Multi-Trillion Edge Graphs on Millions
of Cores in Seconds. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’18). IEEE, Article
56, 11 pages.

[67] Linux Foundation. 2018. JanusGraph. Available at http://janusgraph.org/.
[68] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD ’10). ACM, 135–146.

[69] Zhitao Mao, RuoyuWang, Haoran Li, Yixin Huang, Qiang Zhang, Xiaoping Liao,
and Hongwu Ma. 2022. ERMer: a serverless platform for navigating, analyzing,
and visualizing Escherichia coli regulatory landscape through graph database.
Nucleic Acids Research 50, W1 (April 2022), W298–W304.

[70] NorbertMartínez-Bazan,M. Ángel Águila Lorente, VictorMuntés-Mulero, David
Dominguez-Sal, Sergio Gómez-Villamor, and Josep-L. Larriba-Pey. 2012. Effi-
cient Graph Management Based On Bitmap Indices. In Proceedings of the 16th
International Database Engineering & Applications Symposium (IDEAS ’12). ACM,
110–119.

[71] Memgraph Ltd. 2018. Memgraph. Available at https://memgraph.com/.
[72] Microsoft. 2018. Azure Cosmos DB. Available at https://azure.microsoft.com/en-

us/services/cosmos-db/.
[73] Justin J. Miller. 2013. Graph Database Applications and Concepts with Neo4j.

In Proceedings of the Southern Association for Information Systems Conference
(SAIS ’13).

[74] Gianfranco E. Modoni, Marco Sacco, and Walter Terkaj. 2014. A survey of RDF
store solutions. In Proccedings of the International Conference on Engineering,

Technology and Innovation (ICE ’14). IEEE, 1–7.
[75] MPI Forum. 2012. MPI: A Message-Passing Interface Standard, version 3.
[76] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010.

Introducing the Graph 500. In Proceedings of the Cray User Group (CUG ’10).
45–74.

[77] Networked Planet Limited. 2018. BrightstarDB. Available at http://brightstardb.
com/.

[78] Objectivity Inc. 2018. InfiniteGraph. Available at https://www.objectivity.com/
products/infinitegraph/.

[79] Ontotext. 2018. GraphDB. Available at https://www.ontotext.com/products/
graphdb/.

[80] OpenLink. 2018. Virtuoso. Available at https://virtuoso.openlinksw.com/.
[81] Oracle. 2018. Oracle Spatial and Graph. Available at https://www.oracle.com/

database/technologies/spatialandgraph.html.
[82] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stan-
ford InfoLab.

[83] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios
Koziris. 2012. H2RDF: Adaptive Query Processing on RDF Data in the Cloud..
In Proceedings of the 21st International Conference on World Wide Web (WWW
’12 Companion). ACM, 397–400.

[84] N.S. Patil, P Kiran, N.P. Kavya, and K.M. Naresh Patel. 2018. A Survey on Graph
Database Management Techniques for Huge Unstructured Data. International
Journal of Electrical and Computer Engineering 81, 2 (2018), 1140–1149.

[85] Jaroslav Pokornỳ. 2015. Graph Databases: Their Power and Limitations. In
Proceedings of the IFIP International Conference on Computer Information Systems
and Industrial Management (CISIM ’15), Khalid Saeed and Wladyslaw Homenda
(Eds.). Lecture Notes in Computer Science, Vol. 9339. Springer, 58–69.

[86] Profium. 2018. Profium Sense. Available at https://www.profium.com/en/
products/graph-database/.

[87] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang
Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. 2021. GAIA:
A System for Interactive Analysis on Distributed Graphs Using a High-Level
Language. In Proceedings of the 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’21). 321–335.

[88] Redis Labs. 2018. RedisGraph. Available at https://redis.io/docs/stack/graph/.
[89] Christopher D. Rickett, Utz-Uwe Haus, James Maltby, and Kristyn J. Maschhoff.

2018. Loading and Querying a Trillion RDF triples with Cray Graph Engine on
the Cray XC. In Proceedings of the Cray User Group (CUG ’18).

[90] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph Database Internals. In
Graph Databases (2nd ed.). O’Reilly, Chapter 7, 149–170.

[91] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The Graph Neural NetworkModel. IEEE Transactions
on Neural Networks 20, 1 (2008), 61–80.

[92] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the
Cost of Atomic Operations on Modern Architectures. In Proceedings of the
International Conference on Parallel Architecture and Compilation Techniques
(PACT ’15). IEEE, 445–456.

[93] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and
Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16). 317–332.

[94] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nelson, and Irene Zhang.
2020. Securing RDMA for High-Performance Datacenter Storage Systems. In
Proceedings of the 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’20).

