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Abstract—Important graph mining problems such as Cluster-
ing are computationally demanding. To significantly accelerate
these problems, we propose ProbGraph: a graph representation
that enables simple and fast approximate parallel graph mining
with strong theoretical guarantees on work, depth, and result
accuracy. The key idea is to represent sets of vertices using
probabilistic set representations such as Bloom filters. These
representations are much faster to process than the original
vertex sets thanks to vectorizability and small size. We use these
representations as building blocks in important parallel graph
mining algorithms such as Clique Counting or Clustering. When
enhanced with ProbGraph, these algorithms significantly outper-
form tuned parallel exact baselines (up to nearly 50× on 32 cores)
while ensuring accuracy of more than 90% for many input graph
datasets. Our novel bounds and algorithms based on probabilistic
set representations with desirable statistical properties are of
separate interest for the data analytics community.

Index Terms—Approximate Graph Mining, Approximate
Graph Pattern Matching, Approximate Triangle Counting, Ap-
proximate Community Detection, Approximate Graph Clus-
tering, Bloom Filters, MinHash, K Minimum Values, High-
Performance Graph Computations, Graph Sketching

I. INTRODUCTION

Graph mining is an important part of the graph processing
landscape, with problems related to discovering patterns in
graphs, for example Clustering, Clique Counting, or Link
Prediction [1]–[4]. Accelerating graph mining is notoriously
difficult because these problems are hard to parallelize due
to properties such as high irregularity or little locality [5]–
[10]. Simultaneously, graph mining underlies many important
computational problems in social network analysis, machine
learning, computational sciences, and others [11]–[14].

In approximate computing, a certain (ideally small) amount
of accuracy is sacrificed, in exchange for speedups or reduced
energy consumption [15]–[17]. It relaxes the need for full
precision at the level of arithmetic blocks, processing units,
pertinent error and quality measures, algorithms, programming
models, and many others. Traditionally, graph algorithms with
provable approximation ratios were developed to alleviate the
hardness of various NP-Complete graph problems, such as
minimum graph coloring [18], [19]. Still, these works are
usually complex, specific to a particular graph problem, and
often need additional heuristics to be easily used in practice.

Moreover, there are many heuristics for approximating
graph properties such as betweenness centrality [20]–[25],
minimum spanning tree weight [26], maximum match-
ing [27], reachability [28], graph diameter [29], [30], and
others [30]–[34]. Unfortunately, these schemes are all specific
to a particular graph problem or algorithm.

To alleviate the above-mentioned issues with accelerating
graph mining, we propose ProbGraph (PG), a probabilistic
graph representation for simple, versatile, fast, and tunable
approximate graph mining. We observe that the input graph
and many auxiliary data structures are effectively a collection
of sets of vertices and edges [1], [4]. Here, our key idea
is to encode such sets with carefully selected probabilistic
set representations (sometimes called set sketches) such as
Bloom filters [35]. This results in a “probabilistic” graph
representation that – as we will show – can accelerate different
graph algorithms at a (tunable) accuracy-storage-performance
tradeoff. Importantly, sets and set operations are common in
graph problems, making PG applicable to many algorithms.

We first show that many time-consuming operations in dif-
ferent graph algorithms can be expressed with set intersection
cardinality |X ∩ Y |. For example, deriving common parts of
vertex neighborhoods takes more than 90% of the time in
common Triangle Counting algorithms [1], [4], [36], and it
can be expressed as a sum of |X ∩ Y | (over different X and
Y ). We identify more such graph algorithms.

Second, we carefully select three probabilistic set repre-
sentations: Bloom filters (BF) [35] and two types of Min-
Hash (MH) [37]. We use these set representations to design
estimators ̂|X ∩ Y | that approximate |X ∩ Y |. Our central
motivation is that these estimators are much faster to obtain
than the exact |X ∩ Y | thanks to performance-friendly prop-
erties. We conduct a work-depth analysis, showing formally
that ProbGraph-enhanced graph algorithms have abundant
parallelism. For example, X and Y , when represented with
Bloom filters, are bit vectors. Thus, |X ∩ Y | amounts to
computing a bitwise AND, followed by a reduction. Such an
operation significantly benefits from vectorization. Moreover,
thanks to its fixed-size set representations, ProbGraph exhibits
excellent load balancing properties: all set intersections are
conducted over the same size bit vectors, annihilating issues
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related to intersecting neighborhoods of different sizes. This
is particularly attractive as modern graph datasets have very
often high skews in degree distributions [7].

Importantly, we ensure that our estimators have strong theo-
retical guarantees on their accuracy (i.e., quality). For this, we
develop or adapt bounds on the quality of estimators ̂|X ∩ Y |.
Here, we prove how far they deviate from the true size of
the set intersection, and we provide upper bounds for their
mean squared error (MSE). We also produce quality bounds
that are better than past works. To derive these quality bounds,
we use concentration inequalities and other statistical concepts
such as sub-Gaussian random variables [38]. For example, the
probability that our estimator based on MH deviates from
the true value by more than a given distance t, decreases
exponentially with t.

Moreover, we show that, for some representations, we offer
Maximum Likelihood Estimators (MLE) [39]. Thus, these es-
timators are asymptotically1 unbiased (the expected estimator
value converges to the true parameter value) and efficient
(asymptotically, no other estimator has lower variance). Due
to the prevalence of BF and MH in high-performance data
mining, our novel results on the theory of probabilistic set
representations are of interest beyond graph analytics.

Our fast parallel implementation of PG enables important
graph mining problems (TC, clustering [40]–[42], 4–clique
counting [43], and vertex similarity [44], [45]) to achieve very
large performance advantages over tuned baselines, even up to
50× lower runtimes when using 32 cores. This is caused by the
fact that both work and depth of ProbGraph-enhanced graph
algorithms are lower than those of the exact tuned baselines.
Simultaneously, using small fixed-size probabilistic represen-
tations makes it much easier to load balance expensive set
operations. Simultaneously, ProbGraph achieves high accuracy
of more than 90% for many inputs.

We also provide strong theoretical guarantees on work and
depth of all the considered graph mining algorithms. Finally,
we use our |X ∩ Y | estimators to derive novel estimators T̂C
on the triangle count TC in an arbitrary graph, achieving
strong statistical properties such as MLE and exponential
concentration quality bounds. Our TC estimator based on
MH has better theoretical properties (e.g., is MLE) than past
theoretical results [46]–[54].

Overall, PG enables trading a small amount of accuracy and
storage for more performance. These tradeoffs are tunable by
the user, who can select which aspect is most important.

II. FUNDAMENTAL CONCEPTS

We first present the used concepts ad symbols (see Table I).

A. Graph Model and Representation

A graph G is modeled as a tuple (V,E) with a set of
vertices (V, |V | = n) and edges (E ⊆ V × V, |E| = m).
We model vertices with their integer IDs (V = {1, ..., n}). Nv
and dv denote the neighbors and the degree of a given vertex v

1with increasing sketch size, for a fixed input.

(Nv ⊂ V ); d is G’s maximum degree. We store the input (i.e.,
not sketched) graph G using the standard Compressed Sparse
Row (CSR) format, in which all neighborhoods Nv form a
contiguous array (2m words if G is undirected). Next, there
is an array with n pointers to each representation of Nv . Each
Nv is stored as a contiguous sorted array of vertex IDs.

B. Work-Depth Analysis of Parallel Algorithms

We use work-depth (WD) analysis for bounding run-times
of parallel algorithms, to analyze PG set intersections (§ IV-F,
Table IV), construction costs (§ VI-A, Table V), and graph
algorithms (§ VI-B, Table VI). The work of an algorithm is
the total number of operations and the depth is the longest se-
quential chain of execution in the algorithm (assuming infinite
number of parallel threads executing the algorithm) [55], [56].

C. Set Algebra

When using arbitrary sets, we use symbols X = {x1, ..., xl}
and Y = {y1, ..., yl}. We use intersection (X ∩ Y ), union
(X ∪ Y ), cardinality (|X|), and membership (∈ X).

D. Probabilistic Set Representations

We consider Bloom filters (BF) and two variants of Min-
Hash (MH). We pick different representations to better under-
stand which ones are best suited for accelerating graph mining
problems with high accuracy. All the proofs of theorems in the
following sections are in the appendix. Figure 1 illustrates the
representations considered.

Bloom filters The Bloom filter (BF) [35] is a space-efficient
set representation that answers membership queries fast but
with some probability of false positives. Formally, a Bloom
filter BX representing a set X consists of an l-element bit vec-
tor BX (initialized to zeros) and b hash functions h1, . . . , hb
(usually assumed to be independent) that map elements of
X to integers in [l] ([l] ≡ {1, ..., l}). The size of BX is also
denoted with BX while the number of ones in BX with BX,1.
Now, when constructing BX , for each element x ∈ X , one
computes the corresponding hashes h1(x), . . . , hb(x). Then,
the bits BX [h1(x)], ...,BX [hb(x)] are set to one. Second,
verifying if x ∈ X is similar. First, all hash functions are
evaluated for x. If all bits at the corresponding positions are
set, i.e., ∀i ∈ {1, . . . , b} : BX [hi(x)] = 1, then x is considered
to be in X . It is possible that some of these bits are set
to one while adding other elements due to hash collisions,
and x might be falsely reported as being an element of X .
Minimizing the number of such false positives was addressed
in many research works [57].

MinHash (k-Hash variant) MinHash (MH) [58] “sketches”
a set X by hashing its elements to integers and keeping k ele-
ments with smallest hashes. An MH representationMX of X
consists of a set MX with elements from X (∀x∈MX

x ∈ X)
and k hash functions hi, i ∈ {1, ..., k}. To constructMX , one
computes all hashes hi(x) for each x ∈ X . Then, for each hash
function hi separately, one selects an element xi,min ∈ X that
has the smallest hash hi(x). These elements form the final set
MX = {x1,min, ..., xk,min}. Note that MX may be a multi set:
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Iterate through Nu and Nv, 
identifying common elements;

time complexity: O(|Nu| + |Nv|)

Nu and Nv have similar size:

2
8

1 3 4
4 5 6

141
7 9

...

...

Iterate over the elements of a smaller set
and use a binary search to check if each 

element is in the bigger set as well;
time complexity: O(|Nu| log |Nv|)

Nu and Nv differ much in size:

a bit
vector ∩
Compute bitwise AND;

time complexity: O(B / W)

Common
neighbors

of      and      2 8

with MinHash (1-Hash)

2 81 3 4 4 5 665 7 9... ...

MinHash

∩

∩
BF size: B [bits]
(user parameter)

3 4 6 5 6 9∩
Compute standard intersection

using MinHash sketches of sets;
time complexity: O(k)

1-Hash size: k [elements]
(user parameter)

Load balancing
advantages of PG

Intersections
of different pairs

of neighborhoods
result in vastly

different runtimes

Intersections
of different pairs

of neighborhoods
have identical

runtimes

CSR neighborhoods

PG neighborhoods

1 2 3

4

5

Fig. 1: Overview of selected PG set representations, how they are used to accelerate intersections of vertex neighborhoods, and in alleviating load imbalance.
In panel “1 ”, we show a part of an example input graph. In panel “2 ”, we illustrate a traditional exact way to compute the count of shared neighbors
|Nu ∩Nv | of any vertices u and v. There are two variants of this operation: “merge” (the upper sub-panel), where one simply merges two sorted sets (it is
more beneficial when sets have similar sizes), and “galloping” (the lower sub-panel), where – for each element from a smaller set, one uses binary search to
check if this element is in the larger set (it works better when one set is much larger than the other one). In panel “3 ”, we show how to compute |Nu ∩Nv |
with BF. Here, Nu and Nv are first converted into bit vectors (cf. wide vertical arrows). Then, the resulting bit vectors are intersected with a very fast
bitwise AND operation (cf. wide horizontal arrows). In panel “4 ”, we show how to compute |Nu ∩Nv | with MH. Here, Nu and Nv are first appropriately
hashed into much smaller subsets of Nu and Nv (cf. wide vertical arrows). The resulting sets can be intersected fast because they are much smaller than the
original Nu and Nv (indicated with wide horizontal arrows). In panel “5 ”, we show load balancing benefits from using PB (i.e., it is easy to load balance
intersections of same-sized PG neighborhoods).

if xi,min = xj,min for i 6= j, then MX contains xi,min twice.
MinHash was designed to approximate the Jaccard similarity
index J(X,Y ) = |X∩Y |

|X∪Y | that assesses the similarity of two sets
X and Y . We have J(X,Y ) ∈ [0; 1]; J(X,Y ) = 0 indicates
no similarity while J(X,Y ) = 1 means X = Y .

MinHash (1-Hash variant) The k-hash variant may be
computationally expensive as it computes k different hash
functions for all elements of X . To alleviate this, one can use
a variant called 1-hash (M1

X ) with only one hash function h.
After computing hashes h(x) for all x ∈ X , M1

X will contain
k elements from X that resulted in k smallest hash values.
Unlike k-hash, M1

X by definition never contains duplicates.

E. Estimators

A central concept in PG is an estimator: a rule for calculat-
ing an estimate of a given quantity based on observed data. We
develop estimators of set sizes |̂X| and set intersection cardi-
nalities ̂|X ∩ Y |, and we use them to approximate |Nv ∩Nu|
for any two vertices u, v in considered graph algorithms.

We describe in more detail a specific BF estimator by
Swamidass et al. [59]. We later generalize it and also prove
novel bounds on its quality. Given a set X represented by a
Bloom filter BX , one can estimate |X| as

|̂X|S = −BX
b

log

(
1− BX,1

BX

)
. (1)

G
ra

ph
,c

od
e

G = (V,E) A graph G; V,E are sets of vertices and edges, respectively.
n,m Numbers of vertices and edges in G; |V | = n, |E| = m.
dv, Nv The degree and neighbors of v ∈ V .
d, d The maximum and the average degree in G (d = m/n).
TC Count of triangles in a given graph.
W Size of a memory word [bits].
s Storage budget, i.e., space dedicated to PG structures.

