
Generate IR

Automatic Datatype Generation and Optimization

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract
Many high performance applications spend considerable time packing
noncontiguous data into contiguous communication buffers. MPI
Datatypes provide an alternative by describing noncontiguous data layouts.
This allows sophisticated hardware to retrieve data directly from
application data structures. However, packing codes in real-world
applications are often complex and specifying equivalent datatypes is
difficult, time-consuming, and error prone. We present an algorithm that
automates the transformation. We have implemented the algorithm in a
tool that transforms packing code to MPI Datatypes, and evaluated it by
transforming 90 packing codes from the NAS Parallel Benchmarks. The
transformation allows easy porting of applications to new machines that
benefit from datatypes, thus improving programmer productivity.
Contributions
• Algorithm that converts packing code to datatypes
• Example implementation of the algorithm in an interactive refactoring tool
• Study of efficiency of compact versus non-compact datatypes and regularity

of packing codes in the NAS Parallel Benchmarks
MPI_Datatype struct_t;
MPI_Aint displacements[N];
int blocklen[N];
MPI_Datatype types[N];
MPI_Aint first_addr;
MPI_Get_address(&grid[0][0], &first_addr);
for(int i=0; i<N; i++) {
 MPI_Datatype struct1_t;
 MPI_Aint displacements1[3];
 int blocklen1[3];
 MPI_Datatype types1[3];
 MPI_Aint first_addr1;
 MPI_Get_address(&grid[i][0][0], &first_addr1);
 MPI_Get_address(&grid[i][0][0], &displacements1[0]);
 displacements1[0] -= first_addr1;
 blocklen1[0] = 1;
 types1[0] = MPI_DOUBLE;
 MPI_Get_address(&grid[i][0][1], &displacements1[1]);
 displacements1[1] -= first_addr1;
 blocklen1[1] = 1;
 types1[1] = MPI_DOUBLE;
 MPI_Get_address(&grid[i][0][2], &displacements1[2]);
 displacements1[2] -= first_addr1;
 blocklen1[2] = 1;
 types1[2] = MPI_DOUBLE;
 MPI_Type_create_struct(3, blocklen1,
 displacements1, types1, &struct1_t);

 displacements[i] = first_addr1 - first_addr;
 blocklen[i] = 1;
 types[i] = struct1_t;
}
MPI_Type_create_struct(N, blocklen, displacements,
 types, &struct_t);
MPI_Type_commit(&struct_t);
MPI_Send(&grid[0][0][0], 1, struct_t, 0, tag, COMM);

• Datatypes are used to send/receive data and to store/retrieve data from files
• Basic datatypes such as MPI_DOUBLE match C/C++/Fortran primitives
• Derived datatypes describe advanced data layout such as strided and indexed
• Derived datatypes can be composed to describe arbitrary layouts

Intermediate code

Constructors
Datatypes are initialized using predefined constructors. For example:
int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
 MPI_Datatype *newtype);

int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype *newtype);

int MPI_Type_create_struct(int count, int array_of_block_lengths[],
 MPI_Aint array_of_displacements[],
 MPI_Datatype array_of_types[],
 MPI_Datatype *newtype);
Vector example
We send every second element of an array data[N]. We can use a vector of
doubles with a stride of 2. The stride of vectors is specified in number of elements:

MPI_Datatype vector;
MPI_Type_vector(N/2, 1, 2, MPI_DOUBLE, &vector);
MPI_Type_commit(&vector);
MPI_Send(data, 1, vector, dest, tag, MPI_COMM_WORLD);

CompressSpecialize

CSAIL
Massachusetts Institute of Technology

struct
count: N

double

loop

sequence

statement

N

3

struct
count: 3

MPI_Datatype cont_t;
MPI_Type_contiguous(3, MPI_DOUBLE, &cont_t);
MPI_Datatype vec_t;
MPI_Type_vector(N, 1, N, cont_t, &vec_t);
MPI_Type_commit(&vec_t);
MPI_Send(&grid[0][0][0], 1, vec_t, 0, tag, COMM);

Intermediate code

contiguous
count: 3

double

loop

sequence

statement

N

3

vector
count: N
stride: N

MPI_Datatype vec_t;
MPI_Type_vector(N, 3, N*3, MPI_DOUBLE, &vec_t);
MPI_Type_commit(&vec_t);
MPI_Send(&grid[0][0][0], 1, vec_t, 0, tag, COMM);

Final code

vector
count: N

stride: N*3
blocklen: 3

double

loop

sequence

statement

N

3

Border Exchange Example

double buffer[N * 3];
for(int i=0; i<N; i++) {
 buffer[3*i] = grid[i][0][0];
 buffer[3*i+1] = grid[i][0][1];
 buffer[3*i+2] = grid[i][0][2];
}
MPI_Send(buffer, N * 3, MPI_DOUBLE, 0, tag, COMM);

grid[N][N][3]

pack buffer[N*3]

double,
double,
double

MPI Datatype Background

Datatype Generation Refactoring Tool

Compact = Efficient Datatypes

1 s

2 s

3 s

16 32 64 128

0.50
0.76

1.58

2.39

0.59
0.92

1.89

3.03

Unoptimized Optimized

21%

10 s

20 s

30 s

40 s

16 32 64 128

10.449.34

18.53

31.97

10.8311.19

20.89

34.94

MG

LU

Full application run-times on problem set B on Jaguar.
Communication is only a small fraction of total time.

