
spcl.inf.ethz.ch

@spcl_eth

M. BESTA, A. CARIGIET, Z. VONARBURG-SHMARIA, K. JANDA, L. GIANINAZZI, T. HOEFLER

High-Performance Parallel Graph Coloring
with Strong Guarantees on Work, Depth, and Quality

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring

spcl.inf.ethz.ch

@spcl_eth

2

Fundamental
graph problem

Graph coloring

spcl.inf.ethz.ch

@spcl_eth

2

Fundamental
graph problem

Assign numbers, i.e., colors, to
each vertex, such that no

adjacent vertices have the
same color.

Graph coloring

spcl.inf.ethz.ch

@spcl_eth

2

Fundamental
graph problem

Assign numbers, i.e., colors, to
each vertex, such that no

adjacent vertices have the
same color.

Goal: minimize the number of
used colors

Graph coloring

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications
Constructing a
schedule or a

time-table

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications
Constructing a
schedule or a

time-tableAssigning
frequencies to
radio towers

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications
Constructing a
schedule or a

time-tableAssigning
frequencies to
radio towers

Allocating registers

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications
Constructing a
schedule or a

time-tableAssigning
frequencies to
radio towers

Coloring maps
Allocating registers

spcl.inf.ethz.ch

@spcl_eth

2

Graph coloring: applications
Constructing a
schedule or a

time-tableAssigning
frequencies to
radio towers

Coloring maps
Allocating registers

Solving
Sudoku 

spcl.inf.ethz.ch

@spcl_eth

3

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

3

Graph
datasets
are huge

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

3

Graph
datasets
are huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

271 billion vertices,
12 trillion edges [1]

> 233 TB

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

3

Graph
datasets
are huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

271 billion vertices,
12 trillion edges [1]

> 233 TB

Optimal graph
coloring is NP-

complete

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

3

Graph
datasets
are huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

271 billion vertices,
12 trillion edges [1]

> 233 TB

Optimal graph
coloring is NP-

complete

We have
massive

parallelism

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

3

Graph
datasets
are huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

271 billion vertices,
12 trillion edges [1]

> 233 TB

Optimal graph
coloring is NP-

complete

Thus, one uses parallel heuristics that
use a reasonably low number of colors

while being reasonably efficient

We have
massive

parallelism

Graph coloring & today’s graph computations

spcl.inf.ethz.ch

@spcl_eth

5

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

Parallel graph coloring heuristics

spcl.inf.ethz.ch

@spcl_eth

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

Parallel graph coloring heuristics

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

Parallel graph coloring heuristics

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

Maximize quality
(i.e., minimize
#used colors)

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

Maximize quality
(i.e., minimize
#used colors)

Maximize
performance

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

Maximize quality
(i.e., minimize
#used colors)

Maximize
performance

Both empirically and
with theoretical
properties (i.e.,

minimize work, depth,
and theoretical limit on

#used colors)

spcl.inf.ethz.ch

@spcl_eth

for each vertex vi in (v1 … vn):

find smallest color c not used by the neighbors of vi;

assign c to vi;

5

They have
a common
structure

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree */

The order of picking
vertices impacts
coloring quality

This sounds inherently
sequential…

...Parallelism is enabled by coloring in parallel
groups of vertices that are not adjacent (i.e.,

form an independent set).

Parallel graph coloring heuristics

This immediately
ensures using at
most Δ+1 colors

“Scheduled coloring” – the
vertex order determines

(“schedules”) when vertices are
picked for being colored

Maximize quality
(i.e., minimize
#used colors)

Maximize
performance

work: total number of operations
depth: longest chain of sequential
dependencies

Both empirically and
with theoretical
properties (i.e.,

minimize work, depth,
and theoretical limit on

#used colors)

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

32

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

33

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

34

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Ordering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

35

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Ordering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

36

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

37

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

38

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

No need for going over
these details (for now )

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

39

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

No need for going over
these details (for now )

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

40

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

No need for going over
these details (for now )

Almost all schemes have
only trivial quality bounds

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

41

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

The only scheme with
good quality bounds

offers no depth bounds

No need for going over
these details (for now )

Almost all schemes have
only trivial quality bounds

spcl.inf.ethz.ch

@spcl_eth

6

Parallel graph coloring heuristics

42

A lot of heuristics were
introduced, offering different
work-depth-quality tradeoffs

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

The associated coloring heuristics:

The only scheme with
good quality bounds

offers no depth bounds

Let’s use it as a
starting point…

No need for going over
these details (for now )