[95] Stardog Union. 2018. Stardog. Available at https://www.stardog.com/.
[96] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus

Paradies, Moritz Kaufmann, Orri Erling, Peter Boncz, Vlad Haprian, and
János Benjamin Antal. 2018. An Early Look at the LDBC Social Network Bench-
mark’s Business Intelligence Workload. In Proceedings of the 1st ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA) (GRADES-NDA ’18). Article 9,
11 pages.

[97] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (Dec.
2022), 877–890.

[98] Claudio Tesoriero. 2013. Getting Started with OrientDB. Packt Publishing.
[99] TigerGraph Inc. 2018. TigerGraph. Available at https://www.tigergraph.com/.
[100] TigerGraph Inc. 2022. Using the Linked Data Benchmark Council Social Network

Benchmark Methodology to Evaluate TigerGraph at 36 Terabytes. White Paper.
[101] Lucian Toader, Alexandru Uta, Ahmed Musaafir, and Alexandru Iosup. 2019.

Graphless: Toward Serverless Graph Processing. In Proceedings of the 18th
International Symposium on Parallel and Distributed Computing (ISPDC ’19).
IEEE, 66–73.

13

https://arxiv.org/abs/1609.02907
http://janusgraph.org/
https://memgraph.com/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
http://brightstardb.com/
http://brightstardb.com/
https://www.objectivity.com/products/infinitegraph/
https://www.objectivity.com/products/infinitegraph/
https://www.ontotext.com/products/graphdb/
https://www.ontotext.com/products/graphdb/
https://virtuoso.openlinksw.com/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://www.oracle.com/database/technologies/spatialandgraph.html
https://www.profium.com/en/products/graph-database/
https://www.profium.com/en/products/graph-database/
https://redis.io/docs/stack/graph/
https://www.stardog.com/
https://www.tigergraph.com/

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

[102] YandongWang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin, Xiaoqiao
Meng, and Shicong Meng. 2015. HydraDB: A Resilient RDMA-Driven Key-
Value Middleware for in-Memory Cluster Computing. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’15). ACM, Article 22, 11 pages.

[103] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[104] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013.
TripleBit: A Fast and Compact System for Large Scale RDF Data. Proc. VLDB
Endow. 6, 7 (May 2013), 517–528.

[105] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2022. Deep Learning on Graphs:
A Survey. IEEE Transactions on Knowledge and Data Engineering 34, 1 (2022),

249–270.
[106] Jie Zhou, Ganqu Cui, ShengdingHu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[107] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. Proc. VLDB
Endow. 13, 7 (March 2020), 1020–1034.

[108] Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan
Zhao. 2014. GStore: A Graph-Based SPARQL Query Engine. The VLDB Journal
23, 4 (Aug. 2014), 565–590.

14

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zenodo.8081855

ARTIFACT IDENTIFICATION
Graph databases (GDBs) are crucial in academic and industry ap-
plications. The key challenges in developing GDBs are achieving
high performance, scalability, programmability, and portability. To
tackle these challenges, we harness established practices from the
HPC landscape to build a system that outperforms all past GDBs
presented in the literature by orders of magnitude. To achieve this,
we crystallize the fundamental performance-critical building blocks
of GDBs into a portable and programmable specification called the
Graph Database Interface (GDI), inspired by the best practices of
MPI. Considering a software stack of (a) storage backend, (b) storage
and transaction engine, (c) middle layer (query planing, workload
distribution and result aggregation) and (d) externel database in-
terface (graph queries), GDI provides a generic and programmable
API for the storage and transaction engine layer. It also possible to
use GDI to directly implement specific graph queries by the user.

We offer a high-performance implementation of GDI for
distributed-memory systems supporting RDMA-enabled intercon-
nects, called GDI-RMA. We implement the GDI API as a C library
based on MPI one-sided communication. The library will be pub-
lished as free software.

We support nearly any function in our implementation with a
theoretical performance analysis that is independent of the under-
lying hardware and thus offers portable performance insights.

We illustrate how to use GDI to program many graph database
workloads, covering OLTP, OLAP, and OLSP, which form the bulk
of the associated workloads.

We also develop an in-memory distributed generator that can
rapidly create graphs of arbitrary size as well as vertex and edge
labels and properties. The edge generation is based on the popular
Kronecker graph generation from the established Graph500 bench-
mark1. Each process generates the edges of a portion of the graph,
which are redistributed afterwards based on the location of the
incident vertices of each edge. Vertices are assigned labels based on
a configurable percentage. These labels also act as a kind of vertex
type and the property type of the properties assigned to a vertex
are based on that type, whereas the property value is randomly
generated. The label of the edges is chosen based on the labels of
the incident vertices.