B
F

BX ,BX ,BX [i] A Bloom filter; the associated bit vector; the i-th bit in BX .
BX , BX,1, BX,0 The size of BX (#bits); number of ones and zeros in BX .
b The number of hash functions used with a given Bloom filter.
hi An i-th associated hash function, i ∈ {1, ..., b}.
pf The probability of a false positive of a given Bloom filter.

M
in

H
as

h MX ,MX k-Hash variant; the approximating set based on input X .
k The number of elements stored in a given MinHash.
hi An i-th associated hash function, i ∈ {1, ..., k}.
M1

X ,M
1
X 1-hash variant; the approximating set based on input X .

TABLE I: Important used symbols. “X” denotes the input set approximated by a respective representation (omitted if it is clear from context).
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To derive this estimator, consider inserting a single element
into a given BF BX . The probability that some single bit
equals 0, in BX with one hash function (that maps elements
uniformly over the bit array), is 1− 1/BX . When applying b
hash functions (which follow the usual assumption of being
independent), this probability is (1− 1/BX)

b. After inserting
|X| elements into BX , the probability that this one bit is 0
is (1− 1/BX)

b|X| ≈ exp (−b|X|/BX) (from the established
identity for e−1 ≈ (1− 1/x)x). Thus, the probability that this
bit is set to 1, is 1− (1− 1/BX)

b|X| ≈ 1− exp (−b|X|/BX).
Then, observe that the number of bits set to 1 in BX , can be
estimated as BX,1 ≈ BX · (1− exp (−b|X|/BX)) given the
binomial density approximation used in Swamidass et al. [59].
When resolving this equation for |X|, we obtain Eq. (1).

F. Properties of Estimators

Figure 2 provides an intuitive description of the desirable
statistical properties of PG. These properties enable highly
accuracy empirical results (Section VIII) and attractive the-
oretical results for triangle count (Section VII).

All PG estimators are asymptotically unbiased. In such
an estimator θ̂, the difference between θ̂’s expected value
and the true value of the parameter being estimated θ con-
verges to 0 for a fixed input and the size of the sketch
that we use going to infinity (i.e., the bias of θ̂ goes to 0,
or, on average, θ̂ hits θ when the sample size approaches
the limit). Unbiased estimators are usually more desirable
than biased ones: intuitively, they ensure zero average error
(when estimating θ) after a given amount of trials. Next,
each PG estimator of θ̂ is also consistent, i.e, the sampling
distribution of θ̂ becomes increasingly more concentrated at θ
with the increasing number of samples. Hence, if there are
enough observations (in our case when the sketches are large
enough), one can find θ with arbitrary precision. Asymptotic
unbiasedness alone does not imply consistency; it requires also
a vanishing variance (i.e., that the estimator variance converges
to 0 with the increasing sample size).

We also verify if PG estimators are maximum likelihood.
This class of estimators provides several powerful and useful
properties, and is among the most important tools for esti-
mation and inference in statistics [60]–[62]. Specifically, a
maximum likelihood estimator (MLE) θ̂MLE is an estimator
that maximizes the likelihood function L, i.e., θ̂MLE =
argmaxθ∈Θ L(x; θ) (cf., Chapter 7 in [39]) where Θ is the
parameter space. Here, the likelihood function L is defined as
the probability of observing a given sample x = (x1, ..., xn)
as a function of θ, i.e., L ≡ P (X1 = x1, ..., Xn = xn; θ),
where X1, ..., Xn represent a random sample from a given
population. Thus, θ̂MLE is the value of the parameter θ for
which the observed sample is the most likely. This intuitive
choice of an estimator leads under mild conditions to strong
optimality properties such as consistency (discussed above),
invariance, and asymptotic efficiency. An estimator θ̂ is
invariant if, whenever θ̂ is the MLE of θ, then for any function
τ(·), τ(θ̂) is the MLE of τ(θ). This is useful if complicated
functions of the parameter θ are of interest since τ(θ̂MLE)

inherits automatically all the properties of θ̂MLE . Finally,
the asymptotic efficiency certifies that θ̂MLE attains, under
mild regularity conditions, the Cramer-Rao bound [39]. To
understand the importance of this result, we need to introduce
the Mean Squared Error (MSE) of an estimator. MSE measures
the average squared difference between the estimator and the
parameter, i.e., MSE(θ̂, θ) = Eθ[(θ̂−θ)2]). Thus, the asymp-
totic efficiency implies that there exists no consistent estimator
of θ that achieves a lower MSE than θ̂MLE . Next, given the
well known decomposition of the MSE into bias squared plus
variance (i.e., MSE(θ̂) = Bias(θ̂, θ)2 + V arθ(θ̂)), we can
also conclude that among all the consistent estimators of θ, no
one has a strictly smaller variance than θ̂MLE . Another inter-
esting implication of this result is the asymptotic normality of
MLE. This property allows to build valid confidence intervals
for the parameter of interest based on the normal distribution
(asymptotically in sketch size, for a fixed input).

G. Concentration Bounds

We use the notion of a concentration inequality. Overall,
such an inequality bounds the deviation of a given random
variable X from some value (usually the expectation E[X]). In
this work, we mainly use the Chebyshev [38], Hoeffding [63]
and Serfling inequalities [64].

III. SETS & |X ∩ Y | IN GRAPH ALGORITHMS

We first identify algorithms that use |X ∩ Y |. A graph
itself can be modeled as a collection of sets: each vertex
neighborhood Nv is essentially a set. In PG, we use this
observation to approximate the graph structure and operations
by using probabilistic set representations in place of Nv and
|Nv ∩Nu|, for any vertices u and v. In the following listings,
the “X” and “Y ” general symbols are replaced with specific
sets. Operations approximated by PG are marked with the
blue color. “[in par]” means that a loop is parallelized.
We ensure that the parallelization does not involve conflicting
memory accesses. For clarity, we focus on formulations and
we discuss parallelization details in Section VI.

In Triangle Counting (TC) [65], [66] (Listing 1), one
counts the total number of triangles tc in an undirected graph.
An example application of TC is computing clustering coeffi-
cients [67]. For each vertex u, one computes the cardinalities
of the intersections of Nu, the set of neighbors of u, with the
sets of the neighbors of each neighbor of u (Lines 4-7).

1 /* Input: A graph G. Output: Triangle count tc ∈ N. */

2 // Derive a vertex order R s.t. if R(v) < R(u) then dv ≤ du:

3 for v ∈ V [in par] do: N+
v = {u ∈ Nv|R(v) < R(u)}

4 tc = 0; //Init tc; for all neighbor pairs , increase tc:
5 //Now , derive the actual count of triangles:
6 v ∈ V [in par] do:

7 for u ∈ N+
v [in par] do: tc += | N+

v ∩N
+
u |

Listing 1: Triangle Counting (Node Iterator).

We also consider higher-order Clique Counting, a prob-
lem important for dense subgraph discovery [68]. List-
ing 2 contains 4-clique listing. We reformulated the original
scheme [68] (without changing its time complexity) to expose
|X ∩ Y |. The algorithm presented generalizes TC.
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Vanishing variance

Asympto�cally unbiased Expected value of the es�mator converges to the true parameter value

Consistent The es�mator itself coverges in probability to the true parameter value

The es�mator variance goes to 0 as the sample size increases

(Eq.(1)) (Eq.(4))

(Eq.(2))
(§ IV.C)

(Eq.(5))

(§ VII) (§ VII) (§ VII)(§ VII)

Maximum likelihood implies...

...Invariance

...Asympto�c efficiency

...Asympto�c normality

One can easily compose
new MLE es�mators

No other consistent es�mator
can have lower variance

One can build valid confidence intervals
based on the normal distribu�on

(Eq.(5)) (§ VII)

Polynomial concentra�on bounds

Exponen�al concentra�on bounds

(Eq.(2)) (Eq.(5))

(Eq.(7))

(Eq.(4))

(§ IV.C)

(§ VII)(§ VII)

(Eq.(5))

(§ VII)(§ VII)

(Eq.(4))

...convergence (3)

Advantageous es�mator proper�es
considered in this work, related to...

...concentra�on bounds (1) ...maximum likelihood (2)

Fig. 2: Considered estimator properties and the associated PG estimators. The advantageous properties of ProbGraph estimators belong to three classes of
properties: (1) having concentration bounds, (2) being maximum likelihood, and (3) convergence. Intuitively, “(1)” means that we can bound the probability
that a PG estimator deviates from the true parameter value for every sketch size. “(2)” means that a PG estimator identifies the parameter value which is
more likely to have produced the data we observed. “(3)” means that a PG estimator converges to the true parameter value as the sketch size increases. In
the figure, we list different desirable properties implied by (1), (2), and (3). Formal definitions of the considered properties can be found in Section II.

1 /* Input: A graph G. Output: Number of 4-cliques ck ∈ N. */

2 /Derive a vertex order R s.t. if R(v) < R(u) then dv ≤ du:

3 for v ∈ V [in par] do: N+
v = {u ∈ Nv|R(v) < R(u)}

4 ck = 0;
5 for u ∈ V [in par] do:

6 for v ∈ N+
u [in par] do:

7 C3 = N+
u ∩N

+
v //Find 3-cliques

8 for w ∈ C3 do: //For each 3-clique ...

9 ck += |N+
w ∩ C3| //Find 4-cliques

Listing 2: Reformulated 4-Clique Counting.

Vertex Similarity measures, used in graph databases and
others [69]–[73], assess how similar two vertices v and u
are, see Listing 3. They can be used on their own, or as a
building block of more complex algorithms such as clustering.
Many of these schemes use the cardinality of set intersection.
This includes Jaccard, Common Neighbors, Total Neighbors,
or Adamic Adar. Vertex Similarity is the basic building block
of Link Prediction and Clustering.

1 /* Input: A graph G. Output: Similarity S ∈ R of sets A,B.
2 * Most often , A and B are neighborhoods Nu and Nv
3 * of vertices u and v. */

4 // Jaccard similarity:

5 SJ (A,B) = |A ∩B| / |A ∪B| = |A ∩B| / (|A| + |B| - |A ∩B| )
6 // Overlap similarity:

7 SO(A,B) = |A ∩ B| / min(|A|, |B|)
8 // Certain measures are only defined for neighborhoods:

9 SA(v, u) =
∑
w(1/ log |Nw|) //where w ∈ Nv ∩Nu ; Adamic Adar

10 SR(v, u) =
∑
w(1/|Nw|) //where w ∈ Nv ∩Nu ; Resource Alloc.

11 SC(v, u) = |Nv ∩Nu| // Common Neighbors

12 ST (v, u) = |Nv ∪Nu| = |Nv| + |Nu| - |Nv ∩Nu| //Total Neighbors

Listing 3: Example vertex similarity measures [74].

Graph Clustering is a broadly studied problem [42]. List-
ing 4 shows Jarvis-Patrick clustering [44], a scheme that uses

vertex similarity to determine whether these two vertices are
in the same cluster, and relies heavily on |X ∩ Y |.
1 /* Input: A graph G = (V,E). Output: Clustering C ⊆ E
2 * of a given prediction scheme. */

3 //Use a similarity SC(v, u) = |Nv ∩Nu| (see Listing 3).

4 for e = (v, u) ∈ E [in par] do: //τ is a user -defined threshold

5 if |Nv ∩Nu| > τ : C ∪= {e}
6 //Other clustering schemes use other similarity measures.

Listing 4: Jarvis-Patrick clustering.

Link Prediction There are many schemes for predicting
whether two non-adjacent vertices can become connected in
the future in the context of evolving networks [75]. Assessing
the accuracy of a specific link prediction scheme S is done
with a simple algorithm [76] shown in Listing 5. We start with
some graph with known links (edges). We derive Esparse ⊆ E,
which is E with random links removed; Esparse = E\Erndm.
Erndm ⊆ E are randomly selected missing links from E (links
to be predicted). We have Esparse∪Erndm = E and Esparse∩
Erndm = ∅. Now, we apply the link prediction scheme S (that
we want to test) to each edge e ∈ (V × V ) \ Esparse. The
higher a value S(e), the more probable e is to appear in the
future (according to S). Now, the effectiveness ef of S is
computed by verifying how many of the edges with highest
prediction scores (Epredict) actually are present in the original
dataset E: ef = |Epredict ∩ Erndm|.

A. Real-World Applications

Graph problems targeted by ProbGraph have numerous real-
world applications because the underlying operation |X ∩ Y |,
used to find the counts of the shared neighbors, is a common

5



1 /* Input: A graph G = (V,E). Output: Effectiveness ef
2 * of a given prediction scheme. */

3 Erndm = /* Random subset of E */
4 Esparse = E \ Erndm /* Edges in E after removing Erndm */

5 //For each e ∈ (V × V ) \ Esparse, derive score S(e) that
6 // determines the chance that e appears in future. Here ,
7 //one can use any vertex similarity scheme S.

8 for e = (v, u) ∈ (V × V ) \ Esparse [in par] do: compute S(v, u)

9 Epredict = /* Pick selected top edges with highest S scores.*/

10 ef = |Epredict ∩ Erndm| // Derive the effectiveness.

Listing 5: Link prediction testing.

building block in many real-world problems in domains rang-
ing from network science or sociology, through chemistry or
biology, to the Internet studies [42].

Triangle counting is used to obtain the network cohesion,
an important measure of connectedness and “togetherness” of
a group of vertices [77], [78]. Specifically, for any subgraph
S ⊆ V , S’s cohesion is TC[S]/

(|S|
3

)
, where TC[S] is the

triangle count of S; note that S may also form V (in which
case we obtain the cohesion of the whole graph). Another
example is discovering communities [79], [80], by computing
the clustering coefficient defined as 3 · TC[S]/

(|S|
3

)
Other

use cases include spam detection (standard and spam sites
differ in the respective counts of triangles that they belong to),
optimization of query planning in databases [81], uncovering
hidden thematic layers in WWW [82], or studying differences
between gene interactomes of various species [83].