Almost all schemes have
only trivial quality bounds

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

At least one
vertex will

have degree
at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

At least one
vertex will

have degree
at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

Intuitively, degeneracy captures the notion of
graph sparsity „at any level”: in each subgraph,

we will always find a low-degree (=sparsely
connected) vertex

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

Intuitively, degeneracy captures the notion of
graph sparsity „at any level”: in each subgraph,

we will always find a low-degree (=sparsely
connected) vertex

The lower the
degeneracy is,

the sparser
graph is

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

Intuitively, degeneracy captures the notion of
graph sparsity „at any level”: in each subgraph,

we will always find a low-degree (=sparsely
connected) vertex

The lower the
degeneracy is,

the sparser
graph is

Now, the coloring heuristics
that uses the degeneracy
order gives provable d+1

coloring quality

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

Intuitively, degeneracy captures the notion of
graph sparsity „at any level”: in each subgraph,

we will always find a low-degree (=sparsely
connected) vertex

The lower the
degeneracy is,

the sparser
graph is

Now, the coloring heuristics
that uses the degeneracy
order gives provable d+1

coloring quality

Great, modern graphs are sparse,
so d+1 should be low in practice

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

6

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

 Iterate over vertices in the degeneracy ordering

A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

 The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

At least one
vertex will

have degree
at most s

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

6

spcl.inf.ethz.ch

@spcl_eth

8

Degeneracy ordering: example

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

spcl.inf.ethz.ch

@spcl_eth

8

Degeneracy ordering: example

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

spcl.inf.ethz.ch

@spcl_eth

8

Degeneracy ordering: example

...

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

spcl.inf.ethz.ch

@spcl_eth

8

Degeneracy ordering: example

...

A degeneracy ordering of a 3-degenerate graph

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

spcl.inf.ethz.ch

@spcl_eth

8

Degeneracy ordering: example

...

A degeneracy ordering of a 3-degenerate graph
3

1 1

3

0 1

2

0
0

 The degeneracy ordering of
a given graph is an ordering,
where each vertex v has at
most d neighbors that are
ordered higher than v

spcl.inf.ethz.ch

@spcl_eth

Degeneracy ordering: derivation

9

/* V: set of all vertices,
d(v): degree of a vertex v */

spcl.inf.ethz.ch

@spcl_eth

Degeneracy ordering: derivation

9

/* V: set of all vertices,
d(v): degree of a vertex v */

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

spcl.inf.ethz.ch

@spcl_eth

Degeneracy ordering: derivation

9

/* V: set of all vertices,
d(v): degree of a vertex v */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

spcl.inf.ethz.ch

@spcl_eth

Degeneracy ordering: derivation

9

/* V: set of all vertices,
d(v): degree of a vertex v */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

Deriving the
ordering takes

O(n) depth (i.e., it
is inherently
sequential)

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

spcl.inf.ethz.ch

@spcl_eth

Degeneracy ordering: derivation

9

/* V: set of all vertices,
d(v): degree of a vertex v */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

Deriving the
ordering takes

O(n) depth (i.e., it
is inherently
sequential)

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

9

/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

9

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

9

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

ADG: approximate
degeneracy order:

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

9

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

/* V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
vmin = argmin v in V d(v);
V = V \ {vmin};
rank[vmin] = itr++;

Strict degeneracy
order:

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

ADG: approximate
degeneracy order:

A user-specified
parameter that

controls a
performance-

quality tradeoff

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

Assigning new ranks
takes O(1) depth

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

Assigning new ranks
takes O(1) depth

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

Assigning new ranks
takes O(1) depth

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

Assigning new ranks
takes O(1) depth

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(log n) depth

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(1) depth

Assigning new ranks
takes O(1) depth

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

ADG: approximate
degeneracy order:

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

ADG: approximate
degeneracy order:

Work: O(n+m)

Depth: O(n)

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

ADG: approximate
degeneracy order:

Work: O(n+m)

Depth: O(n)

Work: O(n+m)

Depth: O(log2 n)

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

ADG: approximate
degeneracy order:

Work: O(n+m)

Depth: O(n)

Work: O(n+m)

Depth: O(log2 n)

Approximation: 2(1+ε)

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

11

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

ADG: approximate
degeneracy order:

Work: O(n+m)

Depth: O(n)

Work: O(n+m)

Depth: O(log2 n)

Approximation: 2(1+ε)

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

Let’s see how the coloring
heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;
Let’s see how the coloring

heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;
Let’s see how the coloring

heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;

A degeneracy ordering of a 3-degenerate graph

Let’s see how the coloring
heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;

A degeneracy ordering of a 3-degenerate graph

3

1 1

3

0 1

2

0
0

Let’s see how the coloring
heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;

A degeneracy ordering of a 3-degenerate graph

3

1 1

3

0 1

2

0
0

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

Let’s see how the coloring
heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

13

Parallel graph coloring heuristics

...