The evaluation of GDI-RMA significantly surpasses in scale pre-
vious GDB analyses in the literature in the counts of compute nodes,
counts of cores, and in the size of a single analytic workload.

Detailed description of the computational artifacts and how they
contribute to the reproducibility is described in the following "Re-
producibility of Experiments".

1https://graph500.org/?page_id=47

REPRODUCIBILITY OF EXPERIMENTS
Experimental Workflow
The GDI-RMA implementation is provided as a C library, based on
MPI, so that is possible to link an application based on GDI against
this implementation.

We further provide a benchmark infrastructure. Edges can either
be loaded from files in the edgelist format or generated using the
Kronecker graph generator from the Graph500 benchmark. The
edges can be directed or undirected. In the next step, the vertices
and edges are labeled and properties are added to the vertices. It
is possible to customize the label and property assignment with
the help of user-specified code. Afterwards the resulting labeled
property graph can be benchmarked with examplary implementa-
tions of various workloads. It is possible to just generate the labeled
property graph and write the graph to CSV files, which can be used
for other baseline systems.

TheOLTPworkloads (a detailed description of these workloads
can be found in the submission on page 7 table 3) are as follows:

• “read mostly”
• “read intensive”
• “write intensive”
• “LinkBench” (i.e., the established LinkBench benchmark
workload).

Since these workloads update the graph, we restart the benchmark-
ing each time with a fresh graph. It possible to measure the latency
of the individual queries or the total throughput.

The OLAP and OLSP workloads are as follows:
• Breadth-First Search (BFS)
• Business Intelligence Query 2 (BI2)
• Community Detection using Label Propagation (CDLP)
• Graph Neuronal Networks (GNN)
• k-hop
• Local Cluster Coefficient (LCC)
• PageRank (PR)
• Weakly Connected Components (WCC)

BFS, CDLP, LCC, PR and WCC were chosen from the LDBC Graph-
alytics benchmark and the Business Intelligence query 2 from the
LDBC Social Network Benchmark (SNB). We augmented these
OLAP and OLSP workloads with a state of the art GNN workload.

A different binary is created for each workload. The graph pa-
rameters (number of vertices, edge factor, directed/undirected),
certain GDI-RMA specific parameters (amount of reserved main
memory, block size) as well as various parameters specific to certain
workloads can be set by command line parameters.

After an extensive investigation and configuration effort, we
were able to successfully configure and use Neo4j and JanusGraph.
These two systems are two highest-ranking core graph databases
(i.e., systems with the database model “Graph”) in the established
DB-Engines Ranking2 (at the moment of the submission).

2https://db-engines.com/en/ranking/graph+dbms

https://graph500.org/?page_id=47
https://db-engines.com/en/ranking/graph+dbms

Besta, et al.

Estimation of Execution Time
We estimate that it takes twoweeks to run all necessary experiments
presented in the evaluation section.

Expected Results and Relationship to the
Results in the Submission
The expected results from the artifact should exactly match those
provided in the submission, assuming using the same SW and HW
configuration. Thus, we now describe the detailed configuration
needed for generating these results. Using different HW would
provide results with the same performance trends (i.e., with similar
relative differences between respective baselines). We first provide
the parametrization, referring directly to the results in the submis-
sion (the results obtained from the artifact match these results).

When using the Kronecker graph generator, the number of ver-
tices is provided as a scale parameter, which is the logarithm base
two of that number. The number of edges is determined by an
edge factor, which corresponds to the average vertex degree. So the
number of edges in the Kronecker graph is the number of vertices
multiplied by the edge factor.

For the latency and throughput figures of the OLTP, we executed
10100 queries, and used the first 100 queries as warm up. We usually
executed the OLAP and OLSP queries 10 times.

Figure 4a and 4c: Weak scaling OLTP (read mostly/read inten-
sive/LinkBench/write intensive) throughput for Kronecker graphs
with an edge factor of 16, which is the default value of the Graph500
benchmark. We benchmarked XC40 and XC50 compute nodes.

• 8 compute nodes/scale = 26
• 16 compute nodes/scale = 27
• 32 compute nodes/scale = 28
• 64 compute nodes/scale = 29
• 128 compute nodes/scale = 30
• 256 compute nodes/scale = 31
• 512 compute nodes/scale = 32
• 1024 compute nodes/scale = 33
• 2048 compute nodes/scale = 34
• 7142 compute nodes/scale = 35

Figures 4b and 4b: Strong scaling OLTP (read mostly/read inten-
sive/LinkBench/write intensive) throughput for a Kronecker graph
of scale 26 and an edge factor of 16 with 8, 16, 24, 32, 40, 48, 56
and 64 compute nodes. We benchmarked XC40 and XC50 compute
nodes.