The considered Jarvis-Patrick clustering can be used in
adaptive web search based on automatic construction of user
profiles. A critical step in this use case is generation of clusters
of users, which is directly achieved using the clustering
scheme addressed in PG [84]. Other selected examples are
drug design (by predicting plasma protein bindings [85]),
screening and generating overviews of chemical databases (by
computing clusters of related molecules) [86], or analyzing
single-cell RNA sequences (by approximating smooth low-
dimensional surfaces that model states of cells) [87], [88].

Other considered problems also have numerous appli-
cations. In short, clique counting is used in social net-
work analysis (cf. the established textbooks [89, Chapter 11]
and [90, Chapter 2]) to find large and dense network re-
gions [91]–[95] or in topological approaches to network
analysis [96]. Link prediction and vertex similarity are used
throughout the whole graph data mining in many parts of
network science and others, as illustrated in numerous surveys
and textbooks [4], [11], [12], [75], [97]–[99].

IV. APPROXIMATING |X ∩ Y |

We now show how to derive approximate set intersection
cardinality |X ∩ Y | both fast and with high accuracy. We
provide selected results for BF and MH (less competitive
outcomes are in the Appendix). In this section, we assume
arbitrary sets X and Y , to ensure that our outcomes are of
interest beyond graph mining. From Section VII onwards, we
focus on graph mining by applying the results from this section
to ̂|Nu ∩Nv|.

A. Section Overview and Intuition

We first outline the section structure and provide the in-
tuition behind the key parts. We first present estimators for
|X ∩ Y |, designed using BF (§ IV-B), k-Hash (§ IV-C), and
1-Hash (§ IV-D). Then, we compare the obtained estimators
regarding their accuracy (§ IV-E) and the amount of paral-
lelism (§ IV-F).

We provide concentration bounds for all the estimators. We
present here selected ones, the others are in the supplementary
material together with the proofs of all the propositions of this
section. A generic form of a concentration bound from this
section is P (|estimator− true value| ≥ t) ≤ f(t). Intuitively,
this means that we can bound (i.e., by the function f(t))
the probability that a PG estimator deviates (i.e., more than
t) from the true parameter value for every sketch size. The
function f(t) (either polynomial or exponential in t for all PG
estimators) determines the speed at which a given PG estimator
concentrates around the true parameter value.

B. Approximating |X ∩ Y | with Bloom Filters

We introduce a new estimator ̂|X ∩ Y |AND and we give
a bound on its accuracy. Specifically, for two sets X and
Y represented by BX and BY , we apply the estimator from
Eq. (1) to BX∩Y , obtaining

̂|X ∩ Y |AND = −BX∩Y
b

log

(
1− BX∩Y,1

BX∩Y

)
(2)

where BX∩Y = BX = BY is the BF size (cf. Table I).
Next, we prove an important property of ̂|X ∩ Y |AND. Note
that the following property also holds for the estimator by
Swamidass [59] from Eq. (1).

Proposition IV.1. Let ̂|X ∩ Y |AND be the estimator defined
in Eq. (2). For BX∩Y , b ∈ N such that b = o(

√
BX∩Y ), and

a set X ∩ Y such that b|X ∩ Y | ≤ 0.499BX∩Y · logBX∩Y
the following holds:

E

[(
̂|X ∩ Y |AND − |X ∩ Y |

)2
]
≤

(1 + o(1))

(
e|X∩Y |b/(BX∩Y −1)BX∩Y

b2
− BX∩Y

b2
− |X ∩ Y |

b

)
Overall, Proposition IV.1 shows that we can bound the mean
squared error (MSE) of ̂|X ∩ Y |AND (and also |̂X|S from
Eq. (1)). By Chebyshev’s inequality2, we obtain the following
concentration result:

P
(∣∣∣ ̂|X ∩ Y |AND − |X ∩ Y |

∣∣∣ ≥ t) ≤
(1 + o(1))

(
e|X∩Y |b/(BX∩Y −1) BX∩Y

b2
− BX∩Y

b2
− |X∩Y |

b

)
t2

(3)

2We apply the inequality on the MSE to derive a bound
for P

(∣∣∣ ̂|X ∩ Y |AND − |X ∩ Y |
∣∣∣ ≥ t) rather than for

P
(∣∣∣ ̂|X ∩ Y |AND − E( ̂|X ∩ Y |AND)

∣∣∣ ≥ t) (as is usually done).
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We can strengthen the intuition on the behavior of
̂|X ∩ Y |AND by taking the limit for BX∩Y →∞ in Eq. (2).

We call ̂|X ∩ Y |L this limiting estimator:

̂|X ∩ Y |L ≡ lim
BX∩Y→∞

̂|X ∩ Y |AND =
BX∩Y,1

b
(4)

Hence, as BX∩Y increases, ̂|X ∩ Y |AND rescales the num-
ber of ones in the BF by 1

b because ̂|X ∩ Y |AND ∼
BX∩Y,1

b
for X,Y, b fixed and BX∩Y → ∞. In Section VIII, we will
show that – depending on the choice of the scaling factor 1

b
which impacts the bias-variance trade-off – there are cases
where ̂|X ∩ Y |L is better than ̂|X ∩ Y |AND.

Note that ̂|X ∩ Y |AND uses the count of ones in a BF
BX∩Y . This number cannot be computed from individual BFs
BX and BY . In practice, we use BX∩Y ≈ BX AND BY

(where “AND” indicates a logical bitwise AND operation) and
use the result of AND to obtain BX∩Y,1. This may somewhat
increase the false positive probability, but – as the results in
Section VIII show – does not prevent high accuracy.

C. Approximating |X ∩ Y | with k-Hash

To estimate |X∩Y | with MinHash, one first uses the defini-
tion of the Jaccard similarity index JX,Y = |X ∩ Y |/|X ∪ Y |
(cf. § II-D) and, together with the well-known set algebraic
expression |X∪Y | = |X|+ |Y |−|X∩Y |, rewrites it to obtain
the following estimator:

̂|X ∩ Y |kH =
ĴX,Y kH

1 + ĴX,Y kH

(|X|+ |Y |) (5)

where ĴX,Y kH = |MX∩MY |
k is itself an unbiased estimator

of JX,Y (see [100] for a proof). If we assume that the k
hash functions are independent and perfectly random (a usual
assumption3 ), we have |MX ∩ MY | ∼ Bin(k, JX,Y ), i.e.,
|MX ∩ MY | follows the binomial distribution, where the
number of trials equals the number of hash functions k and
the probability of success is the true Jaccard coefficient (this is
valid by the construction of k-Hash, see [101]). Thus, we can
derive the expectation and the variance of ̂|X ∩ Y |kH adapting
the formulas for the moments of a binomial random variable
(provided in the Appendix).

We develop the following concentration bound (this is the
first exponential bound for ̂|X ∩ Y |kH ):

Proposition IV.2. Let ̂|X ∩ Y |kH be the estimator from
Eq. (5). Then, an upper bound for the probability of deviation
from the true |X ∩ Y |, at a given distance t ≥ 0, is:

P
(∣∣∣ ̂|X ∩ Y |kH − |X ∩ Y |

∣∣∣ ≥ t) ≤ 2e
− 2 k t2

(|X|+|Y |)2 (6)

We stress that ̂|X ∩ Y |kH derived with k-hash can also
be interpreted as a maximum likelihood estimator (MLE)

3To satisfy this assumption, one could just store perfectly random permutations on the
set of vertices without increasing asymptotic complexity.

(cf. § II-E) for |X ∩ Y | because of the invariance property
outlined in § II-F (details are provided together with the proof).
Thus, our estimator inherits all the properties of MLE such as
consistency and asymptotic efficiency. Moreover, the bound is
exponential, i.e., the distance between the estimator and the
true value of |X ∩ Y | decreases exponentially. Finally, we
stress that ̂|X ∩ Y |kH is asymptotically efficient, i.e., no other
estimator (using only this sketch) can have lower variance (for
a fixed input and asymptotically for k →∞).

D. Approximating |X ∩ Y | with 1-Hash

The 1-Hash estimator is similar to k-Hash in that we first
estimate the Jaccard similarity itself as ĴX,Y 1H =

|M1
X∩M

1
Y |

k .
Similarly to the estimator used in k-Hash, this is itself an
unbiased estimator of JX,Y . Then, we use it to estimate |X ∩
Y |: ̂|X ∩ Y |1H =

ĴX,Y 1H

1+ĴX,Y 1H

(|X|+ |Y |).

Recall that the 1-Hash representation of X differs qual-
itatively from the k-Hash variant in that (1) M1

X does not
contain duplicates, and (2) M1

X uses only one hash function.
The k elements maintained in a 1-Hash are not independent, as
we are in a sampling without replacement scheme4. This also
means that k-Hash can have duplicates, which is not possible
with 1-Hash. Thus, |M1

X ∩M1
Y | ∼ Hypergeometric(|X ∪

Y |, |X ∩Y |, k) where |X ∪Y | is the population size, |X ∩Y |
is the number of success states in the population, and k
is the number of draws. This implies that we can derive
the expectation and the variance of ̂|X ∩ Y |1H by adapting
the formulas for the moments of an hypergeometric random
variable. We provide the formulas for the expectation in the
Appendix. We now provide the same concentration bound as
in the case of k-Hash.

Proposition IV.3. Consider ̂|X ∩ Y |1H . Then, an upper
bound for the probability of deviation from the true intersec-
tion set size, at a given distance t ≥ 0, is:

P
(∣∣∣ ̂|X ∩ Y |1H − |X ∩ Y |

∣∣∣ ≥ t) ≤ 2e
− 2 k t2

(|X|+|Y |)2 (7)

The bound suggests that 1-Hash can be better in practice
than k-Hash. They both have exponential bounds but 1-Hash
requires hashing elements using only one hash function. Thus,
it is faster to compute.

E. Analysis of Accuracy of ̂|X ∩ Y |
We summarize our theory developments into estimating
|X ∩ Y | in Table II (estimators) and Table III (bounds).
These results are also applicable to general estimators of |X|
(cf. § II-E) and we also show them in the table. We provide
deviation bounds for all PG estimators. The estimator for k-
hash is an MLE. Moreover, the k-Hash and 1-Hash bounds
are exponential. This means that the estimates are unlikely to
deviate much from the true value.

4Contrarily, k-Hash is a sampling with replacement scheme and explains why |MX ∩
MY | ∼ Bin(k, JX,Y ) for k-Hash
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Result Where Class AU CN ML IN AE

|̂X|S Eq. (1) BF - � - � é é é
̂|X ∩ Y |AND � Eq. (2) BF - � - � é é é
̂|X ∩ Y |L � § IV-B BF - � - � é é é
̂|X ∩ Y |kH Eq. (5) k-Hash - � - � - � - � - �
̂|X ∩ Y |1H § IV-D 1-Hash - � - � é é é

TABLE II: Summary of theoretical results (estimators) related to |̂X| and
̂|X ∩ Y |. “�”: a new result provided in this work (a new estimator or proving

a certain novel property of a given estimator). “CN”: a consistent estimator.
“AU”: an asymptotically unbiased estimator. “ML”: an MLE estimator. “IN”:
an invariant estimator. “AE”: an asymptotically efficient estimator.

Result Where Class Q MS CO

|̂X|S � Eq. (1) BF P � - -
̂|X ∩ Y |AND � Eq. (3) BF P � - -
̂|X ∩ Y |L � § IV-B BF P � - -
̂|X ∩ Y |kH � Eq. (6) k-Hash E � é -
̂|X ∩ Y |1H � Eq. (7) 1-Hash E � é -

TABLE III: Summary of theoretical results (bounds) related to |̂X| and
̂|X ∩ Y | . “�”: a new result provided in this work. “Q”: the quality of

a given bound, “P”: polynomial, “E”: exponential. “MS”: an MSE bound.
“CO”: a concentration bound.

F. Analysis of Parallelism in ̂|X ∩ Y |
In Table IV, we provide a work-depth analysis of paral-

lelism in different estimators, when applied to intersecting
vertex neighborhoods. For the exact intersection applied to
CSR, we use two variants: merge (more advantageous when
neighborhoods are similar in size) and galloping (used when
neighborhoods vary in size by a large factor); the exact
schemes and work/depth are provided in numerous works [1],
[4], [65]. Importantly, using PG gives asymptotic advantages
in both work and depth over CSR. Work and depth in BF
are dominated by – respectively – the bitwise AND over
participating bit vectors (taking O(BX/W ) work) and the final
sum of 1s over the resulting bitvector (taking O(logBX/W )
depth using a simple binary tree reduction). Note that BX is
always expressed in bits and thus we divide it with the SIMD
width (or plain memory word size) W to obtain the actual
counts of operations. MH representations are series of up to k
vertex IDs and thus they use standard intersections. Both BF
and MH based intersection have attractive work and depth as
log k and log(BX/W ) are in practice very small.

CSR (merge) CSR (gallop.) BF k–Hash 1–Hash

Work: O(du + dv) O(du log dv) O
(
BX
W

)
O(k) O(k)

Depth: O(log(du + dv)) O(log(du + dv)) O
(

log
(
BX
W

))
O(log k) O(log k)

TABLE IV: Work and depth of simple parallel algorithms for deriving |Nu∩
Nv | (cardinality of the result of intersecting neighborhoods of vertices u, v).