 The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors

that are ordered higher than v (d is G’s degeneracy).

for each vertex vi in (v1 … vn):
find smallest color c not
used by the neighbors of vi;

assign c to vi;

A degeneracy ordering of a 3-degenerate graph

3

1 1

3

0 1

2

0
0

Using the strict degeneracy ordering,
we get at most d+1 colors

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

Let’s see how the coloring
heuristic uses the orderings

spcl.inf.ethz.ch

@spcl_eth

14

Parallel graph coloring heuristics + ADG

...

4

1 1

1

0 1

5

0
0

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

spcl.inf.ethz.ch

@spcl_eth

14

Parallel graph coloring heuristics + ADG

...

4

1 1

1

0 1

5

0
0

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

spcl.inf.ethz.ch

@spcl_eth

14

Parallel graph coloring heuristics + ADG

...

4

1 1

1

0 1

5

0
0

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

Using ADG, we get
at most 2(1+ε)d + 1

colors

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

95

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

96

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

97

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

15

Parallel graph coloring heuristics + ADG

98

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

16

Parallel graph coloring heuristics + ADG

...

4

1 1

1

0 1

5

0
0

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

spcl.inf.ethz.ch

@spcl_eth

17

Parallel graph coloring heuristics + ADG

...

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed
over the input graph G, with
directions assigned based on

the used vertex ordering

spcl.inf.ethz.ch

@spcl_eth

17

Parallel graph coloring heuristics + ADG

...

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed
over the input graph G, with
directions assigned based on

the used vertex ordering

Now, it was proved that
a parallel coloring

heuristics runs in O(|P|
log Δ + log n) depth and

O(n+m) work [1].

[1] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring”. SPAA’14.

spcl.inf.ethz.ch

@spcl_eth

17

Parallel graph coloring heuristics + ADG

...

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed
over the input graph G, with
directions assigned based on

the used vertex ordering

Now, it was proved that
a parallel coloring

heuristics runs in O(|P|
log Δ + log n) depth and

O(n+m) work [1].

[1] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring”. SPAA’14.

What is |P|
when using

ADG?

spcl.inf.ethz.ch

@spcl_eth

17

Parallel graph coloring heuristics + ADG

...

In the ADG ordering, each
vertex v has at most 2(1+ε)d
neighbors that are ordered

higher than v

Color vertices one by one,
assigning a lowest color
not used by the neighbors

„on the right”

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

We consider a DAG imposed
over the input graph G, with
directions assigned based on

the used vertex ordering

Now, it was proved that
a parallel coloring

heuristics runs in O(|P|
log Δ + log n) depth and

O(n+m) work [1].

[1] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring”. SPAA’14.

What is |P|
when using

ADG?

Let’s see some
intuition

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

Vertices with the same ADG rank form
subgraphs

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

Vertices with the same ADG rank form
subgraphs

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

Vertices with the same ADG rank form
subgraphs

Analyze |P| by analyzing the lengths
of its parts, going via each subgraph

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

By ADG, each vertex has a bounded
degree in each subgraph

Vertices with the same ADG rank form
subgraphs

+
Analyze |P| by analyzing the lengths
of its parts, going via each subgraph

spcl.inf.ethz.ch

@spcl_eth

18

Parallel graph coloring heuristics + ADG

...

A 2(1+ε)-approximate degeneracy ordering of a 3-degenerate graph

By ADG, each vertex has a bounded
degree in each subgraph

Vertices with the same ADG rank form
subgraphs

+
Analyze |P| by analyzing the lengths
of its parts, going via each subgraph

“There is only as far (constant) as
you can go in a subgraph”

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

110

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

111

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

112

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

113

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

114

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

115

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

spcl.inf.ethz.ch

@spcl_eth

19

Parallel graph coloring heuristics

116

Depth Work QualityOrdering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG

Anything else?

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

...

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Now, color each partition independently (“speculative
coloring”)

...

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Now, color each partition independently (“speculative
coloring”)

...

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Now, color each partition independently (“speculative
coloring”)

...