Figure 5: Latency of the LinkBench OLTP workload for a Kro-
necker graph of scale 23 and an edge factor of 16 with 1, 2, 4 and 8
XC40 compute nodes.

Figure 6: workload parameters
CDLP : 5 iterations
GNN : 5 neural GNN layers and feature vector sizes of 4, 16,

64, 256 and 500
k-hop : 2, 3 and 4 hops
PR : 10 iterations and a damping factor of 0.85, the default

value of the command line parameter
WCC : 5 iterations
Figure 6a, 6c, 6e: Weak scaling query runtime of OLAP and

OLSP workloads (BFS, CDLP, GNN, k-hop, PR, WCC) for Kronecker

graphs with an edge factor of 16 for XC50 compute nodes. The
GNN workload experiments reduced the scale by one to account
for the additional storage space of the feature vectors.

• 1 compute nodes/scale = 23
• 2 compute nodes/scale = 24
• 4 compute nodes/scale = 25
• 8 compute nodes/scale = 26
• 16 compute nodes/scale = 27
• 32 compute nodes/scale = 28
• 64 compute nodes/scale = 29
• 128 compute nodes/scale = 30
• 256 compute nodes/scale = 31
• 512 compute nodes/scale = 32
• 1024 compute nodes/scale = 33

BFS results for 2048 (XC50) and 7142 (mixed XC40/XC50) compute
nodes with a scale of 34 are additionally provided as well as XC40
results for 8 to 1024 compute nodes. WCC and PageRank results
are also provided for 7142 (mixed XC40/XC50) compute nodes with
a scale of 34.

Figure 6b, 6d, 6f: Strong scaling query runtime of OLAP and
OLSP workloads (BFS, BI2, CDLP, GNN, k-hop, LCC, PR, WCC) of
scale 26 and an edge factor of 16 with 8, 16, 24, 32, 40, 48, 56 and 64
XC50 compute nodes. LCC was executed with a Kronecker graph
of scale 23 and an edge factor of 16, whereas GNN was executed
with a Kronecker graph of scale 25 and an edge factor of 16.

6.7: We executed the BFS query on the Web Data Commons
dataset (2012)3 with ≈3.56 billion vertices and ≈128 billion edges
in ≈15s using 1024 XC50 compute nodes.

The results for the above figures, and the figures themselves,
can be generated using the described and provided reproducibility-
focused infrastructure described in the Artifact Installation & De-
ployment Process paragraphs. We ensure that all the scripts and
the general workflow are easy to follow and use.

ARTIFACT DEPENDENCIES REQUIREMENTS
GDI-RMA doesn’t required any specific hardware. For the experi-
ments presented in the submission, we used foMPI4 for one-sided
MPI communication, which can only be used on Cray Systems with
Gemini and Aries networks.

GDI-RMA was written for Linux-based environments.
GDI-RMA uses MPI to satisfy its communication needs. Other-

wise the GDI-RMA library itself has no other dependencies. The
benchmark implementation uses LibSciBench5 for its measure-
ments. Additionally the BFS- and k-hop implementations use output
from a modified version of the Graph500 BFS reference implemen-
tation as input to match the start vertices of the queries for a fair
comparison.

The evaluation of GDI-RMA uses mostly an in-memory Kro-
necker graph generator based on the Graph500, that generates and
distributes the necessary edges on the fly during the initial start
up while creating the graph database. Labels and vertex proper-
ties are generated randomly based on a user-chosen data scheme.
Kronecker graphs were chosen since they emulate realistic real

3http://webdatacommons.org/hyperlinkgraph/index.html
4https://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/
5https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

https://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/
https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of...

world graphs with their heavy-tail skewed degree distribution. We
developed our own graph generator, since existing one either didn’t
scale high enough or experienced problems on Piz Daint while
generating the necessary data.

Additionally we provide results for one real world dataset: Web
Data Commons with ≈3.56 billion vertices and ≈128 billion edges,
which is publicly available. We choose this dataset to provide evi-
dence of our bulk loading capabilities and to present results on real
world dataset, not just synthetic ones.

