
spcl.ethz.ch
@spcl_eth
@spcl

M. BESTA, R. GERSTENBERGER, M. FISCHER, M. PODSTAWSKI, N. BLACH, B. EGELI,
G. MITENKOV, W. CHLAPEK, M. MICHALEWICZ, H. NIEWIADOMSKI, J. Müller, T. HOEFLER

The Graph Database Interface: Scaling Online Transactional and Analytical
Graph Workloads to Hundreds of Thousands of Cores

@spcl_eth
@spcl

spcl.ethz.ch

Graph Databases (GDBs): A Very Brief Introduction

2

@spcl_eth
@spcl

spcl.ethz.ch

Graph Databases: The Labeled Property Graph (LPG) Data Model
Labels Properties

3

@spcl_eth
@spcl

spcl.ethz.ch

Genome (BFS) traversalsGraph Databases: Major Workloads

Graph Neural Networks

PageRank

4

CRUD (Create, Read,
Update, Delete)

@spcl_eth
@spcl

spcl.ethz.ch

Graph Databases: Where Do We Use Them?

Social sciences

Engineering

Biology Chemistry

Communication

Medicine Cybersecurity Web graph analysis

5

@spcl_eth
@spcl

spcl.ethz.ch

Graph Databases: State of Challenges & Problems

6

We analyzed > 300 works & dozens of systems, and realized, they all suffer from problems...

@spcl_eth
@spcl

spcl.ethz.ch

Data

It is hard or infeasible to
process such datasets with

existing systems

Graph Databases: State of Challenges & Problems

Our industry collaborators have 10-1000x more
data than they can process with current tools

We analyzed > 300 works & dozens of systems, and realized, they all suffer from problems...

7

Huge

Rich & complex

@spcl_eth
@spcl

spcl.ethz.ch

Workloads

Workloads are hard to scale
and often have high runtimes

with today’s systems

Graph Databases: State of Challenges & Problems

We analyzed > 300 works & dozens of systems, and realized, they all suffer from problems...

8

CRUD

Diverse

Systems often focus on
a single workload class

Largest scale published so far: MS A1 (2020),
2940 cores, 245 compute nodes;

@spcl_eth
@spcl

spcl.ethz.ch

System design

Hard to design,
maintain, & extend

Graph Databases: State of Challenges & Problems

An example comment in a production repo of
one of the top GDBs: „We do not know the effects

of OLAP when running concurrently with OLTP
ones; maybe not use it in production.”

Hard to port

We analyzed > 300 works & dozens of systems, and realized, they all suffer from problems...

9

Complex

Transactions

Sharding &
Replication

ACID

Indexing

...Errors

@spcl_eth
@spcl

spcl.ethz.ch

Support for arbitrarily
large datasets

Hard or infeasible to use
with large datasets

Portable

Supporting all major
workload classes

High performance

Programmable

Graph Databases: State of Problems & Our Objectives

Slow

Hard to design & maintain

Difficult to port

Focusing on a single
worklad class

Highly scalableHard to scale

XS XXXL
10

@spcl_eth
@spcl

spcl.ethz.ch

Support for arbitrarily
large datasets

Hard or infeasible to use
with large datasets

Portable

Supporting all major
workload classes

High performance

Programmable

Graph Databases: State of Problems & Our Objectives

Slow

Hard to design & maintain

Difficult to port

Focusing on a single
worklad class

Highly scalableHard to scale

XS XXXL
11

How to achieve all these
objectives in a single design?

We design & implement the Graph Database
Interface (GDI): a paradigm for developing

GDBs that ensure all these objectives

@spcl_eth
@spcl

spcl.ethz.ch

Graph Database

Hardware access layer (vendor specific)

Observation: Developing a GDB Directly on Top of HW Is Not a Good Idea

12

@spcl_eth
@spcl

spcl.ethz.ch

GDI Key Idea

...Break down the complexity of GDBs with the
separation between the hardware-agnostic interface

(API) and the hardware-specific implementation

13

Bring the best practices of MPI and its fundamental
design feature into the landscape of graph databases...

@spcl_eth
@spcl

spcl.ethz.ch

Hardware access layer (vendor specific)

MPI Standard (API)

MPI Implementation

14

Fundamental performance-critical
building blocks for communication

in a parallel environment

HW-agnostic

HW-specific

GDI Key Idea: Bring the Fundamental MPI Design Feature for Graph Databases

Portable and productive API
for developing scalable

parallel applications

@spcl_eth
@spcl

spcl.ethz.ch

HPC Application

Hardware access layer (vendor specific)

MPI Standard (API)

MPI Implementation

Portability

15

HW-agnostic

HW-specific

GDI Key Idea: Bring the Fundamental MPI Design Feature for Graph Databases

@spcl_eth
@spcl

spcl.ethz.ch

Hardware access layer (vendor specific)

GDI Standard (API)

GDI Implementation

16

Fundamental performance-critical building
blocks for graph data layout & graph

transactions in a parallel environment

HW-agnostic

HW-specific

GDI Key Idea: Bring the Fundamental MPI Design Feature for Graph Databases

Portable and productive
API for developing scalable

graph databases

@spcl_eth
@spcl

spcl.ethz.ch

Graph Database

Hardware access layer (vendor specific)