V. USING PROBGRAPH WITH GRAPH ALGORITHMS

We carefully design and implement PG as an easy-to-
use library offering different set representations. To use PG,
the user (1) creates selected probabilistic representations of
vertex neighborhoods (BF, k-Hash, or 1-Hash), (2) plugs in

PG routines for obtaining ̂|X ∩ Y | in place of the exact set
intersections. For example, to use PG with graph algorithms
from Section III, one replaces the operations indicated with
blue color with PG routines. As an example, in Listing 6, we
compare obtaining Jaccard similarity of two neighborhoods
with an exact scheme and with a PG routine based on BF.
We ensure that one can flexibly select an arbitrary estimator
̂|X ∩ Y | because – as our evaluation (Section VIII) shows –

no single representation works best in all cases.
1 //Input: Graph G, two vertices u and v
2 // Create a standard CSR graph with G as the input graph
3 CSRGraph g = CSRGraph(G);
4 // Create a ProbGraph representation of G based on Bloom filters
5 ProbGraph pg = ProbGraph(g, BF, 0.25); //Use the 25% storage budget
6
7 // Derive the exact intersection cardinality |Nu ∩Nv|
8 int interEX = pg.int_card(g.N(u), g.N(v));

9 // Derive the estimator ̂|Nu ∩Nv|AND
10 int interBF = pg.int_BF_AND(pg.N(u), pg.N(v));
11
12 // Compute the exact Jaccard coefficient between u and v
13 double jacEX = interEX / (g.N(u).size() + g.N(v).size() - interEX)
14 // Compute the approximate Jaccard coefficient based on BF
15 double jacBF = interBF / (g.N(u).size() + g.N(v).size() - interPG)

Listing 6: Obtaining exact and approximate Jaccard (see Listing 3)

A. Tradeoffs Between Storage, Accuracy, & Performance

Each probabilistic set representation considered in PG offers
a tradeoff between performance, storage, and accuracy. In
general, the smaller a representation is, the faster to process it
becomes and the less storage it needs, but also the less accurate
it becomes. To control this tradeoff, we introduce a generic
parameter s that enables explicit control of the storage budget.
s ∈ [0; 1] specifies how much additional memory (on top of
the storage needed for the default CSR graph representation)
is needed to maintain the PG estimators. In evaluation, we do
not exceed more than 33% of the additional needed storage.

VI. DESIGN & IMPLEMENTATION

Each BF is implemented as a simple bit vector. ̂|X ∩ Y |
can then be computed using bitwise AND over X and Y ,
with Eq. (2). Computing BX∩Y can easily be parallelized and
accelerated with vectorization [102]: the problem is embarrass-
ingly parallel and the bitwise AND is supported with SIMD
technologies such as AVX deployed in Intel CPUs, GPUs,
and others. We also use the popcnt CPU instructions [103]
to speed up deriving the number of ones in a bit vector (1-
bits), needed to obtain BX∩Y,1 in Eq. (2); popcnt counts the
number of 1-bits in one memory word in one CPU cycle.

1–Hash and k–Hash are both series of integers. The estima-
tors for |X ∩ Y | based on 1–Hash and k–Hash are dominated
by intersecting sets of k numbers. As k � d, it is much faster
than the corresponding operations on exact neighborhoods.

A. Parallel Construction

Table V provides work and depth of constructing all proba-
bilistic set representations used in PG. As with the intersection
computation, the construction process is also parallelizable,
exhibiting very low depth. During evaluation (Section VIII),
we show that it also does not pose a bottleneck in practice.
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Representation
of Nv

‡ Size
[bits]

Construction
(work)

Construction
(depth)

BF BX O(bdv) O(log(bdv))
k-Hash Wk O(kdv) O(log dv)
1-Hash Wk O(dv) O(log dv)

TABLE V: Work/depth of simple algorithms for constructing a probabilistic
PG set representation of a given neighborhood Nv . In BF, one must iterate
over all b hash functions and all dv neighbors, thus the work is dominated by
bdv (cf. § II-D). All the hash function evaluations can run in parallel, but – in
the worse case – they may write to the same cell in the BF bit vector, giving
depth O(log(bdv)) (parallelization with a binary tree reduction). Derivations
for MH are similar; the work and depth are dominated by evaluations of hash
functions and by finding k smallest elements among dv ones, respectively.

CSR PG (BF) PG (MH)

Triangle Counting (work): O
(
nd2

)
O
(
ndBX
W

)
O (ndk)

Triangle Counting (depth): O (log d) O
(
log
(
BX
W

))
O (log k)

4-Clique Counting (work): O
(
nd3

)
O
(
nd2BX
W

)
O
(
nd2k

)
4-Clique Counting (depth): O

(
log2 d

)
O
(
log d log

(
BX
W

))
O
(
log2 k

)
Clustering (work): O

(
nd2

)
O
(
ndBX
W

)
O (ndk)

Clustering (depth): O (log d) O
(
log
(
BX
W

))
O (log k)

Vertex sim. (work): O
(
d2
)

O
(
BX
W

)
O (k)

Vertex vim. (depth): O (log d) O
(
log
(
BX
W

))
O (log k)

TABLE VI: Advantages of ProbGraph in work and depth over exact baselines.

B. Parallelism in ProbGraph-Enhanced Graph Algorithms

Parallelization of graph algorithms enhanced with Prob-
Graph is straightforward and is based on the listings from
Section III. Specifically, all the loops marked with [in par]
can be executed in parallel. Then, all the instances of set
intersection cardinality are executed using a user-specified PG
estimator. The parallel execution of these estimators (cf. § IV-F
and Table IV) enables better work and depth of graph mining
algorithms than with the default CSR implementation. We
illustrate this in Table VI. Here, work and depth of CSR based
routines are standard results known from extensive works
in parallel algorithm design [7], [9], [56], [65], [104]. For
example, in TC, the two outermost loops can be executed
fully in parallel, and the nested set intersection dominates
depth (d is the maximum degree in a graph). Both work and
depth for PG baselines are derived by replacing the nested
exact |X ∩ Y | operation with the corresponding PG schemes
and results from Table IV. These asymptotic advantages are
supported with empirical outcomes detailed in Section VIII.

C. Implementation Details and Infrastructure

We use the GMS platform [4], a high-performance parallel
graph mining infrastructure, for implementing the baselines.
Loading graphs from disk and building the CSR representa-
tions is done with the GAP Benchmark Suite [105]. We use the
MurmurHash3 hash function [106], well-known for its speed
and simplicity. We use the current time in milliseconds as a

random seed. For parallelization, we use OpenMP [107]. The
whole implementation is available online.5

VII. THEORETICAL ANALYSIS OF ACCURACY

We now illustrate that ProbGraph enables obtaining not only
strong theoretical accuracy guarantees on the set intersection
cardinality, but also on graph properties. As an example, we
now use our estimators ̂|X ∩ Y | to develop estimators T̂C for
triangle count TC, and to derive its concentration bounds.

As shown in Listing 1, TC can be obtained by summing
intersections |Nu ∩ Nv| of neighborhoods for each pair of
adjacent vertices u and v. Hence, to estimate TC, we simply
sum cardinalities ̂|Nu ∩Nv| for each edge (u, v) in a given
graph. This gives the following estimator:

T̂C? =
1

3

∑
(u,v)∈E

̂|Nu ∩Nv|?

where ? indicates a specific ̂|X ∩ Y |? estimator (cf. Table II).

Theorem VII.1. Let T̂C? be the estimator of the number of
triangles. (cf. Section III). Then, depending on the underlying
estimator ̂|X ∩ Y |?, we have the following cases:

For the Bloom Filter AND estimator, if b∆ ≤
0.499BX logBX , then we have the following bound

P
(∣∣∣TC − T̂CAND∣∣∣ ≥ t) ≤ 2 m2(1 + o(1))

(
e

∆b
BX−1 BX

b2
− BX

b2
− ∆

b

)
9 t2

In the case of both 1-Hash and k-Hash (below, we use the
notation for 1-Hash), we have

P
(∣∣∣TC − T̂C1H

∣∣∣ ≥ t) ≤ 2 exp

(
− 18 k t2(∑

v∈V d(v)2
)2
)

Moreover, if the maximum degree is ∆, then

P
(∣∣∣TC − T̂C1H

∣∣∣ ≥ t) ≤ 2 exp

(
− 9 k t2

4 (∆ + 1)
∑
v∈V d(v)3

)
We provide a detailed proof of each statement of Theo-

rem VII.1 in the Appendix.
Consistency of all the TC estimators follows from consis-

tency of the individual estimators (cf. § II-F). The fact that
T̂CkH is MLE follows from ̂|X ∩ Y |kH being MLE.

A. Comparison to Existing Estimators

We compare our T̂C estimators to others in Table VII.
We consider the estimators from Doulion [46], topological
graph sketching [48], GAP [50], ASAP [49], Slim Graph [51],
MCMC [108], and the “colorful” TC analysis [47], as well as
several more recent results from the theory community [52],
[53]. In the comparison, we consider construction time, used
memory, TC estimation time, and whether an estimator is
asymptotically unbiased, consistent, maximum likelihood, in-
variant, and whether it offers concentration bounds, and – if

5Link will be available upon publication due to double blindness.
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Reference Constr.
time

Memory
used

Estimation
time AU CN ML IN AE B

Pa
st

re
su

lts

Doulion [46] O(m) O(pm) O(T (pm)) - - é é é é
Colorful [47] O(m) O(pm) O(T (pm)) - - é é é - (P)
Sketching [48] O(km) O(kn) O(T (k2n)) - - é é é é
ASAP [49] n/a O(n +m) O(1) / sample é é é é é é
GAP [50] O(m)† O(m′)† O(T (m′))† é é é é é é
Slim Gr. [51] O(m) O(pm) O(T (pm)) - - é é é é

Eden et al. [52] n/a O
(

n

TC1/3

)
O

(
n

TC1/3
+ m3/2

TC

)
- - é é é -

Assadi et al. [53] n/a O(1) O(m3/2/TC) - - é é é -

Tětek [54] n/a
(
m1.41

TC0.82

) (
m1.41

TC0.82

)
- - é é é -

PG

T̂CAND (BF) O(bm) O(n +m) O(mB/W ) - - é é é - (P)
T̂CkH (MH) O(km) O(n +m) O(km) - - - - - - (E)
T̂C1H (MH) O(km) O(n +m) O(km) - - é é é - (E)

TABLE VII: ProbGraph vs. existing results for estimating TC (sorted
chronologically). “Constr. time”: time to construct a given estimator. “Mem-
ory”: the amount of storage needed to construct a given estimator. “Estima-
tion time”: time needed to estimate TC. “AU” (asymptotically unbiased),
“CN” (consistent), “ML” (maximum likelihood estimator), “IN” (invari-
ant), “AE” (asymptotically efficient): properties of estimators (explained
in § II-F). “B” (concentration bounds): whether a given scheme is supported
with concentration bounds. “P” (polynomial) or “E” (exponential): bound
quality. “-”: supported, provided. “é”: not available, not provided. “†”: the
original work does not explicitly provide a given result and it was derived in
this work. Symbols used in related work (different from ones in Table I):
p: probability of keeping an edge, m′: #sampled edges.

yes – are they polynomial or exponential (cf. Section II-F for
an explanation on the relevance of these properties).

All ProbGraph’s estimators offer polynomial or exponential
concentration bounds. Importantly, T̂C based on MinHash is
the only one to offer exponential concentration bounds so far.
This means that – for both T̂C1H and T̂CkH – any deviation
from the true value of TC goes to zero exponentially fast with
the increasing size of the potential deviation. Moreover, we
observe that T̂CkH has all the desirable estimator properties
mentioned above. Thus, it is particularly attractive whenever
high accuracy is of the uttermost importance.

VIII. EVALUATION

We now show that ProbGraph enables large speedups in
graph mining while maintaining high accuracy of outcomes.
We do not advocate a single way of deriving |X ∩Y |, but we
illustrate pros and cons of different classes of schemes, and
underline when each scheme is best applicable.

A. Datasets, Methodology, Architectures

We follow a recent set of recommendations on the bench-
marking parallel applications [109]. For example, we omit
the first 1% of performance data as warmup. We derive
enough data for the mean and 95% non-parametric confidence
intervals.

Comparison Baselines We compare PG-based approximate
graph algorithms to tuned state-of-the-art implementations
(Triangle and 4-Clique Counting, Clustering, and Vertex Simi-
larity) from the GAP [105] and GMS [4] graph benchmarking
suites. Moreover, when analyzing our estimators of |Nu∩Nv|,
we consider an existing BF estimator [110], [111], given by the
expression |̂X| = − log(1−BX,1/BX)

b log(1−1/BX) . We also consider another

existing estimator [59], given by the expression ̂|X ∩ Y |OR =

|X| + |Y | + BX∪Y
b log

(
1− BX∪Y,1

BX∪Y

)
; this estimator uses the

single set estimator evaluated on the set union. Finally, when
evaluating TC, we compare to the established TC estimators:
Doulion [46] (representing schemes based on edge sampling)
colorful TC [47] (representing schemes based on sophisti-
cated combinatorial pruning). We also consider state-of-the-
art heuristics that do not come with theoretical guarantees:
Reduced Execution [112], Partial Processing [112], Auto-
Approximate (two variants) [113].

Datasets We consider SNAP (S) [114], KONECT (K) [115],
DIMACS (D) [116], Network Repository (N) [117], and We-
bGraph (W) [118] datasets. For broad analysis, we follow the
recommendations of the GMS graph mining benchmark [4],
and we use networks of different origins (biology, chemistry,
economy, etc.), sizes, densities (m/n), degree distribution
skews, and even higher-order characteristics (e.g., counts of
cliques). We illustrate the real-world datasets in Table VIII.
We also use synthetic graphs power-law (the Kronecker
model [119]) degree distribution. Using such synthetic graphs
enables systematically changing a specific single graph prop-
erty such as n, m, or m/n, which is not possible with real-
world datasets. This entails a very large evaluation space and
we only include representative findings for selected graphs.