We use the highly optimized Graph500 BFS reference implemen-
tation as a baseline for the comparison with our GDI-RMA BFS
workload implementation. Neo4j and JanusGraph provide mainly a
baseline for the comparison of the OLTP workloads.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Installation: foMPI Library (optional)
time: a few minutes

foMPI was used in the evaluation of GDI-RMA on Piz Daint.
However foMPI only works with Cray Gemini and Aries networks.
This step is optional, you can also use the vendor-supplied MPI
library.
% cd GDI_artifact
% tar xfz foMPI-0.2.2.tar.gz
% cd foMPI-0.2.2
% edit Makefile.inc
- default values for CC, FC and CXX should be correct

for Cray systems
- add -fcommon to CCFLAGS (line 5)

% make libfompi.a

end result: libfompi.a

Installation: GDI-RMA Library
time: a few minutes
% cd GDI_artifact
% edit Makefile.inc

- set CC and CXX to the MPI C- and C++-compilers of
your system

% cd src
% edit Makefile.inc
- only necesseary if you want to use foMPI: uncomment

lines 6 to 9
% make

end result: libgdi.a in src

Installation: LibSciBench Library
time: a few minutes

LibSciBench is a library for time measurements, that is used by
the benchmark source code. Each rank stores its measurements in
a separate file: lsb.*.r{rank number}.
% cd GDI_artifact
% git clone https://github.com/spcl/liblsb.git
% cd liblsb
% git checkout 91d073d7420b4c4d8d30dab202166f9de7d65a10
% mkdir build

% module switch PrgEnv-cray PrgEnv-gnu
- necessary step on Piz Daint

% MPICC=cc MPICXX=CC ./configure --prefix=$(pwd)/build/
--with-mpi --without-papi
- set MPICC and MPICXX to the MPI C- and C++-compilers

of your system
% make
% make install
% module switch PrgEnv-gnu PrgEnv-cray

- necessary step on Piz Daint

end result: liblsb/build - lib and includes directories

Installation: Benchmarks
time: a few minutes
% cd GDI_artifact/benchmark
% edit Makefile.inc
- only necesseary if you want to use foMPI: uncomment

lines 11 to 15
% make

end results:
• bench_gdi.bfs (for BFS and k-hop benchmarks)
• bench_gdi.bi
• bench_gdi.cdlp
• bench_gdi.gnn
• bench_gdi.lcc
• bench_gdi.oltp.lb.lat (OLTP LinkBench workload: la-
tency)

• bench_gdi.oltp.lb.tp (OLTP LinkBench workload:
throughput)

• bench_gdi.oltp.ri.lat (OLTP read intensive workload:
latency)

• bench_gdi.oltp.ri.tp (OLTP read intensive workload:
throughput)

• bench_gdi.oltp.rm.lat (OLTP read mostly workload: la-
tency)

• bench_gdi.oltp.rm.tp (OLTP read mostly workload:
throughput)

• bench_gdi.oltp.wi.lat (OLTP write intensive workload:
latency)

• bench_gdi.oltp.wi.tp (OLTP write intensive workload:
throughput)

• bench_gdi.pr (for PageRank)
• bench_gdi.wcc

Installation: Graph500
time: a few minutes

The Graph500 BFS reference implementation is used as baseline
and to generate the root vertices for the BFS/k-hop benchmarks of
GDI-RMA.
% cd GDI_artifact
% wget

https://github.com/graph500/graph500/archive/graph500-3.0.0.tar.gz
% tar xfz graph500-3.0.0.tar.gz
% cp graph500_main.c graph500-graph500-3.0.0/src/main.c

- modifications:
- write Graph500 measurement data into the file
bfs_times.txt

- write root vertices into the file bfs_root.txt

Besta, et al.

- execute 100 BFS runs:
- 10 unique root vertices (line 13)
- 10 runs for each unique root vertex (line 14)

% cd graph500-graph500-3.0.0/src
% edit Makefile:

- add -fcommon to CFLAGS (line 1)
- set MPICC to the MPI C-compiler of your system (line 3)
- move '$(LDFLAGS)' after -lm (line 15)

% make graph500_reference_bfs
% cp graph500_reference_bfs ../../benchmark

end result: graph500_reference_bfs

Running the Benchmarks
All executables have the same command line interface, however
not every parameter is significant for every executable.
GDI Benchmark
-b <bsize> : block size [512]
-d : use directed edges [false]
-e <efactor> : edge factor [16]
-f <file> : load graph from file
-i <iter> : iterations for CDLP/PageRank/WCC [5]
-l <layers> : layers for GNN [5]
-m <msize> : memory size per process [4096]
-n <verts> : number of vertices [0]
-o : vertex UIDs start at one [false]
-r <rcount> : number of queries [200]
-s <scale> : log_2(# vertices) [3]
-t <time> : duration to run Linkbench queries [5]
-v <vector> : size of feature vector for GNN [500]
-w <damp> : damping factor for PageRank [0.85]
-h : print this help message

We used the default values of 512 Bytes for the GDI-RMA block
size (-b) and 16 for edge factor (-e) of the Kronecker graphs for all
experiments illustrated as figures in the article. We used a memory
size (-m) of 300000000 Bytes (300 MB) for each process of the XC40
compute nodes and 900000000 Bytes (900 MB) for each process of
the XC50 compute nodes on Piz Daint. The memory size describes
the amount of memory that each process reserves for the graph
database. -s <scale> varies the number of vertices for the Kro-
necker graph generation: 2𝑠𝑐𝑎𝑙𝑒 . Directed edges (-d) are used for
the following OLAP workloads:

• GNN
• PageRank

The other workloads (BI2, BFS, k-hop, CDLP, LCC, OLTP, WCC)
use undirected edges. -f, -n and -o are only significant, when a
graph is loaded from a file.

