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Fundamental 
graph problem

Assign numbers, i.e., colors, to 
each vertex, such that no 

adjacent vertices have the 
same color.

Goal: minimize the number of 
used colors
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Graph coloring: applications
Constructing a 
schedule or a 

time-tableAssigning 
frequencies to 
radio towers

Coloring maps
Allocating registers

Solving 
Sudoku 
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Graph 
datasets 
are huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs 
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

271 billion vertices,
12 trillion edges [1]

> 233 TB

Optimal graph 
coloring is NP-

complete

Thus, one uses parallel heuristics that 
use a reasonably low number of colors 

while being reasonably efficient

We have 
massive 

parallelism

Graph coloring & today’s graph computations
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for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have 
a common 
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking 
vertices impacts 
coloring quality

This sounds inherently 
sequential…

...Parallelism is enabled by coloring in parallel 
groups of vertices that are not adjacent (i.e., 

form an independent set).

Parallel graph coloring heuristics

This immediately 
ensures using at 
most Δ+1 colors

“Scheduled coloring” – the 
vertex order determines 

(“schedules”) when vertices are
picked for being colored

Maximize quality
(i.e., minimize 
#used colors)

Maximize 
performance

work: total number of operations
depth: longest chain of sequential 
dependencies

Both empirically and 
with theoretical 
properties (i.e., 

minimize work, depth, 
and theoretical limit on 

#used colors)



spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

32

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
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A lot of heuristics were 
introduced, offering different 
work-depth-quality tradeoffs

Ordering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”
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A lot of heuristics were 
introduced, offering different 
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

The only scheme with 
good quality bounds 

offers no depth bounds

Let’s use it as a 
starting point…

No need for going over 
these details (for now  )

Almost all schemes have 
only trivial quality bounds
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 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its 
induced subgraphs, there is a vertex with a 
degree of at most s

 The degeneracy d of a graph G is the smallest s, 
such that G is still s-degenerate

At least one
vertex will 

have degree 
at most s

Intuitively, degeneracy captures the notion of 
graph sparsity „at any level”: in each subgraph, 

we will always find a low-degree (=sparsely 
connected) vertex

The lower the 
degeneracy is, 

the sparser 
graph is

Now, the coloring heuristics 
that uses the degeneracy 
order gives provable d+1 

coloring quality

Great, modern graphs are sparse, 
so d+1 should be low in practice

6



spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its 
induced subgraphs, there is a vertex with a 
degree of at most s

 The degeneracy d of a graph G is the smallest s, 
such that G is still s-degenerate

At least one
vertex will 

have degree 
at most s

6



spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering
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induced subgraphs, there is a vertex with a 
degree of at most s

 The degeneracy d of a graph G is the smallest s, 
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At least one
vertex will 
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a given graph is an ordering, 
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most d neighbors that are 
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Degeneracy ordering: example

...

A degeneracy ordering of a 3-degenerate graph

 The degeneracy ordering of 
a given graph is an ordering, 
where each vertex v has at 
most d neighbors that are 
ordered higher than v
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Degeneracy ordering: example

...

A degeneracy ordering of a 3-degenerate graph
3

1 1

3

0 1

2

0
0

 The degeneracy ordering of 
a given graph is an ordering, 
where each vertex v has at 
most d neighbors that are 
ordered higher than v
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degree, one by one.
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itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
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/* V: set of all vertices,
d(v): degree of a vertex v */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy 
order:

Deriving the 
ordering takes 

O(n) depth (i.e., it 
is inherently 
sequential)

The corresponding 
coloring heuristics is 
thus bottlenecked by 

the ordering 
derivation

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest 
degree, one by one.
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/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy 
order:



spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

9

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

/* V: set of all vertices,
d(v): degree of a vertex v,
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Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy 
order:

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
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ADG: approximate 
degeneracy order:
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controls a 
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
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rank[v] = itr;
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Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.
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d(v): degree of a vertex v,
davg: average degree in V */
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order, at the cost of (some) accuracy loss.
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order:
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

Strict degeneracy 
order:

ADG: approximate 
degeneracy order:

Work: O(n+m)

Depth: O(n)
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

Strict degeneracy 
order:

ADG: approximate 
degeneracy order:
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Depth: O(n)
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

Strict degeneracy 
order:

ADG: approximate 
degeneracy order:

Work: O(n+m)

Depth: O(n)

Work: O(n+m)

Depth: O(log2 n)