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Any coloring „conflicts” (vertices with
the same colors) are by repeating the
coloring on conflicting vertices as
many times as needed

Now, color each partition independently (“speculative
coloring”)

...

spcl.inf.ethz.ch

@spcl_eth

20

Parallel graph coloring heuristics Based on „speculative coloring”

Construct the ADG-
induced partitioning

Each such partition is “low-degree”: it has
a bounded number of edges to any other
such partitions (by the definition of ADG)

Any coloring „conflicts” (vertices with
the same colors) are by repeating the
coloring on conflicting vertices as
many times as needed

Now, color each partition independently (“speculative
coloring”)

...

spcl.inf.ethz.ch

@spcl_eth

21

Parallel graph coloring heuristics

125

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

spcl.inf.ethz.ch

@spcl_eth

ADG (speculative)

21

Parallel graph coloring heuristics

126

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

ADG (speculative)

ADG (speculative)

spcl.inf.ethz.ch

@spcl_eth

ADG (speculative)

21

Parallel graph coloring heuristics

127

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

ADG (speculative)

ADG (speculative)
All details, proofs, etc., are in the paper 

spcl.inf.ethz.ch

@spcl_eth

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Graphs

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Graphs

Road networks
Communication graphs

Social networks

Purchase
networks

Citation &
collaborati
on graphs

Web graphs

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Graphs

Road networks
Communication graphs

Social networks

Purchase
networks

Citation &
collaborati
on graphs

Web graphs

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Graphs

Road networks
Communication graphs

Social networks

Purchase
networks

Citation &
collaborati
on graphs

Web graphs

Machines
In-house Dell PowerEdge R910 server

(Intel Xeon X7550, 32 cores, 1TiB RAM)

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Graphs

Road networks
Communication graphs

Social networks

Purchase
networks

Citation &
collaborati
on graphs

Web graphs

Machines
In-house Dell PowerEdge R910 server

(Intel Xeon X7550, 32 cores, 1TiB RAM)

CSCS Ault, Intel
Xeon Gold

6140, 18 cores,
768 GiB RAM

Evaluation

21

spcl.inf.ethz.ch

@spcl_eth

Evaluation

22

spcl.inf.ethz.ch

@spcl_eth

Comparison targets: 16 algorithms

Evaluation

22

spcl.inf.ethz.ch

@spcl_eth

Comparison targets: 16 algorithms

Evaluation

22

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

“Largest log-degree first”

“Smallest log-degree last”

(scheduling and
speculative variants)

spcl.inf.ethz.ch

@spcl_eth

[1] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen, “Colpack: Software for graph coloring and related problems in scientific computing”. TOMS’13.
[2] D. Bozdag, A. H. Gebremedhin, F. Manne, E. G. Boman, and U. V. ˘ Catalyurek, “A framework for scalable greedy coloring on distributedmemory parallel computers”. JPDC’08.
[3] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient parallel graph algorithms can be fast and scalable” . SPAA’18.

[4] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering heuristics for parallel graph coloring”. SPAA’14.

Taken from four libraries / codes

Colpack [1] Zoltan [2] GBBS/Ligra [3]

Comparison targets: 16 algorithms

Evaluation

HP code [4]

22

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

“Largest log-degree first”

“Smallest log-degree last”

(scheduling and
speculative variants)

spcl.inf.ethz.ch

@spcl_eth

Runtime & quality analysis Smaller graphs; 5M edges (used in online settings)

23

Sp
ee

d
u

p
 o

f
to

ta
l r

u
n

ti
m

e

C
o

lo
r

co
u

n
t

(n
o

rm
al

iz
ed

 t
o

 R
an

d
o

m
)

spcl.inf.ethz.ch

@spcl_eth

Runtime & quality analysis Smaller graphs; 5M edges (used in online settings)

Speculative Speculative

23

Sp
ee

d
u

p
 o

f
to

ta
l r

u
n

ti
m

e

C
o

lo
r

co
u

n
t

(n
o

rm
al

iz
ed

 t
o

 R
an

d
o

m
)

spcl.inf.ethz.ch

@spcl_eth

Runtime & quality analysis Smaller graphs; 5M edges (used in online settings)

Speculative Scheduling Speculative Scheduling

23

Sp
ee

d
u

p
 o

f
to

ta
l r

u
n

ti
m

e

C
o

lo
r

co
u

n
t

(n
o

rm
al

iz
ed

 t
o

 R
an

d
o

m
)

spcl.inf.ethz.ch

@spcl_eth

Runtime & quality analysis Smaller graphs; 5M edges (used in online settings)

Speculative Scheduling Speculative Scheduling

23

Sp
ee

d
u

p
 o

f
to

ta
l r

u
n

ti
m

e

C
o

lo
r

co
u

n
t

(n
o

rm
al

iz
ed

 t
o

 R
an

d
o

m
)

spcl.inf.ethz.ch

@spcl_eth

Runtime & quality analysis Larger graphs, 230M edges (used in offline data analytics)