We used the default value of 5 for the number of iterations (-i) of
the CDLP andWCC workloads. For PageRank we used 10 iterations
and the default value of 0.85 for the dampening factor (-w). We
used the default value of 5 layers (-l) for the GNN workload and
varied the size of the feature vectors with -v: 4, 16, 64, 256 and
500. -r adjusts the number of queries per process to be run for the
OLTP workloads. We used 10100 queries for XC40 compute nodes
and 30100 for XC50 computes nodes on Piz Daint, where we used
the first 100 queries of each process for warm up. By using these
specific numbers, each compute node executes 360000 queries to
allow for a fair comparison. The number of execution times for
each query (rcount variable) of the OLAP and OLSP workloads is
hardcoded in their respective main.*.cpp file.

Before executing any benchmark, one should ensure that
the LibSciBench shared library can be found by using the

following command: export LD_LIBRARY_PATH="{PATH to
installation}liblsb/build/lib:$LD_LIBRARY_PATH".

We provide example Slurm job scripts for OLTP workloads on
Piz Daint:

• benchmark/job.oltp.lb.XC40.sh
• benchmark/job.oltp.lb.XC50.sh

bench_gdi.bfs combines the benchmarks for BFS and k-hop,
because both benchmarks use the root vertices generated by the
Graph500 BFS reference implementation as the basis for their
queries, since the Graph500 code ensures that the root vertices
are not isolated. The idea is to first run the Graph500 BFS reference
implementation, and then the GDI-RMABFS and k-hop benchmarks
during the same job. We use 2, 3 and 4 hops for the evaluation of the
k-hop benchmark. The Graph500 BFS reference implementation
experiences performance penalties, when the number of processes
is not a power of two, so we use only eight processes (instead
of twelve) per compute node for the Graph500 BFS on the XC50
compute nodes on Piz Daint.

We provide an example Slurm job script for the BFS/k-hop work-
load on Piz Daint: benchmark/job.bfs.sh.

Each binary generates a result file for each rank during the
experimental runs. In the following, we list the prefix for each
binary:

• bench_gdi.bfs:
– lsb.gdi_bfs.r{rank number}
– lsb.gdi_k_hop.r{rank number}

• bench_gdi.bi: lsb.gdi_bi.r{rank number}
• bench_gdi.cdlp: lsb.gdi_cdlp.r{rank number}
• bench_gdi.gnn: lsb.gdi_gnn.r{rank number}
• bench_gdi.lcc: lsb.gdi_lcc.r{rank number}
• bench_gdi.oltp.lb.lat: lsb.gdi_oltp.lb.lat.r{rank
number}

• bench_gdi.oltp.lb.tp: lsb.gdi_oltp.lb.tp.r{rank
number}

• bench_gdi.oltp.ri.lat: lsb.gdi_oltp.ri.lat.r{rank
number}

• bench_gdi.oltp.ri.tp: lsb.gdi_oltp.ri.tp.r{rank
number}

• bench_gdi.oltp.rm.lat: lsb.gdi_oltp.rm.lat.r{rank
number}

• bench_gdi.oltp.rm.tp: lsb.gdi_oltp.rm.tp.r{rank
number}

• bench_gdi.oltp.wi.lat: lsb.gdi_oltp.wi.lat.r{rank
number}

• bench_gdi.oltp.wi.tp: lsb.gdi_oltp.wi.tp.r{rank
number}

• bench_gdi.pr: lsb.gdi_pr.r{rank number}
• bench_gdi.wcc: lsb.gdi_wcc.r{rank number}

Experiments
It won’t be possible to recreate the mixed XC40/XC50 workloads
with the provided code base, because for those experiments we
had to alter the code base to account for the different amount of
memory per process.

We estimate that it takes two weeks to run all necessary experi-
ments presented in the evaluation section of the submission. This

The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of...

time can be reduced by running fewer experiments (number of
computes nodes) or by reducing the runtime of the experiments
by reducing the scale of the Kronecker graph: A scale reduction by
one cuts the number of vertices in half and should similarly reduce
the runtime.