Approximation: 2(1+ε)
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/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.
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order:
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used by the neighbors of vi;

assign c to vi;
Let’s see how the coloring 

heuristic uses the orderings
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that are ordered higher than v (d is G’s degeneracy).
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not used by the neighbors 

„on the right”

Let’s see how the coloring 
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Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an 
ordering, where each vertex v has at most d neighbors 

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;

A degeneracy ordering of a 3-degenerate graph
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Using the strict degeneracy ordering, 
we get at most d+1 colors

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

Let’s see how the coloring 
heuristic uses the orderings
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Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph
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In the ADG ordering, each 
vertex v has at most 2(1+ε)d 
neighbors that are ordered 
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4

1 1

1
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5
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In the ADG ordering, each 
vertex v has at most 2(1+ε)d 
neighbors that are ordered 

higher than v

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

Using ADG, we get 
at most 2(1+ε)d + 1

colors

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph
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Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”



spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

96

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG



spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

97

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG



spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

98

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG



spcl.inf.ethz.ch

@spcl_eth

16

Parallel graph coloring heuristics + ADG

...

4

1 1

1

0 1

5

0
0

In the ADG ordering, each 
vertex v has at most 2(1+ε)d 
neighbors that are ordered 

higher than v

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph
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In the ADG ordering, each 
vertex v has at most 2(1+ε)d 
neighbors that are ordered 

higher than v

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed 
over the input graph G, with 
directions assigned based on 

the used vertex ordering
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neighbors that are ordered 

higher than v

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed 
over the input graph G, with 
directions assigned based on 

the used vertex ordering

Now, it was proved that 
a parallel coloring 

heuristics  runs in O(|P| 
log Δ + log n) depth and 

O(n+m) work [1].

[1] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, 
“Ordering heuristics for parallel graph coloring”. SPAA’14.
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a parallel coloring 

heuristics  runs in O(|P| 
log Δ + log n) depth and 

O(n+m) work [1].
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What is |P| 
when using 

ADG?
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In the ADG ordering, each 
vertex v has at most 2(1+ε)d 
neighbors that are ordered 

higher than v

Color vertices one by one, 
assigning a lowest color 
not used by the neighbors 

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed 
over the input graph G, with 
directions assigned based on 

the used vertex ordering

Now, it was proved that 
a parallel coloring 

heuristics  runs in O(|P| 
log Δ + log n) depth and 

O(n+m) work [1].

[1] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, 
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What is |P| 
when using 

ADG?

Let’s see some 
intuition
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A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph
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A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

Vertices with the same ADG rank form 
subgraphs 
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A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

Vertices with the same ADG rank form 
subgraphs 

Analyze |P| by analyzing the lengths 
of its parts, going via each subgraph
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...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

By ADG, each vertex has a bounded
degree in each subgraph

Vertices with the same ADG rank form 
subgraphs 

+
Analyze |P| by analyzing the lengths 
of its parts, going via each subgraph
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Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

By ADG, each vertex has a bounded
degree in each subgraph

Vertices with the same ADG rank form 
subgraphs 

+
Analyze |P| by analyzing the lengths 
of its parts, going via each subgraph

“There is only as far (constant) as 
you can go in a subgraph”
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Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG
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“Smallest degree last”

Random
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“Largest log-degree first”

“Smallest log-degree last”

ADG
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ADG



spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

113

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”
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“First fit” (i.e., any order)
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Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

Anything else?
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Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Any coloring „conflicts” (vertices with 
the same colors) are by repeating the 
coloring on conflicting vertices as 
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 Their runtimes are comparable or marginally 
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within 1.1 – 1.5x (in the scheduling class)

 The only routines with non-
trivial theoretical guarantees on 

work and depth and quality
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/* n: number of vertices,
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Δ: maximum vertex degree,
d: graph’s degeneracy */
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 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest 
degree, one by one.

Deriving the 
ordering takes 

O(n) depth (i.e., it 
is inherently 
sequential)

Deriving the ordering takes 
O(n+m) work

The corresponding coloring 
heuristics takes O(n+m) work 

and gives d+1 quality

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

The corresponding 
coloring heuristics is 
thus bottlenecked by 

the ordering 
derivation

Can we have both good 
degeneracy-based quality 
and low depth & work ?
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forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Key idea: try a relaxation of the strict degeneracy 
order, at the cost of (some) accuracy loss.

One can prove that 
Rmin forms a constant 
fraction of all vertices
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