GDI Standard (API)

GDI Implementation

Portability

17

HW-agnostic

HW-specific

GDI Key Idea: Bring the Fundamental MPI Design Feature for Graph Databases

@spcl_eth
@spcl

spcl.ethz.ch

Support for arbitrarily
large datasets

Hard or infeasible to use
with large datasets

Portable

Supporting all major
workload classes

High performance

Programmable

Graph Databases: State of Problems & Our Objectives

Slow

Hard to design & maintain

Difficult to port

Focusing on a single
worklad class

Highly scalableHard to scale

XS XXXL
18

@spcl_eth
@spcl

spcl.ethz.ch

Graph Database

GDI Standard (API)

GDI Implementation

19

HW-agnostic

HW-specific

@spcl_eth
@spcl

spcl.ethz.ch

Graph Database

GDI Standard (API)

20

Graph data Graph transactions Graph indexes ...

Main focus: data & its operations

@spcl_eth
@spcl

spcl.ethz.ch

Graph transactions

Graph data Vertices

Edges

Labels Properties

Labels Properties

Access,
modify

21

Idea: OLAP Queries as Collective Transactions

@spcl_eth
@spcl

spcl.ethz.ch

Graph transactions

Collective

„Local”

Idea: OLAP Queries as Collective Transactions

...
GDI_StartCollectiveTransaction()

... // Triangle Counting
GDI_CloseCollectiveTransaction()
GDI_StartLocalTransaction()

GDI_UpdateVertexProperty(v_ID, ...)
GDI_AddVertex(...)
GDI_AddEdge(v_ID, ...)
...

GDI_CloseLocalTransaction()
GDI_StartCollectiveTransaction()

... // BFS traversal
GDI_CloseCollectiveTransaction()
...

Graph database user A Users B, C, D, ...

...

Collective semantics borrowed from the MPI

Executed by a
dedicated group

of processes
When exiting, each process

must have finished its
participation in a given graph

collective transaction (blocking)

22

After exiting, a process can poll
for completion (non-blocking)

@spcl_eth
@spcl

spcl.ethz.ch

Improving programmability:

Graph database user A

...

Idea: OLAP Queries as Collective Transactions

Semantics of parallel OLTP and OLAP
queries are now well-defined

23

Collective semantics borrowed from the MPI

Users B, C, D, ...
...
GDI_StartCollectiveTransaction()

... // Triangle Counting
GDI_CloseCollectiveTransaction()
GDI_StartLocalTransaction()

GDI_UpdateVertexProperty(v_ID, ...)
GDI_AddVertex(...)
GDI_AddEdge(v_ID, ...)
...

GDI_CloseLocalTransaction()
GDI_StartCollectiveTransaction()

... // BFS traversal
GDI_CloseCollectiveTransaction()
...

@spcl_eth
@spcl

spcl.ethz.ch

Improving programmability:

Graph database user A

...

Idea: OLAP Queries as Collective Transactions

Semantics of parallel OLTP and OLAP
queries are now well-defined

24

Collective semantics borrowed from the MPI

Users B, C, D, ...
...
GDI_StartCollectiveTransaction()

... // Triangle Counting
GDI_CloseCollectiveTransaction()
GDI_StartLocalTransaction()

GDI_UpdateVertexProperty(v_ID, ...)
GDI_AddVertex(...)
GDI_AddEdge(v_ID, ...)
...

GDI_CloseLocalTransaction()
GDI_StartCollectiveTransaction()

... // BFS traversal
GDI_CloseCollectiveTransaction()
...

All routines & other design ideas are in...

83 pages
105 routines

@spcl_eth
@spcl

spcl.ethz.ch

Supporting arbitrarily
large datasets

Hard or infeasible to use
with large datasets

Portable

Supporting all major
workload classes

High performance

Programmable

Graph Databases: State of Problems & Our Objectives

Slow

Hard to design & maintain

Difficult to port

Focusing on a single
worklad class

Highly scalableHard to scale

XS XXXL
25

@spcl_eth
@spcl

spcl.ethz.ch

Graph Database

GDI Standard (API)

GDI Implementation

26

HW-agnostic

HW-specific

Key mechanism for high-performance:
One-Sided Non-Blocking RDMA

GDI-RMA (GDA)

@spcl_eth
@spcl

spcl.ethz.ch

Memory
Memory

put

Process p Process q

A

B
get

B

A

B

flush

A

B

27

RDMA One-Sided for High-Performance Graph Transactions

@spcl_eth
@spcl

spcl.ethz.ch

Memory
Memory

put

Process p Process q

A

B
get

B

A

B
flush

A

B

No interrupt overheads No OS overheads
28

RDMA One-Sided for High-Performance Graph Transactions

@spcl_eth
@spcl

spcl.ethz.ch

Memory
Memory

put

Process p Process q

A

B
get

B

A

B
flush

A

B

No interrupt overheads No OS overheads
29

RDMA One-Sided for High-Performance Graph Transactions

How to manage such
irregular data in the

RDMA setting?