Figure 4a and 4c: Throughput Weak Scaling OLTP Workloads. We
executed the following commands:
srun ./bench_gdi.oltp.{lb|ri|rm|wi}.tp -s <scale>

-m 300000000 -r 10100 (XC40)
srun ./bench_gdi.oltp.{lb|ri|rm|wi}.tp -s <scale>

-m 900000000 -r 30100 (XC50)

#nodes scale
8 26
16 27
32 28
64 29
128 30
256 31
512 32
1024 33
2048 34

Table 1: Experimental parameters for Figures 4a and 4c

Figure 4b and 4d: Throughput Strong Scaling OLTP Workloads. We
executed the following commands:
srun ./bench_gdi.oltp.{lb|ri|rm|wi}.tp -s 26

-m 300000000 -r 10100 (XC40)
srun ./bench_gdi.oltp.{lb|ri|rm|wi}.tp -s 26

-m 900000000 -r 30100 (XC50)

We used 8, 16, 24, 32, 40, 48, 56 and 64 compute nodes.

Figure 5a: Latency Linkbench OLTP Workload. We executed the
following command:
srun ./bench_gdi.oltp.lb.lat -s 23 -m 300000000

-r 10100 (XC40)

We used 1, 2, 4 and 8 compute nodes.

Figure 6a: Weak Scaling OLAP Workloads. We executed the follow-
ing commands:
srun ./bench_gdi.cdlp -s <scale> -m 900000000 (XC50)
srun ./bench_gdi.pr -s <scale> -m 900000000 -i 10

-d (XC50)
srun ./bench_gdi.wcc -s <scale> -m 900000000 (XC50)

Figure 6b: Strong Scaling OLAP Workloads. We executed the follow-
ing commands:
srun ./bench_gdi.bi -s 26 -m 900000000 (XC50)
srun ./bench_gdi.cdlp -s 26 -m 900000000 (XC50)
srun ./bench_gdi.lcc -s 23 -m 900000000 (XC50)
srun ./bench_gdi.pr -s 26 -m 900000000 -i 10 -d (XC50)
srun ./bench_gdi.wcc -s 26 -m 900000000 (XC50)

We used 8, 16, 24, 32, 40, 48, 56 and 64 compute nodes.

#nodes scale
1 23
2 24
4 25
8 26
16 27
32 28
64 29
128 30
256 31
512 32
1024 33

Table 2: Experimental parameters for Figure 6a

Figure 6c: Weak Scaling GNN Workload. We executed the following
commands:
srun ./bench_gdi.gnn -s <scale> -m 900000000 -v 4

-d (XC50)
srun ./bench_gdi.gnn -s <scale> -m 900000000 -v 16

-d (XC50)
srun ./bench_gdi.gnn -s <scale> -m 900000000 -v 64

-d (XC50)
srun ./bench_gdi.gnn -s <scale> -m 900000000 -v 256

-d (XC50)
srun ./bench_gdi.gnn -s <scale> -m 900000000 -v 500

-d (XC50)

#nodes scale
1 22
2 23
4 24
8 25
16 26
32 27
64 28
128 29
256 30
512 31
1024 32

Table 3: Experimental parameters for Figure 6c

Figure 6d: Strong Scaling GNNWorkload. We executed the following
commands:
srun ./bench_gdi.gnn -s 25 -m 900000000 -v 4 -d (XC50)
srun ./bench_gdi.gnn -s 25 -m 900000000 -v 16 -d (XC50)
srun ./bench_gdi.gnn -s 25 -m 900000000 -v 64 -d (XC50)
srun ./bench_gdi.gnn -s 25 -m 900000000 -v 256 -d (XC50)
srun ./bench_gdi.gnn -s 25 -m 900000000 -v 500 -d (XC50)

We used 8, 16, 24, 32, 40, 48, 56 and 64 compute nodes.

Figure 6e: Weak Scaling BFS/k-Hop Workloads. We executed the
following commands:

Besta, et al.

srun --ntasks=<#tasks> --ntasks-per-node=8
./graph500_bfs <scale> 16

srun ./bench_gdi.bfs -s <scale> -m 900000000 (XC50)

#nodes #tasks scale
1 8 23
2 16 24
4 32 25
8 64 26
16 128 27
32 256 28
64 512 29
128 1024 30
256 2048 31
512 4096 32
1024 8192 33
2048 16384 34

Table 4: Experimental parameters for Figures 4a and 4c

Figure 6f: Strong Scaling BFS/k-Hop Workloads. We executed the
following commands:
srun --ntasks=<#tasks> --ntasks-per-node=8

./graph500_bfs 26 16
srun ./bench_gdi.bfs -s 26 -m 900000000 (XC50)

We used 8, 16, 24, 32, 40, 48, 56 and 64 compute nodes. The
Graph500 BFS reference implementation was only executed for a
selected number of computes nodes to ensure that the total number
of processes was a power of two.