Biological. Gene functional associations: (bio-SC-GT , 1.7K, 34K), (bio-CE-PG,
1.9K, 48K), (bio-CE-GN, 2.2K, 53.7K), (bio-DM-CX, 4K, 77K), (bio-DR-CX, 3.3K,
85K), (bio-HS-LC, 4.2K, 39K), (bio-HS-CX, 4.4K, 108.8K), (bio-SC-HT , 2K, 63K),
(bio-WormNetB3, 2.4K, 79K). (bio-WormNet-v3, 16.3K, 762.8K). Human gene
regulatory network: (bio-humanGene, 14K, 9M), (bio-mouseGene, 45K, 14.5M).
Interaction. Animal networks: (int-antCol3-d1, 161, 11.1K), (int-antCol5-d1,
153, 9K), (int-antCol6-d2, 165, 10.2K), (intD-antCol4, 134, 5K). Human contact
network: (int-HosWardProx, 1.8k, 1.4k). Users-rate-users: (int-dating, 169K, 17.3M),
(edit-enwiktionary, 2.1M, 5.5M). Collaboration: (int-citAsPh, 17.9K, 197K).
Brain. (bn-flyMedulla, 1.8K, 8.9K), (bn-mouse, 1.1K, 90.8K),
(bn-mouse brain 1, 213, 21.8K).
Economic. (econ-psmigr1, 3.1K, 543K), (econ-psmigr2, 3.1K, 540K),
(econ-beacxc, 498, 50.4K), (econ-beaflw, 508, 53.4K), (econ-mbeacxc, 493, 49.9K),
(econ-orani678, 2.5K, 90.1K).
Social. Facebook: (soc-fbMsg, 1.9k, 13.8k), Orkut: (3.1M, 117M).
Scientific computing. (sc-pwtk, 217.9K, 5.6M), (sc-OptGupt, 16.8K, 4.7M),
(sc-ThermAB, 10.6K, 522.4K).
Discrete math. (dimacs-c500-9, 501, 112K), (dimacs-hat1500-3, 1.5K, 847K).
Chemistry. (ch-SiO, 33.4K, 675.5K), (ch-Si10H16, 17K, 446.5K).

TABLE VIII: Used graphs. For each graph, we show its “(#vertices, #edges)”.

Parametrizing Set Representations We use the generic
storage budget parameter s (cf. § V-A) to set the maximum
allowable amount of memory than can be used by PG. Then,
the parameters specific to each probabilistic set representation
(b, BX , k) enable fine tuning the tradeoff between storage,
accuracy, and performance. In the following, we will also illus-
trate how to pick these parameters to maximize performance
and accuracy for a given storage budget.

Architectures We use a a Dell PowerEdge R910 server
with an Intel Xeon X7550 CPUs @ 2.00GHz with 18MB L3
cache, 1TiB RAM, and 32 cores per CPU (grouped in four
sockets). We also use XC50 compute nodes in the Piz Daint
Cray supercomputer (one such node comes with 12-core Intel
Xeon E5-2690 HT-enabled CPU 64 GiB RAM).

Parallelism Unless stated otherwise, we run algorithms on
the maximum number of cores available in a system.
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Fig. 3: Analysis of the accuracy of PG estimators of |X ∩ Y |.

Assessing Accuracy To measure the accuracy of algorithms
that return some counts (e.g., clique count, count of clusters),
we use expression |cntPG−cntEX |cntEX

, where cntPG and cntEX
are ProbGraph and exact counts, respectively. Note that the
ProbGraph counts may be lower but also higher than the exact
ones (due to false positives in BFs).

B. Estimating |Nv ∩Nu|
We first assess specific PG estimators of |Nv ∩ Nu| in

terms of their accuracy. For each graph, we derive the BF and
MH representations of its vertex neighborhoods, and then the
intersections of neighborhoods of adjacent vertices. Finally, we
compute the relative differences between these PG intersection
cardinalities and the CSR related cardinalities |( ̂|X ∩ Y |• −
|X ∩ Y |)|/|X ∩ Y | where • ∈ {AND,L, 1H, kH} We
summarize these differences, for each graph, using boxplots.
We use the storage budget s = 33% and b ∈ {1, 4}.

Representative results are in Figure 3. While medians are
low (less than ≈25% for most cases), there is a certain spread
in outliers. This is because we consider all adjacent vertices,
and there is a high chance that at least some pairs will result
in low accuracy. Overall, the results illustrate that there is no
single winner among the estimators, and the outcomes depend
on the graph structure. One observation is that the BF based
on AND tends to perform worse on very dense graphs, and
comparably to marginally better than L on sparser graphs.
Similarly, k–Hash is marginally worse than 1–Hash on very
dense graphs; sparse graphs entail a reverse pattern.

C. Estimating Outcomes of Graph Algorithms

We now illustrate that PG estimators enable high perfor-
mance and high accuracy at a small additional storage budget
when applied to parallel graph mining. We first conduct an
analysis using all 32 cores. For each graph problem consid-
ered, we illustrate the exact baseline and the schemes based on
BF and MH estimators. We use ̂|Nu ∩Nv|AND with b = 2 and

̂|Nu ∩Nv|1H that represent BF and MH schemes; they offer
high accuracy while being fast to compute as they need few
hash functions (other estimators come with similar accuracy
outcomes but are slower to compute). Figures 4 and 5 show
the results for real-world and Kronecker graphs. Each single
plot is dedicated to a specific graph problem and it compares
different estimators (indicated with different shapes of data
points) across three dimensions: performance (speedup, X
axis), accuracy (relative count, Y axis), and memory budget
(relative memory size with respect to the default CSR, shades
of B&W). Each plot corresponds to a specific graph problem.
Each data point corresponds to the execution of a given scheme
for a specific graph dataset. Thus, each plot shows collectively
how different baselines behave for different input graphs.

In general, the results follow the insights from the analysis
of estimating set intersections. BFs offer high accuracy and
high speedups, sometimes even as high as 20× (Clustering
using Overlap), or nearly 30× (Clustering using Common
Neighbors), while keeping the accuracy more than 98%.
Speedups can be as high as 50×, with the accuracy more
than 90% (e.g., 4-Clique Counting for Kronecker graphs). On
the other hand, MH usually gives consistently higher speedups
as well as lower memory requirements, but its accuracy is in
most cases worse than BF. We conjecture this is because MH
estimators preserve only specific subsets of vertex neighbor-
hoods (selected using hash functions), explicitly eliminating
other vertices. In contrast, when using BF estimators, each
vertex is hashed to certain bit(s) in the final bit vector, and is
thus to some extent “reflected” in PG estimators.

In terms of memory efficiency, the mostly very light shades
indicate very low additional storage overheads. Except for a
few cases where light gray indicates that – for a given graph
– a given estimator needs around 20-50% additional space, all
the cases require at most 25% more storage. We additionally
indicate this in the plots with the appropriate annotations.

We then provide more details on all the problems using
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detailed bar plots; due to space constraints, we only show
TC in Figure 6 for real-world graphs (all other problems and
Kronecker graphs come with similar insights). For the storage
budget of at most 25%, for the majority of graphs – regardless
of their origin – PG enables high (>80%) accuracy combined
with high speedups. The only cases of low accuracy (i.e., the
number of clusters detected being much higher than the exact
one) is when using MH. This is because MH based schemes
explicitly remove a (usually high) number of edges, resulting
in possibly significant increase in cluster counts.

We conclude that BF-based PG estimators consistently
deliver high accuracy as well as speedups at small memory
budget, for a broad set of graphs and problems. 1–Hash based
schemes may provide much more performance, but require
more careful parametrization and input selection.

D. Comparison to Heuristics
We also compare to heuristics for approximate graph com-

putations that do not come with guarantees on the quality
of outcomes. One scheme called “Reduced Execution” [112]
reduces the count of iterations of the outermost loop. Another
scheme, “Partial Graph Processing” [112], processes – for
each vertex v – a randomly selected subset of v’s neighbors.
Moreover, we use two variants of sampling-based “Auto-
Approximation” that addresses a purely vertex-centric model
of computation [113]. We show these heuristics in Figure 6
(we exclude them from Figures 4 and 5 to preserve clarity;
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they always achieve much worse results that obscure plots).
The advantage of heuristics is that they do not need additional
memory, as shown in the lowest panel in Figure 6. However,
PG always achieves much better accuracy, by at least 25%,
up to ≈75%. This is because the heuristics are not based
on theoretical developments that ensure high PG’s accuracy.
Moreover, the heuristics are also slower than PG. “AutoAp-
proximate” schemes introduce particularly large overheads due
to their purely vertex-centric abstraction, which makes them
even slower than the exact tuned baselines that we compare
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to. The results for all other graph problems are similar.

E. Analysis of Scaling

We also consider strong/weak scaling; Figure 8 offers
representative results. We observe nearly ideal strong scaling
of all the baselines compared. PG schemes feature much lower
runtimes. To investigate in what regime of parameters PG
baselines exhibit better scaling behavior, we also analyze weak
scaling, see Figure 9b. We use Kronecker graphs. We increase
the number of edges along with the number of threads, from
m ≈ 4M to m ≈ 1.8B for a fixed n = 1M. The largest graphs
fill the whole available memory (1TB). In this experiment, we
increase the number of edges at a rate twice as large as the
thread count (cf. the X axis). As we use Kronecker graphs,
this stresses load balancing capabilities of the compared
baselines, as most vertices have small neighborhoods, but
some neighborhoods grow particularly fast, making it very
challenging to load balance set intersections (cf. the right
side of Figure 1). The results illustrate that all PG baselines
scale much better than all competition baselines. It becomes
particularly visible beyond a certain point, where the PG
scaling curves become gradually flatter. This is enabled by
the PG design, in which set representations are of the same
(usually very small) size. Hence, load imbalance is less of
an issue, while – as shown earlier in this section – accuracy
loss is negligible. Finally, Figure 9 shows that the difference
between BF and MH in scaling also depends on the targeted
problem. For Clustering based on Common Neighbors, BF
becomes comparable, or marginally better, than MH, for large
thread counts. This is because the algorithm for Clustering is
almost completely dominated by |X ∩ Y |, hence benefiting
from BF’s very fast bitwise AND set intersections.

F. Analysis of Construction Costs

We also analyze the construction costs of PG. Time to con-
struct a single neighborhood follows asymptotic complexities
in Table V; it is not a bottleneck and is lower than 50% of
the algorithm execution time in the majority of cases. Only
using very large b may bring the preprocessing time larger than
the single graph algorithm execution time, but (1) PG benefits
from low b ∈ {1, 2} in any case, and (2) the PG representation
of a graph has to be computed only once, and it can be then
freely used with any considered graph algorithms.

IX. BEYOND BLOOM FILTER AND MINHASH

The generic nature of PG enables using other probabilistic
representations in place of BF and MH. As an example, we
discuss how to use PG with K Minimum Values (KMV) [120],
another sketch that was originally developed to accelerate
counting distinct elements in a data stream. To construct
a KMV representation KX of a set X , one evaluates the
associated hash function h : X → (0; 1] for all elements of X .
Then, one selects k smallest hashes that constitute the final
KMV representation KX of the set X . One can then estimate
|X| with |̂X|KMV = k−1

maxKX . Note that KX differs from a
MH MX because, as opposed to MX , it contains hashes.

Now, one can use KMV to also estimate |X ∩ Y |, and then
use it within PG. For this, one constructs a KMV KX∪Y
by taking the k smallest elements from KX ∪KY . Then,
by the KMV properties, we have ̂|X ∪ Y |KMV = k−1

maxKX∪Y .

Finally, ̂|X ∩ Y |KMV = |X|+ |Y | − ̂|X ∪ Y |KMV , which
can be directly used in PG formulations of graph algorithms.
We provide concentration bounds for all the KMV estimators
defined above in the Appendix.

X. RELATED WORK: SUMMARY

We summarize related work; some parts are already covered
in Sections I and VII. First, there exist more set-related
probabilistic data structures, for example HyperLogLog [121].
ProbGraph embraces such data structures: while we focus on
BF [35] and MH [37], one could easily extend ProbGraph with
other structures; we leave details for future work.

Next, there are many approximate graph algorithms [20]–
[24], [26]–[30], [30]–[33], [49]. ProbGraph differs from them
as it can approximate any algorithm or scheme that uses
|X ∩ Y |, set membership query, and others, where X and
Y are arbitrary sets of vertices or edges (all our theoretical
and most of empirical results are directly applicable to any
sets). Moreover, ProbGraph is simple: all one has to do is to
plug in a selected set representation.

A few existing general approaches for approximate graph
computations usually target specific problems or they do not
come with guarantees on the quality of outcomes [108], [112],
[113]. As shown in Section VII, unlike ProbGraph, specific
schemes for TC do not offer strong accuracy guarantees [46]–
[51], [108].

ProbGraph’s probabilistic representations of vertex sets are
a form of graph compression [122], and they could be
used to extend existing compressed graph representations and
paradigms [51], [123].

There exist a few works on using BF or MH specific single
graph problems, usually in the context of evolving graphs [48],
[124]–[127], which is outside PG’s scope.

Approximating the triangle count in time less then linear in
the size of the input was shown in [52]. This has been later
generalized to approximating the number of k-cliques in a
graph [128]. Improved bounds are known when the arboricity
of the graph is small [129]. Assuming we can sample edges
uniformly, better algorithms are also known [53], [130]. Unlike
PG, these schemes are specific to selected graph problems and
graphs with certain properties such as low arboricity.

There are many works on counting or finding different graph
patterns (also called motifs, graphlets, or subgraphs) [1], [3],
[4], [9], [12], [14], [68], [74], [75], [97], [131]–[144]. PG
can be used as a subroutine in different such works, offering
speedups while preserving high accuracy.

Counting and listing simple patterns such as triangles have
been recently used to enhance the design of numerous models
in Graph Neural Networks [145], [145], [146], [146]–[148],
[148], [149], [149], [150], [150], [151], [151]–[156]. Such
models could use PG to accelerate expensive graph mining
preprocessing costs.
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The straightforward parallelism in computing BF based
estimators implies that other architectures that offer massive
parallelism may provide even higher benefits. This includes
FPGAs [27], [157]–[159], CGRAs [160], or processing in-
memory [161]–[169]. We leave these studies for future work.

Next, there are many approximate graph algorithms [18],
[22], [170], [170]–[173]. ProbGraph differs from them as it is
general: it can approximate any algorithm or scheme that uses
|X ∩ Y |, set membership query, and others, where X and Y
are arbitrary sets of vertices or edges (all our theoretical and
most of empirical results are directly applicable to any sets).
Moreover, ProbGraph is simple: all one has to do is to plug in
a selected set representation and implementations of |X ∩ Y |,
a set membership query, and any other related schemes.