DatatypePacking Group
1*

Packing Statement

Packing Sequence

Packing Loop

struct

hindexed

hvector

vector

contiguous

Datatype IR

Optimization Overview

For each datatype, bottom up

Merge structs and
indexed types

Compress contiguous
type into send count

Specialize to hindexed

Specialize to hvector

Specialize to vector

Specialize to contiguous

Compress contiguous into
parent block length

success

success

success

success

1. Every packing statement must access the same source
array, struct or scalar variable

2. All block lengths must be the same size
3. The packing group must not contain a conditional
4. There must be a fixed distance between the memory

locations accessed by every pair of consecutive packing
statements

Requires reasoning about loop induction variables and
expression simplification:

Example: Specialize to hvector

((3Ni+ 1)� (3Ni), (3Ni+ 2)� (3Ni+ 1)) = (1, 1)

(3Ni|stride of i is 1) = 3N

[20] G. Santhanaraman, J. Wu, and D. K. Panda. Zero-copy MPI derived datatype communication over
InfiniBand. In EuroPVM/MPI, 2004.

[22] N. Tanabe and H. Nakajo. Acceleration for MPI derived datatypes using an enhancer of memory and
network. In IPDPS Workshops, 2010.

[25] J. Worringen, A. Gaer, and F. Reker. Exploiting transparent remote memory access for non-contiguous
and one-sided-communication. In Workshop on Communication Architecture for Clusters, 2002.

[26] J. Wu, P. Wyckoff, and D. Panda. High performance implementation of MPI derived datatype
communication over infiniband. In IPDPS, 2004.

Fast Communication = Datatypes in Future

a UPC extension exist that implicitly supports datatypes through
indexed and strided copies). Therefore, the programmer has no
other choice than to express non-contiguous data transfers using
either multiple sends or packing code.

The potential performance, performance portability and read-
ability benefits of using datatypes, combined with the difficulty in
creating them for humans and the lack of means to express them
in some languages, motivates an automated approach. Since pack-
ing code is a common idiom for sending non-contiguous data, a
technique for converting packing code to datatype code is needed.

For programming models that expose datatypes to the program-
mer, a refactoring tool or a source-to-source compiler should be
used to port packing code to datatype code. For programming
models where datatypes are not exposed to the programmer, such
as UPC and CAF, a compiler pass that converts packing code to
datatype code is desirable. This allows the compiler to output code
that takes advantage of datatype capabilities in the network or uses
pipelined asynchronous messages where this is supported, or that
optimizes the packing for the target architecture where it is not.

We present a novel algorithm that converts packing code to
datatype code. The algorithm converts the packing code to an in-
termediate representation (IR) called the Datatype IR. The IR com-
pactly captures the information required to generate datatypes. The
algorithm then performs a number of specialization and compres-
sion passes to optimize the IR so that compact datatypes can be
emitted. After the algorithm has produced a datatype description of
the layout of the packed data, the IR can be used to replace the ex-
isting packing code with datatype code. The presentation assumes
C and MPI, but the techniques generalize to other environments.

We implemented our algorithm as a refactoring plugin for C
with MPI on top of Eclipse CDT. We used this implementation to
evaluate the approach on the NAS Parallel LU Benchmark. The
evaluation shows that the algorithm is applicable to real world code
and that it finds good datatypes.

2. Related Work
Gojun et al., developed a pre-processor tool called AutoMap that
automatically generates datatypes for user-annotated C structs [8].
Moreover, Tansey & Tilevich developed a GUI tool that can gener-
ate datatypes for C++ classes [23]. These tools automate the gener-
ation of datatypes for struct and class definitions, but do not look for
opportunities to use these datatypes in client code or for structured
accesses to arrays that can be replaced with vector or contiguous
types. In contrast, our technique generates datatypes based on ac-
cess patterns in packing code, finds indexed and vector accesses in
arrays, and rewrite the client code to use these datatypes.

There is a large body of research on optimizing the perfor-
mance of datatypes. Gropp, Lusk and Swider provide a taxonomy
of MPI datatypes according to their memory reference patterns, and
demonstrate how to efficiently implement these patterns using a va-
riety of techniques [9].

One line of research on datatype processing aims to improve the
performance of datatype packing in MPI implementations over user
packing code, by using efficient internal data structures, runtime
and machine information. Bynna et al. present a technique to im-
prove the performance of derived datatypes, by automatically chos-
ing a packing algorithm that is optimized for the memory-access
cost of the target machine [4]. Ross, Miller and Gropp describe an
efficient internal representation of datatypes called dataloops that
aids MPI implementation that performs datatype packing in main-
taining high performance during datatype processing [19].