Speculative Scheduling Speculative Scheduling

24

Sp
ee

d
u

p
 o

f
to

ta
l r

u
n

ti
m

e

C
o

lo
r

co
u

n
t

(n
o

rm
al

iz
ed

 t
o

 R
an

d
o

m
)

spcl.inf.ethz.ch

@spcl_eth

Scaling

25

spcl.inf.ethz.ch

@spcl_eth

Scaling

Other results follow similar
performance/quality patterns

25

spcl.inf.ethz.ch

@spcl_eth

Conclusion

26

spcl.inf.ethz.ch

@spcl_eth

Novel parallel graph
coloring algorithms,

enhancing two established
classes of heuristics

Conclusion

26

spcl.inf.ethz.ch

@spcl_eth

Novel parallel graph
coloring algorithms,

enhancing two established
classes of heuristics

Conclusion

 They almost always
offer superior coloring

quality

26

spcl.inf.ethz.ch

@spcl_eth

Novel parallel graph
coloring algorithms,

enhancing two established
classes of heuristics

Conclusion

 They almost always
offer superior coloring

quality

 Their runtimes are comparable or marginally
higher than others (in the speculative class) and

within 1.1 – 1.5x (in the scheduling class)
26

spcl.inf.ethz.ch

@spcl_eth

Novel parallel graph
coloring algorithms,

enhancing two established
classes of heuristics

Conclusion

 They almost always
offer superior coloring

quality

 Their runtimes are comparable or marginally
higher than others (in the speculative class) and

within 1.1 – 1.5x (in the scheduling class)

 The only routines with non-
trivial theoretical guarantees on

work and depth and quality

26

spcl.inf.ethz.ch

@spcl_eth

28

Backup Slides and Slides’ Variants

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3

Once a subgraph gets
smaller, the degree

becomes smaller than 3
anyway (as one

considers induced
subgraphs)

spcl.inf.ethz.ch

@spcl_eth

Graph degeneracy: an example

6

This graph has
degeneracy of 3

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3

Once a subgraph gets
smaller, the degree

becomes smaller than 3
anyway (as one

considers induced
subgraphs)

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Deriving the ordering takes
O(n+m) work

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Deriving the ordering takes
O(n+m) work

The corresponding coloring
heuristics takes O(n+m) work

and gives d+1 quality

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Deriving the
ordering takes

O(n) depth (i.e., it
is inherently
sequential)

Deriving the ordering takes
O(n+m) work

The corresponding coloring
heuristics takes O(n+m) work

and gives d+1 quality

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

spcl.inf.ethz.ch

@spcl_eth

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Deriving the
ordering takes

O(n) depth (i.e., it
is inherently
sequential)

Deriving the ordering takes
O(n+m) work

The corresponding coloring
heuristics takes O(n+m) work

and gives d+1 quality

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation

spcl.inf.ethz.ch

@spcl_eth

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation

“Smallest degree last”: fundamentals

8

 Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Deriving the
ordering takes

O(n) depth (i.e., it
is inherently
sequential)

Deriving the ordering takes
O(n+m) work

The corresponding coloring
heuristics takes O(n+m) work

and gives d+1 quality

/* n: number of vertices,
m: number of edges,
Δ: maximum vertex degree,
d: graph’s degeneracy */

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation

Can we have both good
degeneracy-based quality
and low depth & work ?

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

spcl.inf.ethz.ch

@spcl_eth

32

Parallel graph coloring heuristics

173

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

spcl.inf.ethz.ch

@spcl_eth

32

Parallel graph coloring heuristics

174

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

ADG (scheduling)

ADG (speculative)

ADG (speculative)

ADG (speculative)

spcl.inf.ethz.ch

@spcl_eth

32

Parallel graph coloring heuristics

175

Depth Work QualityOrdering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random

“Largest log-degree first”

“Smallest log-degree last”

ADG (scheduling)

ADG (scheduling)

ADG (speculative)

ADG (speculative)

ADG (speculative)

All details, proofs, etc., are in the paper 

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

spcl.inf.ethz.ch

@spcl_eth

Approximate degeneracy ordering

10

/* n: the number of all vertices
V: set of all vertices,
d(v): degree of a vertex v,
davg: average degree in V */

itr = 0;
while V ≠ ∅:
Rmin = {v | d(v) ≤ (1+ε)davg};
V = V \ Rmin;
forall v in Rmin in parallel:

rank[v] = itr;
++itr;

Constructing Rmin
takes O(|V|) work

Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Subtracting Rmin from
V takes O(|Rmin|) work

Assigning new ranks
takes O(|Rmin|) work

One can prove that
Rmin forms a constant
fraction of all vertices

|V| gets smaller by a constant
fraction in each iteration