XI. CONCLUSION

We propose ProbGraph, a parallel graph representation that
enables simple, general, and high-performance approximate
graph computations. The key idea is to sketch sets of vertices,
and the cardinality of the intersection of such sets, with prob-
abilistic set representations such as Bloom filters or MinHash.
Such representations usually offer much higher performance
than exact set representations, while only requiring small
additional storage. Importantly, they can be treated as a black
box and seamlessly incorporated into graph algorithms. We
show that ProbGraph is simple to use while offering speedups
of more than 50× for some graphs and retaining high accuracy
of more than 90% for problems such as Triangle Counting,
when comparing to tuned exact parallel baselines on 32 cores.

We support ProbGraph with an in-depth theoretical under-
pinning, in which we derive novel statistical concentration
bounds on the accuracy of ProbGraph approximations. Our
bounds are the first exponential or polynomial quality bounds
for the accuracy of Bloom filters and MinHash. As such,
they are of interest to the broader audience beyond graph
analytics. We also use the work-depth formal analysis to show
that ProbGraph has also theoretical advantages over parallel
baselines in parallel computational complexity.

Set algebra is common in many graph problems. Hence,
we expect that ProbGraph and its set-centric approach for
approximate graph analytics may be used for other problems.
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(f) Weak scaling (Clustering, Com-
mon Neighbors Vertex Similarity).
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Fig. 8: Analysis of scaling of representative baselines.
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Fig. 9: Scaling results for Clustering (Common Neighbors), illustrating
comparable scaling performance of both BF and MH.
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[18] M. M. Halldórsson, “A still better performance guarantee for approx-
imate graph coloring,” Information Processing Letters, vol. 45, no. 1,
pp. 19–23, 1993.

[19] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,”
SIAM Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669,
1993.

[20] M. Riondato and E. M. Kornaropoulos, “Fast approximation of be-
tweenness centrality through sampling,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 438–475, 2016.

[21] M. Borassi and E. Natale, “Kadabra is an adaptive algo-
rithm for betweenness via random approximation,” arXiv preprint
arXiv:1604.08553, 2016.

[22] M. Riondato and E. Upfal, “Abra: Approximating betweenness cen-
trality in static and dynamic graphs with rademacher averages,” ACM
TKDD, vol. 12, no. 5, p. 61, 2018.

[23] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation of
betweenness centrality,” in Proceedings of the Meeting on Algorithm
Engineering & Expermiments. Society for Industrial and Applied
Mathematics, 2008, pp. 90–100.

[24] D. A. Bader et al., “Approximating betweenness centrality,” in Algo-
rithms and Models for the Web-Graph. Springer, 2007, pp. 124–137.

[25] E. Solomonik, M. Besta, F. Vella, and T. Hoefler, “Scaling
betweenness centrality using communication-efficient sparse matrix
multiplication,” in ACM/IEEE Supercomputing. ACM, 2017, p. 47.
[Online]. Available: https://doi.org/10.1145/3126908.3126971

[26] B. Chazelle, R. Rubinfeld, and L. Trevisan, “Approximating the
minimum spanning tree weight in sublinear time,” SIAM Journal on
computing, vol. 34, no. 6, pp. 1370–1379, 2005.

[27] M. Besta, M. Fischer, T. Ben-Nun, D. Stanojevic, J. D. F. Licht, and
T. Hoefler, “Substream-centric maximum matchings on fpga,” ACM
TRETS, vol. 13, no. 2, pp. 1–33, 2020.

[28] S. Dumbrava, A. Bonifati, A. N. R. Diaz, and R. Vuillemot, “Ap-
proximate evaluation of label-constrained reachability queries,” arXiv
preprint arXiv:1811.11561, 2018.

[29] S. Chechik, D. H. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan,
and V. V. Williams, “Better approximation algorithms for the graph
diameter,” in Proceedings of the twenty-fifth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2014, pp. 1041–1052.

[30] L. Roditty and V. Vassilevska Williams, “Fast approximation algo-
rithms for the diameter and radius of sparse graphs,” in Proceedings of
the forty-fifth annual ACM symposium on Theory of computing. ACM,
2013, pp. 515–524.

[31] G. M. Slota and K. Madduri, “Complex network analysis using parallel
approximate motif counting,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. IEEE, 2014, pp. 405–
414.

[32] P. Boldi, M. Rosa, and S. Vigna, “Hyperanf: Approximating the neigh-
bourhood function of very large graphs on a budget,” in Proceedings
of the 20th international conference on World wide web. ACM, 2011,
pp. 625–634.

[33] G. ECHBARTHI and H. KHEDDOUCI, “Lasas: an aggregated search
based graph matching approach,” in The 29th International Conference
on Software Engineering and Knowledge Engineering, 2017.

[34] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi,
and T. Hoefler, “High-performance parallel graph coloring with strong
guarantees on work, depth, and quality,” in ACM/IEEE Supercomput-
ing, 2020, pp. 1–17.

[35] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” CACM, vol. 13, no. 7, pp. 422–426, 1970.

[36] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in
graph algorithms using simd instructions,” in Proceedings of the 2018
International Conference on Management of Data. ACM, 2018, pp.
1587–1602.

[37] A. Z. Broder, “On the resemblance and containment of documents,” in
SEQUENCES. IEEE, 1997.

[38] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities:
A nonasymptotic theory of independence. Oxford university press,
2013.

[39] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific
Grove, CA, 2002, vol. 2.

[40] V. Estivill-Castro, “Why so many clustering algorithms: a position
paper,” ACM SIGKDD explorations newsletter, vol. 4, no. 1, pp. 65–75,
2002.

[41] C. C. Aggarwal and H. Wang, “A survey of clustering algorithms for
graph data,” in Managing and mining graph data. Springer, 2010, pp.
275–301.

[42] S. E. Schaeffer, “Graph clustering,” Computer science review,
vol. 1, no. 1, pp. 27–64, 2007. [Online]. Available: https:
//doi.org/10.1016/j.cosrev.2007.05.001

[43] L. Gianinazzi, M. Besta, Y. Schaffner, and T. Hoefler, “Parallel algo-
rithms for finding large cliques in sparse graphs,” 2021.

[44] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure
based on shared near neighbors,” IEEE Transactions on computers, vol.
100, no. 11, pp. 1025–1034, 1973.

[45] M. Besta et al., “Communication-efficient jaccard similarity for high-
performance distributed genome comparisons,” in IEEE IPDPS. IEEE,
2020, pp. 1122–1132.

[46] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs
with a coin,” in ACM KDD, 2009.

[47] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
mapreduce implementation,” Information Processing Letters, vol. 112,
no. 7, pp. 277–281, 2012.

[48] B. Bandyopadhyay et al., “Topological graph sketching for incremental
and scalable analytics,” in CIKM, 2016, pp. 1231–1240.

[49] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and
I. Stoica, “{ASAP}: Fast, approximate graph pattern mining at scale,”
in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 745–761.

[50] A. P. Iyer et al., “Bridging the gap: towards approximate graph
analytics,” in ACM GRADES-NDA, 2018.

[51] M. Besta et al., “Slim graph: Practical lossy graph compression for
approximate graph processing, storage, and analytics,” pp. 1–25, 2019.
[Online]. Available: https://doi.org/10.1145/3295500.3356182

[52] T. Eden, A. Levi, D. Ron, and C. Seshadhri, “Approximately counting
triangles in sublinear time,” SIAM Journal on Computing, vol. 46, no. 5,
pp. 1603–1646, 2017.

[53] S. Assadi, M. Kapralov, and S. Khanna, “A simple sublinear-time
algorithm for counting arbitrary subgraphs via edge sampling,” arXiv
preprint arXiv:1811.07780, 2018.
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APPENDIX

Here, we provide proofs and various details omitted from
the main part of the manuscript.

A. Probability Distributions

Consider a sequence of n trials (experiments). A single
trial is a Bernoulli trial, i.e., it gives a success or a failure
outcome with a probability p or 1 − p, respectively. In the
context of PG, a single trial will correspond to some property
of a given set representation, for example whether a given
bit in a BF has 1 or 0. Now, if all the trials are independent
(i.e., obtaining a specific outcome does not impact the number
of such potential outcomes in future trials), the resulting
distribution is binomial (commonly denoted as Bin(n, p)).
Otherwise (i.e., obtaining a specific outcome decreases by
one the number of such potential outcomes in future trials),
it is hypergeometric (usually denoted as Hyper(N,K, n)).
Both distributions enable deriving specific probabilities for the
number of either success or failure trials.

B. Plug-In Principle

Some concentration bounds that we present in this paper
depend on a given set size (i.e., |X| appears in the formulation

of the bound). Thus if we want to obtain an estimate of the
upper bound, we need to substitute the estimator |̂X| instead
of |X| whenever |X| appears. This procedure is known as
the plug-in principle and it is well established in statistics.
However this method is safe to use only if the estimator we
substitute is at least consistent for the parameter of interest
(i.e. |X|). Indeed this is the case for all the BF and MinHash
estimators presented in this paper.

C. BF Sketches for Single Sets

We provide extended results for BF for single sets.
1) Concentration Bound for BF Single Sets:

Proposition A.1. Let |̂X|S be the estimator defined in Eq. (1).
For BX , b ∈ N such that b = o(

√
BX), and a set X such that

b|X| ≤ 0.499BX logBX the following holds:

E

[(
|̂X|S − |X|

)2
]
≤ (1 + o(1))

(
e
|X|b

(BX−1)
BX
b2
− BX

b2
− |X|

b

)
Proof. We now prove Proposition A.1. Before bounding the
mean squared error of |̂X|S , we need to prove several simple

bounds. Let µ = E[B0,X ] = BX

(
1− 1

BX

)b|X|
. It holds:

µ ≥ BX
(

1− 1

BX

)0.499BX logBX

≥ BX exp

(
−0.499 logBX

1− 1
BX

)
= B

0.501−o(1)
X

Let us fix some ε > 0. Let E be the event that
B0,X ≥ µ/(1 + ε). [174, Theorem 2] prove that:
P (E) ≥ 1− exp(−Ω(µ2/BX)) ≥ 1− exp

(
−BΩ(1)

X

)
.

We have |̂X| = −BXb log(BX,0/BX + I[BX,0 =
0]) ≤ BX logBX and by our assumption,
|X| ≤ b|X| ≤ 0.499BX logBX . It thus holds (|̂X|− |X|)2 ≤
O(B2

X log2BX). Let κ = −BXb log
(

1− 1
BX

)b|X|
=

−BX |X| log
(

1− 1
BX

)
. Moreover for BX → ∞, we have

log(1 − 1/BX) = −1/BX + O(1/B2
X). Therefore, it holds

κ = |X|+ o(1).

Now we are able to bound the mean squared error of
|̂X|S . We present each step of the derivation as a unique
figure (see Fig. 10 below) to improve the clarity of the content.

In particular, eq. (10) in Figure 10 holds because for any
a, b, c ∈ R and ε > 0, it holds6 (a − b)2 ≤ (1 + ε)(a −
c)2 + 1+ε

ε (c−b)2. Eq. (13) holds because on E , given BX,0 ≥
µ/(1+ε), log(BX,0/BX) is c-lipschitz for c = (1+ε)BX/µ ≤
(1 + ε)e

2b|X|
BX (1−1/BX ) = (1 + ε)e

2b|X|
BX−1 . Eq. (16) holds because

6This inequality is equivalent to (1+ε)(a−c)2+ 1+ε
ε

(c−b)2−(a−b)2 ≥ 0.

The left-hand side can be simplified to (εa+b−c(1+ε))2

ε
and the inequality

thus holds.

19



E[(|̂X| − |X|)2] (8)

=E[(|̂X| − |X|)2|E ]P (E) + E[(|̂X| − |X|)2|¬E ]P (¬E) (9)

≤(1 + ε)E[(|̂X| − κ)2|E ] +
1 + ε

ε
E[(κ− |X|)2|E ] +O(B2

X log2BX) · exp(−BΩ(1)
X ) (10)

≤ (1 + ε)B2
X

b2
E[(log(BX,0/BX)− log(1− 1/BX)b|X|)2|E ] +O((κ− |X|)2) + exp(−BΩ(1)

X ) (11)

≤ (1 + ε)B2
X

b2
E[(log(BX,0/BX)− log(1− 1/BX)b|X|)2|E ] +O(|X|/BX) (12)

≤ (1 + ε)2B2
X

b2
e2b|X|/BXE[(BX,0/BX − (1− 1/BX)b|X|)2|E ] +O(|X|/BX) (13)

≤ (1 + ε)2B2
X

b2
e2b|X|/(BX−1) · E[(BX,0/BX − (1− 1/BX)b|X|)2]/P [E ] +O(|X|/BX) (14)

=
(
(1 + ε)2 + o(1)

)B2
X

b2
e2b|X|/(BX−1) · E[(BX,0/BX − (1− 1/BX)b|X|)2] +O(|X|/BX) (15)

=
(
(1 + ε)2 + o(1)

)e2b|X|/(BX−1)

b2
V ar[BX,0] +O(|X|/BX) (16)

≤
(
(1 + ε)2 + o(1)

)
e2b|X|/(BX−1) ·

(
e
− b|X|BX

BX
b2
−BX/b2 − |X|/b

)
+O(|X|/BX) (17)

≤
(
(1 + ε)2 + o(1)

)(
e|X|b/(BX−1)BX

b2
−BX/b2 − |X|/b

)
+O(|X|/BX) (18)

≤
(
(1 + ε)2 + o(1)

)(
e|X|b/(BX−1)BX

b2
−BX/b2 − |X|/b

)
(19)

Fig. 10: Detailed steps of the derivation of an upper bound for the mean squared error of the BF estimator of the single set size.