A second line of research describes techniques to take advan-
tage of datatypes to exploit advanced network features that allows
moving non-contiguous data without any packing. Wu, Wyckoff
and Panda compare the performance of an MPI implementation that

Researchers Approach Speedup
Wu, et al. [26] Infiniband non-contiguous 3.6x

remote load/store
Santhanaraman, et al. [20] Infiniband non-contiguous 4.8x

channel communication
Worringen, et al. [25] SCI non-contiguous 2.1x

copy to global memory
Tanabe and Nakajo [22] DIMMnet-2 support for 6.8x

non-contiguous RDMA

Table 1. Previous work on speeding up datatypes through hard-
ware support, with maximum speedups reported by researchers.

performs datatype packing and an implementation that uses the Re-
mote Direct Memory Access (RDMA) feature of InfiniBand [11]
to avoid either the packing or the unpacking involved in transmit-
ting non-contiguous [26]. Santhanaraman, Wu and Panda presents a
technique they call Send Gather Receive Scatter (SGRS) that uses
InfiniBand channels to avoid both the packing and unpacking in-
volved in sending/receiving non-contiguous data [20]. Finally, Tan-
abe and Nakajo developed an hardware accelerator for datatypes,
called DIMMnet-2, that can transfer non-contiguous data.

All of these techniques require datatype to be specified explic-
itly. Our technique converts packing code to datatype code, thereby
enabling these optimizations.

Previous work has established that message bandwidth can be
increased significantly if hardware support for zero-copy transfer
of non-contiguous data is provided. Taking advantage of such fea-
tures requires datatypes to be specified. Wu, et al. showed vector
bandwidth improvements up to a factor of 3.6 for large messages
compared to manual packing code when using their Multi-W tech-
nique for InfiniBand [26]. Similarly, Santhanaraman, et al. showed
vector bandwidth improvements up to a factor of 4.75 for large
messages using their SGRS technique for InfiniBand [20]. They
also report low CPU utilization as communication workload is of-
floaded to the network, which indicates increased potential for ex-
ploiting communication-computation overlap. Furthermore, Wor-
ringen, et al. report performance improvements up to a factor of
2.1, from taking advantage of hardware support in the SCI inter-
connect to copy non-contiguous data directly to global memory.
Finally, Tanabe and Nakajo demonstrated a performance improve-
ment up to a factor of 6.8 from accelerating MPI Datatypes using
their DIMMnet-2 RDMA system [22]. Table 1, summarizes previ-
ous work on speeding up datatypes through hardware support.

Furthermore, multiple research groups have demonstrated that
datatypes can have comparable or better performance than man-
ual packing code, even when the network does not support non-
contiguous transfers. Ross et al. showed that an optimized MPI im-
plementation can have comparable performance to manual packing
code when transmitting common data structures such as vectors and
3D faces [19]. Moreover, Byna, et al. provide a technique that out-
performs manual packing code by as much as 205% for a matrix
transpose by taking advantage of knowledge of the memory system
to improve memory access cost [4]. Hoefler and Gottlieb demon-
strate speedups up to a factor of 3.8 and 18% for a Fast Fourier
Transform and a conjugate gradient solver respectively by express-
ing communication using datatypes [10].

This firmly establishes datatypes as a useful way of specify-
ing non-contiguous transfers that can provide speedups given the
right hardware and/or software. Furthermore, we expect network
capabilities to improve in the future making datatypes increasingly
relevant.

Key steps in our algorithm is the specialization from indexed
types to vector types, and from vector types to contiguous types.
These steps rely heavily on algebraic expression simplification and

2

90 datatypes generated from the
NAS Parallel Benchmarks

10

20

30

40

MG LU BT SP

Datatype IR Nodes

Contiguous
Vector
Hvector
Hindexed
Struct

• NPB contains 90 packing/unpacking codes
• Our algorithm can convert 60 (67%) out of the box
• In the remaining 30 cases precondition 2 is not met
• The code must pack to consecutive buffer locations

• In each case the precondition can easily be established
through a single loop split (can be automated)

38 unpacking codes in NPB were mapped to Irecv statements.
In these cases our implementation generates the datatype,
but the programmer must rewrite the Irecv to use them.

Fredrik Kjolstad Torsten Hoefler Marc Snir

1. The code block consists of: nested loops, assignments
and conditionals (if statements)

2. The code block writes to consecutive locations in the
packing buffer

Preconditions

static MPI_Datatype vec_t;
static int init = 0;
static int _N;
if (N != _N || !init) {
 if (init) MPI_Type_free(&vec_t);
 init = 1;
 _N = N;
 MPI_Type_vector(N, 3, N * 3, MPI_DOUBLE, &vec_t);
 MPI_Type_commit(&vec_t);
}

Lazy Datatype Construction Boilerplate