#nodes #tasks
8 64
16 128
32 256
64 512

Table 5: Experimental Graph500 parameters for Figure 6f

Plotting
We provide Python scripts to visualize the experimental results in
the directory plots. The execution of python3 {script name}
will result in a PDF file, whose name matches the script name:
{script name}.pdf.

Figure 4a and 4c: Throughput Weak Scaling OLTP Workloads.

plots/throughput_read_weak_scaling_bar.py (4a)
plots/throughput_write_weak_scaling_bar.py (4c)

• scale of the initial Kronecker graph can be updated in lines
18 and 40

• number of compute nodes used for the experiments can be
updated in lines 19 and 41

• path to the result files and their naming convention can be
updated in lines 21 and 43

Figure 4b and 4d: Throughput Strong Scaling OLTP Workloads.

plots/throughput_read_strong_scaling_bar.py (4b)
plots/throughput_write_strong_scaling_bar.py (4d)

• number of compute nodes used for the experiments can be
updated in lines 18 and 38

• path to the result files, their naming convention and the
Kronecker graph scale can be updated in lines 20 and 40

Figure 5a: Latency Linkbench OLTP Workload.

plots/latency.oltp.lb.gda.py

• path to the result files and their naming convention can be
updated in line 30

Figure 6a: Weak Scaling OLAP Workloads.

plots/global_weak_scaling.py

• scale of the initial Kronecker graph can be updated in lines
15, 28 and 40

• number of compute nodes used for the experiments can be
updated in lines 16, 29 and 41

• path to the result files and their naming convention can be
updated in lines 18, 30 and 42

Figure 6b: Strong Scaling OLAP Workloads.

plots/global_strong_scaling.py

• number of compute nodes used for the experiments can be
updated in lines 19, 30, 40, 50 and 60

• path to the result files, their naming convention and the
Kronecker graph scale can be updated in lines 21, 31, 41, 51
and 61

Figure 6c: Weak Scaling GNN Workload.

plots/gnn_weak_scaling.py

• scale of the initial Kronecker graph can be updated in line 16
• number of compute nodes used for the experiments can be
updated in line 17

• path to the result files and their naming convention can be
updated in lines 20, 29, 38, 47 and 56

Figure 6d: Strong Scaling GNN Workload.

plots/gnn_strong_scaling.py

• number of compute nodes used for the experiments can be
updated in line 16

• path to the result files, their naming convention and the
Kronecker graph scale can be updated in lines 19, 28, 37, 46
and 55

Figure 6e: Weak Scaling BFS/k-Hop Workloads.

plots/bfs_khop_comb_weak_scaling.py

• scale of the initial Kronecker graph can be updated in lines
16, 29 and 41

• number of compute nodes used for the experiments can be
updated in lines 17, 30 and 42

• path to the result files and their naming convention can be
updated in lines 19, 31 and 45

The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of...

Figure 6f: Strong Scaling BFS/k-Hop Workloads.

plots/bfs_khop_comb_strong_scaling.py

• number of compute nodes used for the experiments can be
updated in lines 17, 28 and 40

• path to the result files, their naming convention and the
Kronecker graph scale can be updated in lines 18, 29 and 41

	ABSTRACT
	1 INTRODUCTION
	2 GRAPH DATA MODEL & WORKLOADS
	3 THE GRAPH DATABASE INTERFACE
	3.1 Relation Between GDI and Graph Databases
	3.2 Structure and Functionalities of GDI
	3.3 High-Performance Transactions
	3.4 Fast & Effective Access to Graph Data
	3.5 Handles
	3.6 Consistency

	4 GRAPH WORKLOADS WITH GDI
	5 SCALABLE GDI RDMA IMPLEMENTATION
	5.1 Graph Data
	5.2 Logical Layout Level
	5.3 Transactions & ACI
	5.4 Graph Metadata
	5.5 Summary of Parallel Performance Analysis

	6 EVALUATION
	6.1 Experimental Setup, Workloads, Metrics
	6.2 Selecting Baselines and Related Challenges
	6.3 Distributed In-Memory LPG Graph Generator for Massive-Scale Experiments
	6.4 Analysis of OLTP Workloads
	6.5 Analysis of OLAP and OLSP Workloads
	6.6 Varying Labels, Properties, & Edge Factors
	6.7 Analysis of Real-World Graphs
	6.8 Extreme Scales & Comparison to Others

	7 RELATED WORK
	8 CONCLUSION
	References