E[BX,0/BX ] = (1 − 1/BX)b|X| and eq. (17) holds because

V ar(BX,0) ∼ BXe−
b|X|
BX −BX

(
b|X|
BX

+ 1
)
e
− 2b|X|

BX [175]. By
sending ε→ 0, we get that7:

E[(|̂X| − |X|)2] ≤ (1 + o(1))

(
e
|X|b

(BX−1)
BX
b2
− BX

b2
− |X|

b

)

2) Class of Estimators with General Bounds: The bound
on the MSE presented in Proposition A.1 holds up to some
assumptions (i.e. b = o(

√
BX) and b|X| ≤ 0.499BX logBX )

and an o(1) term. To derive a concentration bound for the MSE
which does not depend on these conditions and that enhance
the interpretability, we develop a class of estimators which
encompasses the one by Swamidass et al. [59]. To introduce
this framework, we first propose a new limiting estimator
called |̂X|L which belongs to this class. We obtain |̂X|L by
simplifying the estimator from Eq. (1) and taking the limit for
BX →∞:

7It is well known that if f(x) ≤ (1 + ε)g(x) for any ε > 0, then f(x) ≤
(1 + o(1))g(x).

|̂X|L ≡ lim
BX→∞

|̂X|S = lim
BX→∞

−BX
b

log

(
1− BX,1

BX

)

= log

 lim
BX→∞

(
1− BX,1

BX

)−BXb 
= log

(
exp

(
BX,1
b

))
=
BX,1
b

(20)

We can perform this simplification thanks to the continuity
of the logarithm in (0,∞) that allows us to safely move the
limit inside log, knowing that BX , b ∈ N by construction.
This result tells us that, as BX increases, |̂X|S rescales
the number of ones in the BF by the quantity 1

b because
|̂X|S ∼

BX,1
b for X, b fixed and BX → ∞. We can also

prove that |̂X|S ≤ logBX
b BX,1 thus implying that |̂X|S can

inflate the number of ones at most by the factor logBX
b . These

interesting insights motivate us to propose a general class of
estimators. The key idea is to define any BF estimator as
a function of a random variable (i.e. BX,1, the number of
ones in a BF). Specifically, we have |̂X|• ≡ δBX ,b(BX,1),
where δ(·) is a given non-negative function of BX , b, and
BX,1. We choose to denote δBX ,b(BX,1) and δBX ,b instead of
the usual δ(BX , b, BX,1) and δ(BX , b) to clearly separate the
deterministic BF design parameters BX and b from the unique
random component BX,1. The key benefit of this formulation
is that (1) it generalizes both |̂X|S and |̂X|L, and (2) we can
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use it to provide concentration bounds that are applicable to
|̂X|L, and many other estimators within the proposed class
depending on the functional form of δBX ,b(BX,1). To obtain
|̂X|S , we set:

|̂X|S ≡ δBX ,b(BX,1) =
BX
b

log

(
1− BX,1

BX

)
.

To recover |̂X|L, we first (with a slight abuse of notation)
fix δBX ,b(BX,1) to be linear in BX,1 and then set it to be
specifically equal to 1

b :

|̂X|L ≡ δBX ,b ·BX,1 =
BX,1
b

(21)

We underline that if δBX ,b(BX,1) is linear in BX,1 we are
implicitly imposing, depending on the values of BX and b,
either a deflation or an inflation of the observed number of
ones in the BF. For example, we have already seen that, when
BX → ∞ for fixed X, b, we have δBX ,b(BX) = BX

b in
Eq. (1). We now show that any estimator that can be written
as |̂X|• with δBX ,b(BX,1) linear in BX,1 has a bounded MSE.

Proposition A.2. Let |̂X|• ≡ δBX ,b · BX,1. For BX , b ∈ N,
the following holds:

E

[(
|̂X|• − |X|

)2
]
≤
[
|X| − δBX ,b BX

(
1− e−

|X|b
BX

)]2
+ δ2

BX ,b BX

[
e
− |X|bBX −

(
1 +
|X|b
BX

)
e
− 2|X|b

BX

]
We use Chebyshev’s inequality to get the final concentration
bound:

P
(∣∣∣|̂X|• − |X|∣∣∣ ≥ t) ≤

[
|X| − δBX ,b BX

(
1− e−

|X|b
BX

)]2

t2

+

δ2
BX ,b

BX

[
e
− |X|b
BX −

(
1 + |X|b

BX

)
e
− 2|X|b

BX

]
t2

By fixing δBX ,b = 1
b , we obtain a valid bound for |̂X|L

which is the limiting estimator we present in our evaluation
(Section VIII).

Proof. We provide a proof of proposition A.2. We start by the
well known MSE decomposition:

E

[(
|̂X|• − |X|

)2
]

= E
[(
|̂X|• − |X|

)]2
+ V ar(|̂X|•) (22)

Now notice that E[B0,X ] = BX

(
1− 1

BX

)b|X|
. Then, since

|̂X|• = δBX ,b BX,1, we can easily derive:

E [δBX ,b BX,1] = E [δBX ,b (BX −BX,0)]

= δBX ,b BX

[
1−

(
1− 1

BX

)b|X|]

On the other hand, to bound the variance of the sim-
plified estimator, we follow the same reasoning outlined
in Proposition A.1. Indeed it holds that V ar(BX,0) ∼
BX

[
e
− |X|bBX −

(
1 + |X|b

BX

)
e
− 2|X|b

BX

]
as shown in [175]. Now

notice that V ar(BX,1) = V ar(BX − BX,0) = V ar(BX,0).
At this point we can substitute in eq. (22) the squared bias
and variance of |̂X|• to conclude that:

E

[(
|̂X|• − |X|

)2
]
≤
{
|X| − δBX ,b BX

[
1−

(
1−

1

BX

)b|X|]}2

+δ2
BX ,b

BX

[
e
− |X|b
BX −

(
1 +
|X|b
BX

)
e
− 2|X|b

BX

]
which ends the proof. To improve the interpretability of the

bound, we use the fact that
(

1− 1
BX

)b|X|
∼ e

− |X|bBX in the
statement of Proposition A.2.

3) Enhancing the Estimator by Swamidass [59]: The esti-
mator by Swamidass et al. [59], is divergent8 in its original
form. To alleviate this, we replace BX,1 with B̃X,1 ≡ BX,1−
I[BX,1 = BX ], where, for a given proposition P , I[P ] is 1 if
P holds, and 0 otherwise. B̃X,1 only differs from BX,1 in the
unlikely case of BX,1 = BX . Thanks to this modification,
our estimator |̂X| has, unlike Swamidass et al.’s, a finite
expectation (as it is bounded).

The final form of the estimator is

̂̃|X| = −BX
b

log

(
1− B̃X,1

BX

)
4) Proof of consistency and asymptotic unbiasedness: We

need to show that |̂X|S = −BXb log
(

1− BX,1
BX

)
is consistent

and asymptotically unbiased as BX → ∞. We provide here
an intuitive formulation based on the false positive probability
which can be easily made more rigorous by direct application
of the definition of consistency which we omit for the sake of
simplicity. First of all, as shown in eq.(21), we can notice that
|̂X|S ∼ |̂X|L as the Bloom Filter size diverges. This means
that the proof is valid for both estimators because they are
asymptotically equivalent. Now we can look at the probability
of false positives as BX →∞ for fixed and finite b and |X|:

lim
BX→∞

[
1−

(
1− 1

BX

)b|X|]b
→ 0

The result above tells us that false positive matches cannot
happen anymore in the limit. Each element of |X| will then
be hashed in a personal bit and counting the number of ones
in BX (and dividing by b in case of multiple hash functions)
will always deliver |X| at a given precision as |X| is fixed and
BX → ∞. Thus we can conclude that BX,1

b

p→ |X| which
proves consistency. Asymptotic unbiasedness follows from

8An estimator whose moments are not finite. In the case of the estimator Swamidass
et al. [59], the expectation of |̂X|, and thus also the higher moments, diverge, which
happens for BX,1 = BX
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consistency in our case as the variance of both estimators is
bounded (see the proof of Proposition IV.1). The same reason-
ing can be easily extended to show consistency and asymptotic
unbiasedness also for ̂|X ∩ Y |AND and ̂|X ∩ Y |OR presented
in section IV-B.

D. Proposition IV.1

Proof. To prove Proposition IV.1 from Section IV-B we can
extend in a straightforward way the proof presented for Propo-
sition A.1. Indeed we just need to substitute |X| with |X ∩Y |
and BX with BX∩Y to obtain the desired result.

E. MinHash Sketches for Set Intersection

1) Expectation formula: Since in the case of k-hash, |MX∩
MY | ∼ Bin( k , JX,Y ), and for 1-hash, |M1

X ∩ M1
Y | ∼

Hypergeometric(|X ∪ Y |, |X ∩ Y |, k), we have:

E[ ̂|X ∩ Y |kH ] = (|X|+ |Y |)
k∑
s=0

(k
s

)
(JX,Y )s(1− JX,Y )k−s

s

k + s

(23)

E[ ̂|X ∩ Y |1H ] = (|X|+ |Y |)
k∑
s=0

(|X∩Y |
s

)(|X∪Y |−|X∩Y |
k−s

)(|X∪Y |
k

) s

k + s
(24)

There exists an involved closed form expression for equation
(23) which is beyond the scope of this paper. We refer the
interested reader to [176] for a clear derivation of a similar
problem.

2) Proof of consistency and asymptotic unbiasedness:
We start to show that ̂|X ∩ Y |kH is consistent. This follows
respectively from Proposition IV.2 statement. Indeed by taking
the limit for k → ∞ with fixed and finite |X| and |Y | we
obtain:

lim
k→∞

P
(∣∣∣ ̂|X ∩ Y |kH − |X ∩ Y |

∣∣∣ ≥ t) ≤ lim
k→∞

2e
− 2 k t2

(|X|+|Y |)2 → 0

The above implies that ̂|X ∩ Y |kH
p→ |X ∩ Y |. On the

other hand, for ̂|X ∩ Y |1H we are in the sampling without
replacement scheme. This means that the population size (i.e.
|X ∪ Y |) is finite and by taking the limit for k → |X ∪ Y | in
Proposition IV.3, with fixed and finite |X| and |Y |, we have
already sampled the entire population contrarily to the k-Hash
case. Thus ̂|X ∩ Y |1H is also a consistent estimator of |X∩Y |.
Then, for both estimators, the asymptotic unbiasedness follows
from consistency and by noticing that both ̂|X ∩ Y |kH and
̂|X ∩ Y |1H have a bounded variance.
3) Sub-Gaussian preliminaries: We recall some key notions

of sub-gaussian random variables as they are necessary for the
following proofs. First of all, we define ψX(λ) = log(E[eλX ])
as the logarithmic moment generating function (i.e. cumulant)
of a generic random variable X . For example, if Z is a
centered normal random variable with variance σ2, we have
that ψZ(λ) = λ2σ2

2 . It can be shown, we refer the interested
reader to chapter 2 of [38] for a detailed explanation, that
Chernoff’s inequality in this case implies, for all t > 0, that:

P (Z ≥ t) ≤ e− t2

2σ2 (25)

The bound above, characterize the decay of the tail proba-
bilities of a centered normal random variable. If the tail prob-
abilities of a generic centered random variable X , decrease at
least as rapidly as the ones in (25) then X is sub-gaussian.
More formally, a centered random variable X is said to be
sub-gaussian with variance factor σ2 if:

ψX(λ) ≤ λ2σ2

2
∀λ ∈ R (26)

We underline that (26) only requires V ar(X) ≤ σ2.
Moreover, if we call G(σ2) the collection of random variables
for which (26) holds (e.g. all bounded random variables
belongs to G(σ2)), we can state that:

Lemma A.3. Let X1, . . . , Xn be sub-gaussians random vari-
ables so that Xi ∈ G(σ2

i ) for every i ∈ {1, . . . , n}. Then∑n
i=1Xi ∈ G((

∑n
i=1 σi)

2). Moreover if the random variables
are independent, then

∑n
i=1Xi ∈ G(

∑n
i=1 σ

2
i ).

This is due to the fact that (26) implies a bound on the
moment generating function whose properties, together with
the Hölder inequality, help to verify the above statement. For
a detailed proof of lemma A.3 see theorem 2.7 in [?] while
for alternative characterizations of sub-gaussianity in terms of
growth of moments, we refer to chapter 2 of [38].

4) Concentration bounds for k-Hash and 1-Hash: We
present below the proof of Propositions IV.2 and IV.3. First,
we show the following lemma which we will also use later.

Lemma A.4.

P (|Ĵ1 − J | ≥ t), P (|Ĵk − J | ≥ t) ≤ 2e−2t2k (27)

Proof. The random variables kĴ1 and kĴk follow the hyper-
geometric and binomial distributions, respectively. Applying
the Hoeffding’s inequalities in the binomial case, we get the
desired inequality. The Serfling’s bound can be applied in the
case of the hypergeometric distribution. The Serfling’s bound
always gives better bounds than the Hoeffding’s, proving the
inequality for Ĵ1.

We now show concentration of the sum of the estimators
and, therefore also of the individual estimators (by fixing n =
1).

Theorem A.5. Let Y1 =
∑n
i Ci

Ĵ1

1+Ĵ1
, Yk =

∑n
i Ci

Ĵk
1+Ĵk

.
Then for any non-negative constants Ci and S =

∑n
i=1 Ci

J
1+J

P (|Y1 − S| > t), P (|Yk − S| > t) ≤ 2 exp

(
− 2 k t2

(
∑n
i Ci)

2

)
(28)

Proof. The function X
1+X is 1-Lipschitz and it, therefore, holds

that ∀ X,X ′ ∈ [0, 1]∣∣∣∣ X

1 +X
− X ′

1 +X ′

∣∣∣∣ ≤ |X −X ′|
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The concentration result from Lemma A.4 then also holds
for Ĵ1

1+Ĵ1
and Ĵk

1+Ĵk
. The random variables

Ĵ1

1 + Ĵ1

− J

1 + J

Ĵk

1 + Ĵk
− J

1 + J

are therefore sub-gaussian with variance factor σ2 = 1
4k (see

eq. (25), (26) and in general section E3). Now we multiply by
Ci each variable, we take the sum and, thanks to lemma A.3,
we get that Y1−S and Yk−S are sub-gaussian with variance
factor

(
∑n
i=1 Ci)

2

4k

The theorem follows from the definition of a sub-gaussian
random variable (see section E3 for further references).