@spcl_eth
@spcl

spcl.ethz.ch

30

Blocked Graph
Data Layout

Logical Layout

vertex holder

header

block
addresses

label and property data

A logically contiguous
vertex holder is

physically kept as a
set of blocks

[sharded]

Logical layout is what is visible during a transaction

GDI-RMA: Data Layout

Blocks are fixed in size: it facilitates efficient
RDMA ops + simple memory management

Vertices can fit into a single block, so the
best case for vertex fetching is a single get

Block size is
configurable

Logical layout is flexible in size,
facilitating programmability

@spcl_eth
@spcl

spcl.ethz.ch

31

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Create local data
structures

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

32

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Query an index:
find a primary block
+ acquire a read lock

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

33

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Query an index:
find a primary block
+ acquire a read lock

GDI-RMA: Vertex Update

acquire read lock

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

34

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Fetch the block data
+ create the logical

representation

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

35

header

block
addresses

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Fetch the block data
+ create the logical

representation

get primary block

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

36

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Fetch the block data
+ create the logical

representation

get remaining
blocks concurrently

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

37

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Set the write lock
+ add data to the local

data structures

update read lock
to write lock

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

38

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Set the write lock
+ add data to the local

data structures

add new
property entry

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

39

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Write back the blocks
+ release the lock

+ release the local data

update blocks
with concurrent puts

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

40

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Write back the blocks
+ release the lock

+ release the local data

release lock

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

41

vertex holder

header

block
addresses

label and property data

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

Write back the blocks
+ release the lock

+ release the local data

release local data

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

@spcl_eth
@spcl

spcl.ethz.ch

42

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

Fine-grained
reader-writer

synchronization

Parallel updates
with non-

blocking RDMA

@spcl_eth
@spcl

spcl.ethz.ch

43

GDI_StartLocalTransaction()
GDI_AddPropertyToVertex(...,vH)
GDI_CloseLocalTransaction(COMMIT)

GDI-RMA: Vertex Update

locks

database
blocks

Blocked Graph
Data Layout

Logical Layout

[sharded]

Fine-grained
reader-writer

synchronization

Parallel updates
with non-

blocking RDMA

Nearly all routines have theoretical performance
guarantees (work, depth, communicated data volume)

Hundreds protocols more...

github.com/spcl/GDI-RMA

@spcl_eth
@spcl

spcl.ethz.ch

CSCS Cray Piz Daint,
64/128 GB per compute node

Evaluation: Used Machines & Objectives

We use the full scale of
Piz Daint for GDA:

121,680 cores
7,142 servers
77.3 TB RAM

@spcl_eth
@spcl

spcl.ethz.ch

Evaluation (OLTP)

Each system runs
in-memory

≈1000x speedups

≈ 3000x speedups

#1 top GDB (DB-
Engines Ranking)

[1] Linux Foundation. 2018. JanusGraph.
Available at http://janusgraph.org/

[2] I. Robinson et al.. 2015. Graph
Databases (2nd ed.). O’Reilly.

45

JanusGraph [1]

GDI-RMA (GDA)

Neo4j [2]

Low (even sub-
microsecond!)

latencies

1 node 2 nodes

4 nodes 8 nodes

@spcl_eth
@spcl

spcl.ethz.ch

Evaluation (OLTP)
Our design scales to

121,680 cores
(7,142 compute nodes)

The largest run ever (OLTP) in
the GDB literature, by 41x (vs.
MS A1) and 950x (vs. Neo4j)

High throughput

Highly scalable

46

20 labels,
13 properties,
77.3 TB of data

Other systems have
at least 10x smaller

throughput

@spcl_eth
@spcl

spcl.ethz.ch

Evaluation (OLAP)
Our design scales to

121,680 cores
(7,142 compute nodes)

The largest run ever (OLAP) in
the GDB literature, by 26x (vs.

TigerGraph) and 950x (vs. Neo4j)

Low latency

Highly scalable

Graph500 is a tuned BFS implementation,
it does not support other workloads nor

any graph updates nor transactions

GDA is 33% faster
than Graph500

47

BFS

@spcl_eth
@spcl

spcl.ethz.ch

Supporting arbitrarily
large datasets

Hard or infeasible to use
with large datasets

Portable

Supporting all major
workload classes

High performance

Programmable

Graph Databases: State of Problems & Our Objectives

Slow

Hard to design & maintain

Difficult to port

Focusing on a single
worklad class

Highly scalableHard to scale

XS XXXL
48

@spcl_eth
@spcl

spcl.ethz.ch

Conclusion

Thank you

49

Graph Database Interface (GDI): „MPI for Graph Databases”:
it enables principled design & implementation of graph databases that are:

GDI Implementation for RDMA systems (GDA-RMA)

GDI Standard
Portable

Supporting all major workload classes

Programmable

Supporting arbitrarily large datasets

High performance Highly scalable

	The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of Cores
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Evaluation (OLTP)
	Evaluation (OLTP)
	Evaluation (OLAP)
	Slide Number 48
	Slide Number 49