We stress here that ̂|X ∩ Y |kH derived with k-hash can
also be interpreted as a maximum likelihood estimator (MLE)
(cf. § II-E) for |X ∩ Y | because of the invariance property
outlined in § II-F and detailed in Chapter 7 of [39]. Indeed
since |MX ∩MY | ∼ Bin(k, JX,Y ) we have that ĴX,Y kH =
|MX∩MY |

k is the maximum likelihood estimator of JX,Y if
we assume that the k hash functions are independent and
perfectly random (a usual assumption). Then our estimator
̂|X ∩ Y |kH is just a function of ĴX,Y kH and, because of

the invariance of the MLE (see Theorem 7.2.10 in [39]), this
implies that ̂|X ∩ Y |kH inherits all the properties of this class
of estimators. In particular, it is consistent and asymptotically
efficient since it reaches the Cramér-Rao Lower Bound (see
Theorem 7.3.9 in [39]) meaning that no other estimator can
have a lower variance. It is also normally distributed, as
k increase, which is useful in general to derive confidence
intervals.

F. Results & Derivations for Triangle Counts

1) Proof of consistency and asymptotic unbiasedness: Any
estimator for triangle count analyzed in PG, is simply a sum
of cardinalities ̂|X ∩ Y | for different neighborhoods X and Y
(cf. Section III):

T̂C? =
1

3

∑
(u,v)∈E

̂|Nu ∩Nv|?

where ? indicates a specific ̂|X ∩ Y |? estimator (cf. Table II).
Since we have already proven consistency and asymptotic
unbiasedness for each of the ̂|X ∩ Y |? estimators presented in
PG, we now can address jointly the consistency of the triangle
count estimators. To do so we just need to acknowledge the
fact that a sum of consistent estimators is itself a consistent es-
timator. Indeed this is a direct consequence of the more general
Slutsky theorem which enable us to state that T̂C?

p→ TC. The
asymptotic unbiasedness then follows from consistency and by
noticing that all T̂C? estimators have a bounded variance (see
all the proofs presented below).

2) Bloom Filters: We first present the estima-
tor ̂|X ∩ Y |OR. This estimator was introduced before [59]
and uses the single set estimator evaluated on the set union:

̂|X ∩ Y |OR = |X|+ |Y |+ BX∪Y
b

log

(
1− BX∪Y,1

BX∪Y

)
(29)

Note that, to obtain the expression above, we also use the
fact that |X ∪ Y | = |X|+ |Y | − |X ∩ Y |.
We now prove the triangle count bound for BF stated in
theorem VII.1 for the triangle count OR estimator (the proof
is of course valid also for T̂CAND).

Proof. We first define the mean squared error (mse) as follows:

E[(TC − T̂COR)2] = (E[T̂COR]− TC)2 + V ar(T̂COR)

where the equality is a standard identity.
Now we bound the first component of the mse which

is the squared bias of our estimator. In order to ease the
notation from now on we denote |Nu ∪ Nv| ∀ (u, v) ∈ E
as |X|i ∀ i = 1, ..,m where m is the number of edges. In the
same fashion, we denote |̂X|i ∀ i = 1, ..,m as the estimator
of |Nu ∪Nv| ∀ (u, v) ∈ E. Thus we can write:

(E[T̂COR]− TC)2

=
1

9

[
m∑
i=1

E(|̂X|i)− |X|i
]2

(30)

≤ 1

9


m∑
i=1

m∑
j=1

∣∣∣[E(|̂X|i)− |X|i][E(|̂X|j)− |X|j ]
∣∣∣
 (31)

≤ 1

9


m∑
i=1

m∑
j=1

∣∣∣[E(|̂X|i)− |X|i]
∣∣∣ ∣∣∣[E(|̂X|j)− |X|j ]

∣∣∣


(32)

=
1

9


m∑
i=1

m∑
j=1

√
[E(|̂X|i)− |X|i]2

√
[E(|̂X|j)− |X|j ]2


(33)

≤ m2

9
(1 + o(1))

(
e2∆b/(BX−1)BX

b2
− BX

b2
− 2∆

b

)
(34)

where (32) follows by Cauchy–Schwarz inequality and
(34) by Proposition A.1 which in general bounds the mse
(and thus the squared bias by Jensen’s inequality) if 2b∆ ≤
0.499BX logBX where BX = min(BNu∪Nv ) with (u, v) ∈
E. In particular we underline that any bound obtained by
Proposition A.1, which is valid for a given set size, is also
automatically valid for all the set sizes smaller than that a
fortiori. Thus we can notice that 2∆ ≥ |X|i ∀ i = 1, ..,m
where ∆ is the maximum degree of the input graph which
justifies (34). At this point, it remains to bound the second
component of the mse which is the variance of our estimator.
Indeed we can write:
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V ar(T̂COR)

=
1

9
V ar

[
m∑
i=1

|̂X|i

]
(35)

=
1

9

m∑
i=1

m∑
j=1

Cov(|̂X|i, |̂X|j) (36)

≤ 1

9

m∑
i=1

m∑
j=1

√
V ar(|̂X|i)

√
V ar(|̂X|j) (37)

≤ m2

9
(1 + o(1))

(
e2∆b/(BX−1)BX

b2
− BX

b2
− 2∆

b

)
(38)

where (37) holds because of the covariance inequality and
(38) by Proposition A.1 which in general bounds the mse (and
thus the variance a fortiori) if 2b∆ ≤ 0.499BX logBX . The
justification of (38) is similar to the one outlined before for
the squared bias case.

Now, again assuming 2b∆ ≤ 0.499BX logBX , we can
obtain the bound for the mean squared error of the OR
estimator:

E[(TC − T̂COR)2] =

(E[T̂COR]− TC)2 + V ar(T̂COR)

≤ 2m2

9
(1 + o(1))

(
e2∆b/(BX−1)BX

b2
− BX

b2
− 2∆

b

)
The above bound is valid also for T̂CAND since ∆ ≥ |Nu ∩
Nv| ∀ (u, v) ∈ E however it can be made tighter for the same
reason. Indeed if b∆ ≤ 0.499BX logBX (where now BX =
min(BNu∩Nv ) with (u, v) ∈ E) by Chebychev inequality:

P
(∣∣∣TC − T̂CAND∣∣∣ ≥ t) ≤

2m2(1 + o(1))
(
e∆b/(BX−1)BX

b2 − BX
b2 − ∆

b

)
9 t2

which is the statement of Theorem VII.1 for the BF case.

3) MinHash: We can show the concentration of the sum of
the set intersection estimators using theorem A.5 presented
in Appendix E. Then for the edge ei = uv, we define
Ci = deg(u) + deg(v) thus giving us S = 1

3

∑n
i=1 Ci

J
1+J =

TC. We will not consider the scaling factor 1
3 till the final

expressions of the bounds to ease the notation. Thus we can
write:

m∑
i=1

Ci =

m∑
i=1,ei=uv

deg(u) + deg(v) =

=
∑
v∈V

deg(v)2

Combining the above result with theorem A.5, we obtain
the triangle count bound for MinHash presented in Theorem
VII.1.

However this bound can be improved if we assume more
independence, which will be satisfied in the case of triangle
counting when the maximum degree is not too large. We now
prove a tighter bound under these conditions.

Theorem A.6. Let Y1 =
∑n
i Ci

Ĵ1

1+Ĵ1
, Yk =

∑n
i Ci

Ĵk
1+Ĵk

,
and assume we partition the set of estimators into groups
X1, · · · ,Xχ such that estimators from each set are mutually
independent. Then for any non-negative constants Ci and
S =

∑n
i=1 Ci

J
1+J

P (|Y1 − S| > t), P (|Yk − S| > t) ≤ 2 exp

− k(max(0, t− 2S/k))2

2(
∑χ
i

√∑
d∈Xi C

2
d)

2


≤ 2 exp

(
−
k(max(0, t− 2S/k))2

2χ
∑n
i C

2
i

)
Proof. We modify the proof of Theorem A.5 by instead
considering the random variables

Ĵ1

1 + Ĵ1

− J

1 + J
− µ1

Ĵk

1 + Ĵk
− J

1 + J
− µk

where µ1 and µk are chosen so as to make this random variable
have mean zero.

We then first sum estimators from each group separately
using Lemma A.3, which gives us subgaussian coefficient (i.e.
the square root of the variance factor) of

√∑
d∈Xi C

2
d . Adding

the groups together, we get using again Lemma A.3, that the
subgaussian coefficient is σX =

∑χ
i

√∑
d∈Xi C

2
d . To finish

the proof of the first inequality, we have to show a bound on∑
Ciµ1 and

∑
Ciµk. We show the argument for the case of

1-hash, the argument for k-hash is analogous. Note that µ1 is
the jensen gap of Ĵ1

1+Ĵ1
. Since Var(Ĵ1) ≤ J/k, by Theorem 1

from [177], we have −J/k ≤ E[ Ĵk
1+Ĵk

] − J
1+J ≤ 0. We can

bound −J/k ≥ 2/k J
1+J . Therefore, we can bound

−2S/k ≤
∑

Ciµ1 ≤ 0

To prove the second inequality, we define the following
optimization problem

maximize
n∑
i=1

√
xn

subject to
∑

xi = c

Set xi =
∑
d∈Xi C

2
d and c =

∑
C2
i . We see that for every

possible assignment of the estimators to the sets {Xi}χi=1,
we have a feasible solution with objective value equal to
the subgaussian coefficient σX . Therefore, the subgaussian
coefficient for any assignment to the groups is dominated by
the optimum of this optimization problem.

Optimum of this optimization problem is when all xi’s have
the same value – otherwise one can pick i, j such that xi < xj
and 0 < ε ≤ (xj − xi)/2 and then replace xi by xi + ε and
similarly xj by xj−ε, increasing the objective while retaining
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feasibility. This gives us objective value of χ
√∑n

i=1 C
2
i /χ =√

χ
∑n
i C

2
i

To show the final expression of the bound, we use Theo-
rem A.6. Then by Vizing’s theorem, χ ≤ ∆ + 1 and by the
same substitution done for the first bound, we have:

m∑
i=1

C2
i =

m∑
i=1,ei=uv

(deg(u) + deg(v))2 ≤

≤
m∑

i=1,ei=uv

2(deg(u)2 + deg(v)2) = 2
∑
v∈V

deg(v)3

Indeed combining the above result with Theorem A.6, we
obtain the triangle count bound for MinHash presented in
Theorem VII.1 if the maximum degree is ∆.

G. KMV Sketches

1) Single Sets: We state an existing result on the KMV
sketching; we use it later to provide a KMV sketch for |X ∩
Y | [178]. The hash function used with a KMV maps elements
from X to real numbers in (0, 1] u.a.r.9. Thus, the hashes
should be evenly spaced and one can estimate |X| by dividing
the size k − 1 of KX by the largest hash in KX .

|̂X|K =
k − 1

max{x|x ∈ KX}
(39)

As noted in [178, §2.1], the k-th smallest value follows the
beta distribution Beta(α, β) with shape parameters α = k and
β = |X| − k + 1. Now we can get concentration bounds for
the estimator: indeed, following [179], we can show that:

Proposition A.7. Consider |̂X|K in Eq. (39), then the prob-
ability of deviation from the true set size, at a given distance
t ≥ 0, is

P
(∣∣∣|̂X| − |X|∣∣∣ ≤ t) = Iu(|X|,k,t/|X|)(k, |X| − k + 1)−

Il(|X|,k,t/|X|)(k, |X| − k + 1)

where u(|X|, k, t/|X|) = k−1
|X|−t and l(|X|, k, t/|X|) = k−1

|X|+t
and Ix(a, b) is the regularized incomplete beta function.

In the case of a KMV estimator bound, we can evaluate:

Ix(k, |X| − k + 1) =

|X|∑
i=k

(|X|
i

)
xi(1− x)|X|−i

2) Set Intersection |X ∩ Y |: Given KX and KY of size
kX and kY , one can construct a KMV KX∪Y by taking
the k = min{kX , kY } smallest elements from KX ∪ KY .
̂|X ∪ Y |K , |̂X|K and |̂Y |K can be computed using the follow-

ing equations (note that the second one uses the exact sizes
of X,Y instead of their estimators).

9uniformly at random

̂|X ∩ Y |K = |̂X|K + |̂Y |K − ̂|X ∪ Y |K (40)

̂|X ∩ Y |K = |X|+ |Y | − ̂|X ∪ Y |K (41)

We present now a simple upper bound (using the union
bound) on the probability that ̂|X ∩ Y |K deviates by more
than t from the true value.

Proposition A.8. Let ̂|X ∩ Y |K be the estimator defined in
(40), then the following upper bound for the probability of
deviation from the true intersection set size, at a given distance
t ≥ 0, holds:

P
(
| ̂|X ∩ Y |K − |X ∩ Y || ≥ t

)
≤ P (||̂X|K − |X|| ≥ t/3)+

P (||̂Y |K − |Y || ≥ t/3) + P (| ̂|X ∪ Y |K − |X ∪ Y || ≥ t/3)

where the probabilities on the right can be evaluated with Proposi-
tion A.7.

Yet, if we know the exact size of X and Y (a reasonable
assumption for graph algorithms as the degrees can be easily
precomputed), we can get a considerably better bound.

Proposition A.9. Let ̂|X ∩ Y |K be the estimator from (41),
then

P
(
| ̂|X ∩ Y |K − |X ∩ Y || ≥ t

)
=

Iu(|X∪Y |,k,t/|X∪Y |)(k, |X ∪ Y | − k + 1)

− Il(|X∪Y |,k,t/|X∪Y |)(k, |X ∪ Y | − k + 1)

The bound presented above is a simple application of the
identity |X ∩ Y | = |X|+ |Y | − |X ∪ Y | and Proposition A.7
on the estimator of |X ∪ Y |.
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